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Preface

Morgan Kaufmann ispleased to present material from a preliminary draft of Parallel Computer Architecture; the
material is(c) Copyright 1997 M organ Kaufmann Publishers. Thismaterial may not be used or distributed for any
commercial purpose without the express written consent of Morgan Kaufmann Publishers. Please note that this
material isadraft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changes or alterationsin thefinal edition.

Moativation for the Book

Parallel computing isacritical component of the computing technology of the 90s, and it islikely
to have as much impact over the next twenty years as microprocessors have had over the past
twenty. Indeed, the two technologies are closely linked, as the evolution of highly integrated
microprocessors and memory chips is making multiprocessor systems increasingly attractive.
Already multiprocessors represent the high performance end of aimost every segment of the
computing market, from the fastest supercomputers, to departmental compute servers, to theindi-
vidual desktop. In the past, computer vendors employed a range of technologies to provide
increasing performance across their product line. Today, the same state-of-the-art microprocessor
is used throughout. To obtain a significant range of performance, the simplest approach is to
increase the number of processors, and the economies of scale makes this extremely attractive.
Very soon, several processors will fit on asingle chip.
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Although parallel computing has along and rich academic history, the close coupling with com-
modity technology has fundamentally changed the discipline. The emphasis on radical architec-
tures and exotic technology has given way to quantitative analysis and careful engineering trade-
offs. Our goal in writing this book is to equip designers of the emerging class of multiprocessor
systems, from modestly parallel personal computers to massively parallel supercomputers, with
an understanding of the fundamental architectural issues and the available techniques for
addressing design trade-offs. At the same time, we hope to provide designers of software systems
for these machines with an understanding of the likely directions of architectural evolution and
the forces that will determine the specific path that hardware designs will follow.

The most exciting recent development in parallel computer architecture is the convergence of tra-
ditionally disparate approaches, namely shared-memory, message-passing, SIMD, and dataflow,
on a common machine structure. This is driven partly by common technologica and economic
forces, and partly by a better understanding of parallel software. This convergence allows us to
focus on the overriding architectural issues and to develop a common framework in which to
understand and evaluate architectural trade-offs. Moreover, parallel software has matured to the
point where the popular parallel programming models are available on a wide range of machines
and meaningful benchmarks exists. This maturing of the field makes it possible to undertake a
quantitative, as well as qualitative study of hardware/software interactions. In fact, it demands
such an approach. The book follows a set of issues that are critical to all parallel architectures —
communication latency, communication bandwidth, and coordination of cooperative work -
across the full range of modern designs. It describes the set of techniques available in hardware
and in software to address each issue and explores how the various techniques interact. Case
studies provide a concrete illustration of the general principles and demonstrate specific interac-
tions between mechanisms.

Our final motivation comes from the current lack of an adequate text book for our own courses at
Stanford, Berkeley, and Princeton. Many existing text books cover the material in a cursory fash-
ion, summarizing various architectures and research results, but not analyzing them in depth.
Others focus on specific projects, but fail to recognize the principles that carry over to alternative
approaches. The research reports in the area provide sizable body of empirical data, but it has not
yet been distilled into a coherent picture. By focusing on the salient issues in the context of the
technological convergence, rather than the rich and varied history that brought us to this point,
we hope to provide a deeper and more coherent understanding of the field.

Intended Audience

We believe the subject matter of this book is core material and should be relevant to graduate stu-
dents and practicing engineersin the fields of computer architecture, systems software, and appli-
cations. The relevance for computer architects is obvious, given the growing importance of
multiprocessors. Chip designers must understand what constitutes a viable building block for
multiprocessor systems, while computer system designers must understand how best to utilize
modern microprocessor and memory technology in building multiprocessors.

Systems software, including operating systems, compilers, programming languages, run-time
systems, performance debugging tools, will need to address new issues and will provide new
opportunitiesin parallel computers. Thus, an understanding of the evolution and the forces guid-
ing that evolution is critical. Researchers in compilers and programming languages have
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addressed aspects of parallel computing for some time. However, the new convergence with com-
modity technology suggests that these aspects may need to be reexamined and perhaps addressed
in very general terms. The traditional boundaries between hardware, operating system, and user
program are also shifting in the context of parallel computing, where communication, schedul-
ing, sharing, and resource management are intrinsic to the program.

Applications areas, such as computer graphics and multimedia, scientific computing, computer
aided design, decision support and transaction processing, are al likely to see a tremendous
transformation as aresult of the vast computing power available at low cost through parallel com-
puting. However, developing parallel applications that are robust and provide good speed-up
across current and future multiprocessors is a challenging task, and requires a deep understand-
ing of forces driving parallel computers. The book seeks to provide this understanding, but also
to stimulate the exchange between the applications fields and computer architecture, so that bet-
ter architectures can be designed --- those that make the programming task easier and perfor-
mance more robust.

