
Accelerated Computing

GPU Teaching Kit

Analyzing Data Reuse in Tiled Convolution
Module 8.4 – Parallel Computation Patterns (Stencil)

2

Objective
– To learn to analyze the cost and benefit of tiled

parallel convolution algorithms
– More complex reuse pattern than matrix multiplication
– Less uniform access patterns

3

An 8-element Convolution Tile

For Mask_Width=5, we load 8+5-1=12 elements
(12 memory loads)

4

Each output P element uses 5 N elements

P[8] uses N[6], N[7], N[8], N[9], N[10]
P[9] uses N[7], N[8], N[9], N[10], N[11]
P[10] use N[8], N[9], N[10], N[11], N[12]
…
P[14] uses N[12], N[13], N[14], N[15], N[16]
P[15] uses N[13], N[14], N[15], N[16], N[17]

5

A simple way to calculate tiling benefit
– (8+5-1)=12 elements loaded
– 8*5 global memory accesses replaced by shared

memory accesses
– This gives a bandwidth reduction of 40/12=3.3

6

In General, for 1D TILED CONVOLUTION
– O_TILE_WIDTH+MASK_WIDTH -1 elements loaded for

each input tile
– O_TILE_WIDTH*MASK_WIDTH global memory accesses

replaced by shared memory accesses
– This gives a reduction factor of

(O_TILE_WIDTH*MASK_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

This ignores ghost elements in edge tiles.

7

Another Way to Look at Reuse

N[6] is used by P[8] (1X)
N[7] is used by P[8], P[9] (2X)
N[8] is used by P[8], P[9], P[10] (3X)
N[9] is used by P[8], P[9], P[10], P[11] (4X)
N10 is used by P[8], P[9], P[10], P[11], P[12] (5X)
… (5X)
N[14] is used by P[12], P[13], P[14], P[15] (4X)
N[15] is used by P[13], P[14], P[15] (3X)

8

Another Way to Look at Reuse

9

In General, for 1D
– The total number of global memory accesses to the input

tile can be calculated as

1 + 2+…+ MASK_WIDTH-1 + MASK_WIDTH*(O_TILE_WIDTH-
MASK_WIDTH+1) + MASK_WIDTH-1 + …+ 2 + 1

= MASK_WIDTH * (MASK_WIDTH-1) + MASK_WIDTH *
(O_TILE_WIDTH-MASK_WIDTH+1)

= MASK_WIDTH * O_TILE_WIDTH

For a total of O_TILE_WIDTH + MASK_WIDTH -1 input tile
elements

10

Examples of Bandwidth Reduction for 1D
The reduction ratio is:

MASK_WIDTH * (O_TILE_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

O_TILE_WIDTH 16 32 64 128 256

MASK_WIDTH= 5 4.0 4.4 4.7 4.9 4.9

MASK_WIDTH = 9 6.0 7.2 8.0 8.5 8.7

11

For 2D Convolution Tiles
– (O_TILE_WIDTH+MASK_WIDTH-1)2 input elements

need to be loaded into shared memory
– The calculation of each output element needs to access

MASK_WIDTH2 input elements
– O_TILE_WIDTH2 * MASK_WIDTH2 global memory

accesses are converted into shared memory accesses
– The reduction ratio is

O_TILE_WIDTH2 * MASK_WIDTH2 / (O_TILE_WIDTH+MASK_WIDTH-1)2

12

Bandwidth Reduction for 2D
The reduction ratio is:
O_TILE_WIDTH2 * MASK_WIDTH2 /
(O_TILE_WIDTH+MASK_WIDTH-1)2

O_TILE_WIDTH 8 16 32 64

MASK_WIDTH = 5 11.1 16 19.7 22.1

MASK_WIDTH = 9 20.3 36 51.8 64

Tile size has significant effect on of the
memory bandwidth reduction ratio.

This often argues for larger shared
memory size.

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 8.4 – Parallel Computation Patterns (Stencil)
	Objective
	An 8-element Convolution Tile
	Each output P element uses 5 N elements
	A simple way to calculate tiling benefit
	In General, for 1D TILED CONVOLUTION
	Another Way to Look at Reuse
	Another Way to Look at Reuse
	In General, for 1D
	Examples of Bandwidth Reduction for 1D
	For 2D Convolution Tiles
	Bandwidth Reduction for 2D
	Slide Number 13

