
Accelerated Computing

GPU Teaching Kit

Atomic Operations in CUDA
Module 7.3 – Parallel Computation Patterns (Histogram)

2

Objective
– To learn to use atomic operations in parallel programming

– Atomic operation concepts
– Types of atomic operations in CUDA
– Intrinsic functions
– A basic histogram kernel

3

Data Race Without Atomic Operations

– Both threads receive 0 in Old
– Mem[x] becomes 1

thread1:

thread2: Old Mem[x]

New Old + 1

Mem[x] New

Old Mem[x]

New Old + 1

Mem[x] New

Mem[x] initialized to 0

time

4

Key Concepts of Atomic Operations
– A read-modify-write operation performed by a single hardware

instruction on a memory location address
– Read the old value, calculate a new value, and write the new value to the

location
– The hardware ensures that no other threads can perform another

read-modify-write operation on the same location until the current
atomic operation is complete
– Any other threads that attempt to perform an atomic operation on the

same location will typically be held in a queue
– All threads perform their atomic operations serially on the same location

5

Atomic Operations in CUDA
– Performed by calling functions that are translated into single instructions

(a.k.a. intrinsic functions or intrinsics)
– Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare

and swap)
– Read CUDA C programming Guide 4.0 or later for details

– Atomic Add
int atomicAdd(int* address, int val);

– reads the 32-bit word old from the location pointed to by address in
global or shared memory, computes (old + val), and stores the
result back to memory at the same address. The function returns
old.

6

More Atomic Adds in CUDA
– Unsigned 32-bit integer atomic add

unsigned int atomicAdd(unsigned int* address,
unsigned int val);

– Unsigned 64-bit integer atomic add
unsigned long long int atomicAdd(unsigned long long

int* address, unsigned long long int val);

– Single-precision floating-point atomic add (capability > 2.0)
– float atomicAdd(float* address, float val);

6

7

A Basic Text Histogram Kernel
– The kernel receives a pointer to the input buffer of byte values
– Each thread process the input in a strided pattern

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo)

{
int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads
int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x
// consecutive elements
while (i < size) {

atomicAdd(&(histo[buffer[i]]), 1);
i += stride;

}
}

8

A Basic Histogram Kernel (cont.)
– The kernel receives a pointer to the input buffer of byte values
– Each thread process the input in a strided pattern

__global__ void histo_kernel(unsigned char *buffer,
long size, unsigned int *histo)

{
int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads
int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x
// consecutive elements
while (i < size) {

int alphabet_position = buffer[i] – “a”;
if (alphabet_position >= 0 && alpha_position < 26)
atomicAdd(&(histo[alphabet_position/4]), 1);
i += stride;

}
}

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 7.3 – Parallel Computation Patterns (Histogram)
	Objective
	Data Race Without Atomic Operations
	Key Concepts of Atomic Operations
	Atomic Operations in CUDA
	More Atomic Adds in CUDA
	A Basic Text Histogram Kernel
	A Basic Histogram Kernel (cont.)
	Slide Number 9