Organization of the Book

The book is organized into twelve chapters. Chapter 1 begins with the motivation why parallel
architectures are inevitable based on technology, architecture, and applications trends. It then
briefly introduces the diverse multiprocessor architectures we find today (shared-memory, mes-
sage-passing, data parallel, dataflow, and systolic), and it shows how the technology and architec-
tural trends tell astrong story of convergencein the field. The convergence does not mean the end
to innovation, but on the contrary, it implies that we will now see atime of rapid progress in the
field, as designers start talking to each other rather than past each other. Given this convergence,
the last portion of the chapter introduces the fundamaental design issues for multiprocessors:
naming, synchronization, latency, and bandwidth. These four issues form an underlying theme
throughout the rest of this book. The chapter ends with a historical perspective, poviding a
glimpse into the diverse and rich history of the field.

Chapter 2 provides a brief introduction to the process of parallel programming and what are the
basic components of popular programming models. It is intended to ensure that the reader has a
clear understanding of hardware/software trade-offs, as well as what aspects of performance can
be addressed through architectural means and what aspects much be addressed either by the com-
piler or the programmer in providing to the hardware awell designed parallel program. The anal-
ogy in sequential computing is that architecture cannot transform an O(n2) algorithm into an
O(nlogn) algorithm, but it can improve the average access time for common memory reference
patterns. The brief discussion of programming issues is not likely to turn you into an expert par-
alel programmer, if you are not already, but it will familiarize you with the issues and what pro-
grams look like in various programming models. Chapter 3 outlines the basic techniques used in
programming for performance and presents a collection of application case studies, that serve as
abasis for quantitative evaluation of design trade-offs throughout the book.

Chapter 4 takes up the challenging task of performing a solid empirical evaluation of design
trade-offs. Architectural evaluation is difficult even for modern uni-processors where we typi-
cally look at variations in pipeline design or memory system design against a fixed set of pro-
grams. In paralel architecture we have many more degrees of freedom to explore, the
interactions between aspects of the design are more profound, the interactions between hardware
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and software are more significant and of awider scope. In general, we arelooking at performance
as the machine and the program scale. There is no way to scale one without the other example.
Chapter 3 discusses how scaling interacts with various architectural parameters and presents a set
of benchmarks that are used throughout the later chapters.

Chapters 5 and 6 provide a complete understanding of the bus-based multiprocessors, SMPs, that
form the bread-and-butter of modern commercial machines beyond the desktop, and even to
some extent on the desktop. Chapter 5 presents the logical design of “snooping” bus protocols
which ensure that automaticaly replicated datais conherent across multiple caches. This chapter
provides an important discussion of memory consistency models, which allows us to come to
terms with what shared memory really meansto algorithm designers. It discusses the spectrum of
design options and how machines are optimized against typical reference patterns occuring in
user programs and in the operating system. Given this conceptual understanding of SMPs, it
reflects on implications for parallel programming.

Chapter 6 examines the physical design of bus-based multiprocessors. Itdigs down into the engi-
neering issues that arise in supporting modern microprocessors with multilevel caches on modern
busses, which are highly pipelined. Although some of this material is contained in more casual
treatments of multiprocessor architecture, the presentation here provides a very complete under-
standing of the design issues in this regime. It is especialy important because these small-scale
designs form a building block for large-scale designs and because many of the concepts will
reappear later in the book on alarger scale with a broader set of concerns.

Chapter 7 presents the hardware organization and architecture of a range of machines that are
scalable to large or very large configurations. The key organizational concept is that of a network
transaction, analogous to the bus transaction, which is the fundamental primitive for the designs
in Chapters 5 and 6. However, in large scale machines the global information and global arbitra-
tion of small-scale designs is lost. Also, a large number of transactions can be outstanding. We
show how conventional programming models are realized in terms of network transactions and
then study a spectrum of important design points, organized according to the level of direct hard-
ware interpretation of the network transaction, including detailed case studies of important com-
mercial machines.

Chapter 8 puts the results of the previous chapters together to demonstrate how to realize aglobal
shared physical address space with automatic replication on alarge scale. It provides a complete
treatment of directory based cache coherence protocols and hardware design alternatives.

Chapter 9 examines a spectrum of alternatives that push the boundaries of possible hardware/
software trade-offs to obtain higher performance, to reduce hardware complexity, or both. It
looks at relaxed memory consistency models, cache-only memory architectures, and software
based cache coherency. This material is currently in the transitional phase from academic
research to commercial product at the time of writing.

Chapter 10 addresses the design of scable high-performance communication networks, which
underlies al the large scale machines discussed in previous chapters, but was deferred in order to
complete our understanding of the processor, memory system, and network interface design
which drive these networks. The chapter builds a general framework for understanding where
hardware costs, transfer delays, and bandwidth restrictions arise in networks. We then look at a
variety of trade-offs in routing techniques, switch design, and interconnection topology with
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respect to these cost-performance metrics. These trade-offs are made concrete through case stud-
ies of recent designs.

