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Objective
– To learn to analyze the cost and benefit of tiled 

parallel convolution algorithms
– More complex reuse pattern than matrix multiplication
– Less uniform access patterns
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An 8-element Convolution Tile

For Mask_Width=5, we load 8+5-1=12 elements
(12 memory loads)
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Each output P element uses 5 N elements

P[8] uses N[6], N[7], N[8], N[9], N[10]
P[9] uses N[7], N[8], N[9], N[10], N[11]
P[10] use N[8], N[9], N[10], N[11], N[12]
…
P[14] uses N[12], N[13], N[14], N[15], N[16]
P[15] uses N[13], N[14], N[15], N[16], N[17]
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A simple way to calculate tiling benefit
– (8+5-1)=12 elements loaded
– 8*5 global memory accesses replaced by shared 

memory accesses
– This gives a bandwidth reduction of 40/12=3.3
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In General, for 1D TILED CONVOLUTION
– O_TILE_WIDTH+MASK_WIDTH -1 elements loaded for 

each input tile
– O_TILE_WIDTH*MASK_WIDTH global memory accesses 

replaced by shared memory accesses
– This gives a reduction factor of

(O_TILE_WIDTH*MASK_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

This ignores ghost elements in edge tiles.
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Another Way to Look at Reuse

N[6] is used by P[8] (1X)
N[7] is used by P[8], P[9] (2X)
N[8] is used by P[8], P[9], P[10] (3X)
N[9] is used by P[8], P[9], P[10], P[11] (4X)
N10 is used by P[8], P[9], P[10], P[11], P[12] (5X)
… (5X)
N[14] is used by P[12], P[13], P[14], P[15] (4X)
N[15] is used by P[13], P[14], P[15] (3X)
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Another Way to Look at Reuse
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In General, for 1D
– The total number of global memory accesses to the input 

tile can be calculated as

1 + 2+…+ MASK_WIDTH-1 + MASK_WIDTH*(O_TILE_WIDTH-
MASK_WIDTH+1) + MASK_WIDTH-1 + …+ 2 + 1

= MASK_WIDTH * (MASK_WIDTH-1) + MASK_WIDTH * 
(O_TILE_WIDTH-MASK_WIDTH+1)

=  MASK_WIDTH * O_TILE_WIDTH

For a total of O_TILE_WIDTH + MASK_WIDTH -1 input tile 
elements
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Examples of Bandwidth Reduction for 1D
The reduction ratio is:

MASK_WIDTH * (O_TILE_WIDTH)/(O_TILE_WIDTH+MASK_WIDTH-1)

O_TILE_WIDTH 16 32 64 128 256

MASK_WIDTH= 5 4.0 4.4 4.7 4.9 4.9

MASK_WIDTH = 9 6.0 7.2 8.0 8.5 8.7
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For 2D Convolution Tiles
– (O_TILE_WIDTH+MASK_WIDTH-1)2 input elements 

need to be loaded into shared memory
– The calculation of each output element needs to access 

MASK_WIDTH2 input elements
– O_TILE_WIDTH2 * MASK_WIDTH2 global memory 

accesses are converted into shared memory accesses
– The reduction ratio is

O_TILE_WIDTH2 * MASK_WIDTH2 / (O_TILE_WIDTH+MASK_WIDTH-1)2
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Bandwidth Reduction for 2D
The reduction ratio is:
O_TILE_WIDTH2 * MASK_WIDTH2 /
(O_TILE_WIDTH+MASK_WIDTH-1)2

O_TILE_WIDTH 8 16 32 64

MASK_WIDTH = 5 11.1 16 19.7 22.1

MASK_WIDTH = 9 20.3 36 51.8 64

Tile size has significant effect on of the 
memory bandwidth reduction ratio.

This often argues for larger shared 
memory size.  
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