Given the foundation established by the first ten chapters, Chapter 11 examines a set of cross-cut-
ting issues involved in tolerating significant communication delays without impeding perfor-
mance. The techniques essentially exploit two basic capabilities: overlapping communication
with useful computation and pipelinng the communication of a volume of data. The simplest of
these are essentially bulk transfers, which pipeline the movement of alarge regular sequence of
data items and often can be off-loaded from the processor. The other techniques attempt to hide
the latency incured in collections of individual loads and stores. Write latencies are hidden by
exploiting weak consistency models, which recognize that ordering is convey by only asmall set
of the accesses to shared memory in a program. Read |atencies are hidden by implicit or explicit
prefetching of data, or by look-ahead techniques in modern dynamically scheduled processors.
The chapter provides a thorough examination of these alternatives, the impact on compilation
techniques, and quantitative evaluation of the effectiveness. Finally, Chapter 12 examines the
trends in technology, architecture, software systems and applications that are likely to shape evo-
lution of thefield.

We believe parallel computer architecture is an exciting core field whose importance is growing;
it has reached a point of maturity that a textbook makes sense. From arich diversity of ideas and
approaches, there is now a dramatic convergence happening in the field. It is time to go beyond
surveying the machine landscape, to an understanding of fundamental design principles. We have
intimately participated in the convergence of thefield; this text arises from this experience of ours
and we hope it conveys some of the excitement that we feel for this dynamic and growing area.
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CHAPTER 1

| ntroduction

Morgan Kaufmann ispleased to present material from a preliminary draft of Parallel Computer Architecture; the
material is(c) Copyright 1996 Morgan Kaufmann Publishers. Thismaterial may not be used or distributed for any
commercial purpose without the expresswritten consent of Morgan Kaufmann Publishers. Please note that this
material isadraft of forthcoming publication, and as such neither Morgan Kaufmann nor the authors can be held
liable for changes or alterationsin thefinal edition.

11

I ntroduction

We have enjoyed an explosive growth in performance and capability of computer systems for
over a decade. The theme of this dramatic success story is the advance of the underlying VLS
technology, which allows larger and larger numbers of components to fit on a chip and clock
rates to increase. The plot is one of computer architecture, which translates the raw potential of
the technology into greater performance and expanded capability of the computer system. The
leading character is parallelism. A larger volume of resources means that more operations can be
done at once, in paralel. Parallel computer architecture is about organizing these resources so
that they work well together. Computers of all types have harnessed parallelism more and more
effectively to gain performance from the raw technology, and the level at which paralelism is
exIploited continues to rise. The other key character is storage. The data that is operated on at an
ever faster rate must be held somewhere in the machine. Thus, the story of parallel processing is
deeply intertwined with data locality and communication. The computer architect must sort out
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these changing relationships to design the various levels of a computer system so as to maximize
performance and programmability within the limits imposed by technology and cost at any par-
ticular time.

Parallelism is a fascinating perspective from which to understand computer architecture, because
it appliesat al levels of design, it interacts with essentialy all other architectural concepts, and it
presents a unique dependence on the underlying technology. In particular, the basic issues of
locality, bandwidth, latency, and synchronization arise at many levels of the design of parallel
computer systems. The trade-offs must be resolved in the context of real application workloads.

Parallel computer architecture, like any other aspect of design, involves elements of form and
function. These elements are captured nicely in the following definitionAGo89].

A parallel computer is a collection of processing elements that cooperate and communicate
to solve large problems fast.

However, this ssimple definition raises many questions. How large a collection are we talking
about? How powerful are the individual processing elements and can the number be increased in
a straight-forward manner? How do they cooperate and communicate? How are data transmitted
between processors, what sort of interconnection is provided, and what operations are available
to sequence the actions carried out on different processors? What are the primitive abstractions
that the hardware and software provide to the programmer? And finally, how does it al trandate
into performance? As we begin to answer these questions, we will see that small, moderate, and
very large collections of processing elements each have important roles to fill in modern comput-
ing. Thus, it isimportant to understand parallel machine design across the scale, from the small
to the very large. There are design issues that apply throughout the scale of parallelism, and oth-
ersthat are most germane to a particular regime, such as within a chip, within abox, or on avery
large machine. It is safe to say that parallel machines occupy a rich and diverse design space.
This diversity makes the area exciting, but also means that it is important that we develop a clear
framework in which to understand the many design alternatives.

Paralel architectureisitself arapidly changing area. Historically, parallel machines have demon-
strated innovative organizational structures, often tied to particular programing models, as archi-
tects sought to obtain the ultimate in performance out of a given technology. In many cases,
radical organizations were justified on the grounds that advances in the base technology would
eventually run out of steam. These dire predictions appear to have been overstated, as logic den-
sities and switching speeds have continued to improve and more modest parallelism has been
employed at lower levels to sustain continued improvement in processor performance. Nonethe-
less, application demand for computational performance continues to outpace what individual
processors can deliver, and multiprocessor systems occupy an increasingly important place in
mainstream computing. What has changed is the novelty of these parallel architectures. Even
large-scale parallel machines today are built out of the same basic components as workstations
and personal computers. They are subject to the same engineering principles and cost-perfor-
mance trade-offs. Moreover, to yield the utmost in performance, a parallel machine must extract
the full performance potential of its individual components. Thus, an understanding of modern
parallel architectures must include an in-depth treatment of engineering trade-offs, not just a
descriptive taxonomy of possible machine structures.

Parallel architectures will play an increasingly centra role in information processing. This view
is based not so much on the assumption that individual processor performance will soon reach a
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plateau, but rather on the estimation that the next level of system design, the multiprocessor level,
will become increasingly attractive with increases in chip density. The goal of this book is to
articulate the principles of computer design at the multiprocessor level. We examine the design
issues present for each of the system components — memory systems, processors, and networks —
and the relationships between these components. A key aspect is understanding the division of
responsibilities between hardware and software in evolving paralel machines. Understanding
this division, requires familiarity with the requirements that parallel programs place on the
machine and the interaction of machine design and the practice of parallel programming.

The process of learning computer architecture is frequently likened to peeling an onion, and this
analogy is even more appropriate for parallel computer architecture. At each level of understand-
ing we find a complete whole with many interacting facets, including the structure of the
machine, the abstractions it presents, the technology it rests upon, the software that exercises it,
and the models that describe its performance. However, if we dig deeper into any of these facets
we discover another whole layer of design and a new set of interactions. The wholistic, many
level nature of parallel computer architecture makes the field challenging to learn and challeng-
ing to present. Something of the layer by layer understanding is unavoidable.

This introductory chapter presents the ‘outer skin’ of parallel computer architecture. It first out-
lines the reasons why we expect parallel machine design to become pervasive from desktop
machines to supercomputers. We look at the technological, architectural, and economic trends
that have led to the current state of computer architecture and that provide the basis for anticipat-
ing future parallel architectures. Section 1.2 focuses on the forces that have brought about the
dramatic rate of processor performance advance and the restructuring of the entire computing
industry around commaodity microprocessors. These forces include the insatiable application
demand for computing power, the continued improvements in the density and level of integration
inVLSI chips, and the utilization of parallelism at higher and higher levels of the architecture.

We then take a quick look at the spectrum of important architectural styles which give the field
such arich history and contribute to the modern understanding of parallel machines. Within this
diversity of design, a common set of design principles and trade-offs arise, driven by the same
advances in the underlying technology. These forces are rapidly leading to a convergence in the
field, which forms the emphasis of this book. Section 1.3 surveys traditional parallel machines,
including shared-memory, message-passing, single-instruction-multiple-data, systolic arrays,
and dataflow, and illustrates the different ways that they address common architectural issues.
The discussion illustrates the dependence of parallel architecture on the underlying technology
and, more importantly, demonstrates the convergence that has come about with the dominance of
Mi Croprocessors.

Building on this convergence, in Section 1.4 we examine the fundamental design issues that cut
across parallel machines: what can be named at the machine level as a basis for communication
and coordination, what is the latency or time required to perform these operations, and what is
the bandwidth or overall rate at which they can be performed. This shift from conceptual struc-
ture to performance components provides a framework for quantitative, rather than merely quali-
tative, study of parallel computer architecture.

With this initial, broad understanding of parallel computer architecture in place, the following
chapters dig deeper into its technical substance. Chapter 2 delves into the structure and require-
ments of parallel programs to provide a basis for understanding the interaction between parallel
architecture and applications. Chapter 3 builds a framework for evaluating design decisions in
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terms of application reguirements and performance measurements. Chapter 4 is a complete study
of parallel computer architecture at the limited scale that is widely employed in commercial mul-
tiprocessors — a few processors to a few tens of processors. The concepts and structures intro-
duced at this scale form the building blocks for more aggressive large scale designs presented
over the next five chapters.

Why Parallel Architecture

Computer architecture, technology, and applications evolve together and have very strong inter-
actions. Parallel computer architecture is no exception. A new dimension is added to the design
space — the number of processors — and the design is even more strongly driven by the demand
for performance at acceptable cost. Whatever the performance of a single processor at a given
time, higher performance can, in principle, be achieved by utilizing many such processors. How
much additional performance is gained and at what additional cost depends on a number of fac-
tors, which we will explore throughout the book.

To better understand this interaction, let us consider the performance characteristics of the pro-
cessor building blocks. Figure 1-1% illustrates the growth in processor performance over time for
several classes of computerfHeJo91]. The dashed lines represent a naive extrapolation of the
trends. Although one should be careful in drawing sharp quantitative conclusions from such lim-
ited data, the figure suggests several valuable observations, discussed bel ow.

First, the performance of the highly integrated, single-chip CMOS microprocessor is steadily
increasing and is surpassing the larger, more expensive alternatives. Microprocessor performance
has been improving at arate of more than 50% per year. The advantages of using small, inexpen-
sive, low power, mass produced processors as the building blocks for computer systems with
many processors are intuitively clear. However, until recently the performance of the processor
best suited to parallel architecture was far behind that of the fastest single processor system. This
is no longer so. Although parallel machines have been built at various scales since the earliest
days of computing, the approach is more viable today than ever before, because the basic proces-
sor building block is better suited to the job.

The second and perhaps more fundamental observation is that change, even dramatic change, is
the norm in computer architecture. The continuing process of change has profound implications
for the study of computer architecture, because we need to understand not only how things are,
but how they might evolve, and why. Change is one of the key challenges in writing this book,
and one of the key motivations. Parallel computer architecture has matured to the point where it
needs to be studied from a basis of engineering principles and quantitative evaluation of perfor-
mance and cost. These are rooted in abody of facts, measurements, and designs of real machines.

1. Thefigureisdrawn from an influential 1991 paper that sought to explain the dramatic changes
taking place in the computing industry[HeJo91] The metric of performance is a bit tricky when
reaching across such a range of time and market segment. The study draws data from general
purpose benchmarks, such as the SPEC benchmark that is widely used to assess performance on
technical computing applications|HePa90]. After publication, microprocessors continued to track
the prediction, while mainframes and supercomputers went through tremendous crises and
emerged using multiple CMOS microprocessors in their market niche.
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Figure 1-1 Performance trends over time of micro, mini, mainframe and supercomputer processors.[HeJo91]

Performance of microprocessors has been increasing at a rate of nearly 50% per year since the mid 80's. More tra-
ditional mainframe and supercomputer performance has been increasing at a rate of roughly 25% per year. As a
result we are seeing the processor that is best suited to parallel architecture become the performance [eader as well.

121

Unfortunately, the existing data and designs are necessarily frozen in time, and will become
dated as the field progresses. We have elected to present hard data and examine real machines
throughout the book in the form of a “late 1990s” technological snapshot in order to retain this
grounding. We strongly believe that the methods of evaluation underlying the analysis of con-
crete design trade-offs transcend the chronological and technological reference point of the book.

The“late 1990s" happens to be a particularly interesting snapshot, because we are in the midst of
a dramatic technological realignment as the single-chip microprocessor is poised to dominate
every sector of computing, and as parallel computing takes hold in many areas of mainstream
computing. Of course, the prevalence of change suggests that one should be cautious in extrapo-
lating toward the future. In the remainder of this section, we examine more deeply the forces and
trends that are giving parallel architectures an increasingly important role throughout the com-
puting field and pushing parallel computing into the mainstream. We look first at the application
demand for increased performance and then at the underlying technological and architectural
trends that strive to meet these demands. We see that parallelism is inherently attractive as com-
puters become more highly integrated, and that it is being exploited at increasingly high levels of
the design. Finally, we look at the role of parallelism in the machines at the very high end of the
performance spectrum.

Application Trends

The demand for ever greater application performanceis afamiliar feature of every aspect of com-
puting. Advances in hardware capability enable new application functionality, which grows in
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significance and places even greater demands on the architecture, and so on. This cycle drives the
tremendous ongoing design, engineering, and manufacturing effort underlying the sustained
exponential performance increase in microprocessor performance. It drives parallel architecture
even harder, since parallel architecture focuses on the most demanding of these applications.
With a 50% annual improvement in processor performance, a parallel machine of a hundred pro-
cessors can be viewed as providing to applications the computing power that will be widely avail-
able ten years in the future, whereas a thousand processors reflects nearly a twenty year horizon.

Application demand also leads computer vendors to provide a range of models with increasing
performance and capacity at progressively increased cost. The largest volume of machines and
greatest number of users are at the low end, whereas the most demanding applications are served
by the high end. One effect of this “platform pyramid” is that the pressure for increased perfor-
mance is greatest at the high-end and is exerted by an important minority of the applications.
Prior to the microprocessor era, greater performance was obtained through exotic circuit technol -
ogies and machine organizations. Today, to obtain performance significantly greater than the
state-of -the-art microprocessor, the primary option is multiple processors, and the most demand-
ing applications are written as parallel programs. Thus, parallel architectures and parallel appli-
cations are subject to the most acute demands for greater performance.

A key reference point for both the architect and the application developer is how the use of paral-
Ielism improves the performance of the application. We may define the speedup on p processors
as

Performance(p processors)
Performance(1 processors)

Speedup(p processors) = (EQ 1.1)

For asingle, fixed problem, the performance of the machine on the problem is simply the recipro-
cal of the time to complete the problem, so we have the following important special case:

Time(1 processor)
Time(p processors) -

Speedupyiyeq problem(p processors) = (EQ 1.2)

Scientific and Engineering Computing

The direct reliance on increasing levels of performance is well established in a number of
endeavors, but is perhaps most apparent in the field of computational science and engineering.
Basically, computers are used to simulate physical phenomenathat are impossible or very costly
to observe through empirical means. Typical examples include modeling global climate change
over long periods, the evolution of galaxies, the atomic structure of materials, the efficiency of
combustion with an engine, the flow of air over surfaces of vehicles, the damage due to impacts,
and the behavior of microscopic electronic devices. Computational modeling alows in-depth
analyses to be performed cheaply on hypothetical designs through computer simulation. A direct
correspondence can be drawn between levels of computational performance and the problems
that can be studied through simulation. Figure 1-2 summarizes the 1993 findings of the Commit-
tee on Physical, Mathematical, and Engineering Sciences of the federal Office of Science and
Technology Policy[OST93]. It indicates the computational rate and storage capacity required to
tackle a number of important science and engineering problems. Also noted is the year in which
this capability was forecasted to be available. Even with dramatic increases in processor perfor-
mance, very large parallel architectures are needed to address these problems in the near future.
Some years further down the road, new grand challenges will be in view.

24

DRAFT: Parallel Computer Architecture 9/10/97



Why Parallel Architecture

Storage Requirement

1 GB

Grand Challenge Problems

| Human Genome

I
1TB | Fluid Turbulence I
— I Vehicle Dynamics
Ocean Circulation |
1 B | Viscous Fluid Dyn's |
00 GB_ | Superconductor Mod. I
I_QCD, Vision .
10 GB_] Structural
Vehicle Biology
Signature Pharmaceutical Design
72 hour
Weather
100 MB 48 Hour 3D Plasma
10 MB_ 2D Oil Resevoir
Airfoil Modeling
I 1 I T 1
100 Mflops 1 Gflops 10 Gflops 100 Gflops 1Tflops

Computational Performance Requirement

Figure 1-2 Grand Challenge Application Requirements

A collection of important scientific and engineering problems are positioned in a space defined by computational
performance and storage capacity. Given the exponential growth rate of performance and capacity, both of these
axes map directly to time. In the upper right corner appears some of the Grand Challenge applications identified by
the U.S. High Performance Computing and Communications program.

Parallel architectures have become the mainstay of scientific computing, including physics,
chemistry, material science, biology, astronomy, earth sciences, and others. The engineering
application of these tools for modeling physical phenomenais now essential to many industries,
including petroleum (reservoir modeling), automotive (crash ssimulation, drag analysis, combus-
tion efficiency), aeronautics (airflow analysis, engine efficiency, structural mechanics, electro-
magnetism), pharmaceuticals (molecular modeling), and others. In amost al of these
applications, there is alarge demand for visualization of the results, which isitself a demanding
application amenable to parallel computing.

The visualization component has brought the traditional areas of scientific and engineering com-
puting closer to the entertainment industry. In 1995, the first full-length computer-animated
motion picture, Toy Story, was produced on a parallel computer system composed of hundreds of
Sun workstations. This application was finally possible because the underlying technology and
architecture crossed three key thresholds: the cost of computing dropped to where the rendering
could be accomplished within the budget typically associated with a feature film, while the per-
formance of the individual processors and the scale of parallelism rose to where it could be
accomplished in a reasonable amount of time (several months on several hundred processors).
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Each science and engineering applications has an analogous threshold of computing capacity and
cost at which it becomes viable.

Let us take an example from the Grand Challenge program to help understand the strong interac-
tion between applications, architecture, and technology in the context of parallel machines. A
1995 study[INNIE] examined the effectiveness of awide range of parallel machines on a variety
of applications, including a molecular dynamics package, AMBER (Assisted Model Building
through Energy Refinement). AMBER is widely used to simulate the motion of large biological
models such as proteins and DNA, which consist of sequences of residues (amino acids and
nucleic acids, respectively) each composed of individual atoms. The code was developed on Cray
vector supercomputers, which employ custom ECL-based processors, large expensive SRAM
memories, instead of caches, and machine instructions that perform arithmetic or data movement
on a sequence, or vector, of data values. Figure 1-3 shows the speedup obtained on three versions
of this code on a 128-processor microprocessor-based machine - the Intel Paragon, described
later. The particular test problem involves the smulation of a protein solvated by water. This test
consisted of 99 amino acids and 3,375 water molecules for approximately 11,000 atoms.

The initia paralelization of the code (vers. 8/94) resulted in good speedup for small configura-
tions, but poor speedup on larger configurations. A modest effort to improve the balance of work
done by each processor, using techniques we discuss in Chapter 2, improved the scaling of the
application significantly (vers. 9/94). An additional effort to optimize communication produced a
highly scalable version(12/94). This 128 processor version achieved a performance of 406
MFLOPS; the best previously achieved was 145 MFLOPS on a Cray C90 vector processor. The
same application on amore efficient parallel architecture, the Cray T3D, achieved 891 MFLOPS
on 128 processors. This sort of “learning curve” is quitetypical in the parallelization of important
applications, as is the interaction between application and architecture. The application writer
typically studies the application to understand the demands it places on the available architec-
tures and how to improve its performance on a given set of machines. The architect may study
these demands as well in order to understand how to make the machine more effective on agiven
set of applications. Ideally, the end user of the application enjoys the benefits of both efforts.

The demand for ever increasing performance is a natural consegquence of the modeling activity.
For example, in electronic CAD as the number of devices on the chip increases, there is obvi-
ously more to simulate. In addition, the increasing complexity of the design requires that more
test vectors be used and, because higher level functionality is incorporated into the chip, each of
these tests must run for alarger number of clock cycles. Furthermore, an increasing level of con-
fidence is required, because the cost of fabrication is so great. The cumulative effect is that the
computational demand for the design verification of each new generation isincreasing at an even
faster rate than the performance of the microprocessors themselves.

Commercial Computing

Commercial computing has also cometo rely on parallel architectures for its high-end. Although
the scale of parallelism istypically not as large as in scientific computing, the use of parallelism
is even more wide-spread. Multiprocessors have provided the high-end of the commercial com-
puting market since the mid-60s. In this arena, computer system speed and capacity trandate
directly into the scale of business that can be supported by the system. The relationship between
performance and scale of business enterprise is clearly articulated in the on-line transaction pro-
cessing (OLTP) benchmarks sponsored by the Transaction Processing Performance Council
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Figure 1-3 Speedup on Three Versions of a Parallel Program

The parallelization learning curve isillustrated by the speedup obtained on three successive versions of this
molecular dynamics code on the Intel Paragon.

(TPC) [tpc]. These benchmarks rate the performance of a system in terms of its throughput in
transactions-per-minute (tpm) on atypical workload. TPC-C is an order entry application with a
mix of interactive and batch transactions, including redlistic features like queued transactions,
aborting transactions, and elaborate presentation features GrRe93]. The benchmark includes an
explicit scaling criteria to make the problem more redlistic: the size of the database and the num-
ber of terminals in the system increase as the tpmC rating rises. Thus, a faster system must oper-
ate on alarger database and service alarger number of users.

Figure 1-4 shows the tpm-C ratings for the collection of systems appearing in one edition of the
TPC results (March 1996), with the achieved throughput on the vertical axis and the number of
processors employed in the server along the horizontal axis. This data includes a wide range of
systems from avariety of hardware and software vendors; we have highlighted the data points for
models from afew of the vendors. Since the problem scales with system performance, we cannot
compare times to see the effectiveness of parallelism. Instead, we use the throughput of the sys-
tem as the metric of performance in Equation 1.1.
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Figure 1-4 TPC-C throughput versus number of processors on TPC

he March 1996 TPC report documents the transaction processing performance for a wide range of system. The
figure shows the number of processors employed for al of the high end systems, highlights five leading vendor
product lines. All of the major database vendors utilize multiple processors for their high performance options,
although the scale of parallelism varies considerably.

Example 1-1 The tpmC for the Tandem Himalaya and IBM Power PC systems are given in the
following table. What is the speedup obtained on each?
tpmC
Number of Processors IBM RS 6000 PowerPC  Himalaya K10000
1 735
4 1438
8 3119
16 3043
32 6067
64 12021
112 20918

For the IBM system we may calculate speedup relative to the uniprocessor system, whereas in
the Tandem case we can only calculate speedup relative to a sixteen processor system. For the
IBM machine there appears to be a significant penalty in the parallel database implementation in
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going from one to four processors, however, the scaling is very good (superlinear) from four to
eight processors. The Tandem system achieves good scaling, although the speedup appears to be
beginning to flatten towards the hundred processor regime.

SpeedUptme
Number of Processors IBM RS 6000 PowerPC  Himalaya K10000
1 1
4 1.96
8 4.24
16 1
32 1.99
64 3.95
112 6.87

Several important observations can be drawn from the TPC data. First, the use of parallel archi-
tecturesis prevalent. Essentially all of the vendors supplying database hardware or software offer
multiprocessor systems that provide performance substantially beyond their uniprocessor prod-
uct. Second, it is not only large scale parallelism that isimportant, but modest scale multiproces-
sor servers with tens of processors, and even small-scale multiprocessors with two or four
processors. Finaly, even a set of well-documented measurements of a particular class of system
at a specific point in time cannot provide a true technological snapshot. Technology evolves rap-
idly, systems take time to develop and deploy, and rea systems have a useful lifetime. Thus, the
best systems available from a collection of vendors will be at different pointsin their life cycle at
any time. For example, the DEC Alpha and IBM PowerPC systems in the 3/96 TPC report were
much newer, at the time of the report, than the Tandem Himalaya system. We cannot conclude,
for example, that the Tandem system is inherently less efficient as a result of its scalable design.
We can, however, conclude that even very large scale systems must track the technology to retain
their advantage.

Even the desktop demonstrates a significant number of concurrent processes, with a host of
active windows and daemons. Quite often a single user will have tasks running on many
machines within the local area network, or farm tasks across the network. The transition to paral-
lel programming, including new algorithms in some cases or attention to communication and
synchronization requirements in existing algorithms, has largely taken place in the high perfor-
mance end of computing, especially in scientific programming. The transition is in progress
among the much broader base of commercial engineering software. In the commercia world, all
of the major database vendors support parallel machines for their high-end products. Typically,
engineering and commercial applications target more modest scale multiprocessors, which domi-
nate the server market. However, the major database vendors also offer “shared-nothing” ver-
sions for large parallel machines and collections of workstations on a fast network, often called
clusters. In addition, multiprocessor machines are heavily used to improve throughput on multi-
programming workloads. All of these trends provide a solid application demand for parallel
architectures of avariety of scales.
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Figure 1-5 Improvement in logic density and clock frequency of microprocessors.

Improvements in lithographic technique, process technology, circuit design, and datapath design have yielded

a sustained improvement in logic density and clock rate.

1.2.2 Technology Trends

The importance of parallelism in meeting the application demand for ever greater performance
can be brought into sharper focus by looking more closely at the advancements in the underlying
technology and architecture. These trends suggest that it may beincreasingly difficult to “wait for
the single processor to get fast enough,” while parallel architectures will become more and more
attractive. Moreover, the examination shows that the critical issuesin parallel computer architec-
ture are fundamentally similar to those that we wrestle with in “sequential” computers, such as
how the resource budget should be divided up among functional units that do the work, cachesto
exploit locality, and wires to provide bandwidth.

The primary technological advance is a steady reduction in the basic VLS| feature size. This
makes transistors, gates, and circuits faster and smaller, so more fit in the same area. In addition,
the useful die sizeis growing, so thereis more areato use. Intuitively, clock rate improvesin pro-
portion to the improvement in feature size, while the number of transistors grows as the square,
or even faster due to increasing overall die area. Thus, in the long run the use of many transistors
at once, i.e., paralelism, can be expected to contribute more than clock rate to the observed per-
formance improvement of the single-chip building block.

This intuition is borne out by examination of commercial microprocessors. Figure 1-5 shows the
increase in clock frequency and transistor count for several important microprocessor families.
Clock rates for the leading microprocessorsincrease by about 30% per year, while the number of
transistors increases by about 40% per year. Thus, if we look at the raw computing power of a
chip (total transistors switching per second), transistor capacity has contributed an order of mag-
nitude more than clock rate over the past two decades.’ The performance of microprocessors on
standard benchmarks has been increasing at a much greater rate. The most widely used bench-
mark for measuring workstation performance is the SPEC suite, which includes severa redlistic
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integer programs and floating point programs[SPEC]. Integer performance on SPEC has been
increasing at about 55% per year, and floating-point performance at 75% per year. The LINPACK
benchmark[Don94] is the most widely used metric of performance on numerical applications.
LINPACK floating-point performance has been increasing at more than 80% per year. Thus, pro-
cessors are getting faster in large part by making more effective use of an ever larger volume of
computing resources.

The simplest analysis of these technology trends suggests that the basic single-chip building
block will provide increasingly large capacity, in the vicinity of 100 million transistors by the
year 2000. This raises the possibility of placing more of the computer system on the chip, includ-
ing memory and 1/0O support, or of placing multiple processors on the chip[ Gwe94b]. The former
yields a small and conveniently packaged building block for parallel architectures. The latter
brings parallel architecture into the single chip regimelGwed44d]. Both possibilities are in evi-
dence commercialy, with the system-on-a-chip becoming first established in embedded systems,
portables, and low-end personal computer products.[x86,mips] Multiple processors on a chip is
becoming established in digital signal processing[Fei94].

The divergence between capacity and speed is much more pronounced in memory technology.
From 1980 to 1995, the capacity of a DRAM chip increased a thousand-fold, quadrupling every
three years, while the memory cycle time improved by only afactor of two. In the time-frame of
the 100 million transistor microprocessor, we anticipate gigabit DRAM chips, but the gap
between processor cycle time and memory cycle time will have grown substantially wider. Thus,
the memory bandwidth demanded by the processor (bytes per memory cycle) is growing rapidly
and in order to keep pace, we must transfer more data in parallel. From PCs to workstations to
servers, designs based on conventional DRAMs are using wider and wider paths into the memory
and greater interleaving of memory banks. Parallelism. A number of advanced DRAM designs
are appearing on the market which transfer a large number of bits per memory cycle within the
chip, but then pipeline the transfer of those bits across a narrower interface at high frequency. In
addition, these designs retain recently datain fast on-chip buffers, much as processor caches do,
in order to reduce the time for future accesses. Thus, exploiting parallelism and locality is central
to the advancements in memory devices themselves.

The latency of a memory operation is determined by the access time, which is smaller than the
cycle time, but still the number of processor cycles per memory accesstime is large and increas-
ing. To reduce the average latency experienced by the processor and to increase the bandwidth
that can be delivered to the processor, we must make more and more effective use of the levels of
the memory hierarchy that lie between the processor and the DRAM memory. As the size of the
memory increases, the access time increases due to address decoding, internal delays in driving
long bit lines, selection logic, and the need to use a small amount of charge per bit. Essentially all
modern microprocessors provide one or two levels of caches on chip, plus most system designs
provide an additional level of external cache. A fundamental question as we move into multipro-
cessor designs is how to organize the collection of caches that lie between the many processors
and the many memory modules. For example, one of the immediate benefits of parallel architec-

1. There are many reasons why the transistor count does not increase as the square of the clock rate. Oneis
that much of the area of a processor is consumed by wires, serving to distribute control, data, or clock, i.e.,
on-chip communication. We will see that the communication issue reappears at every level of parallel com-
puter architecture.
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turesisthat the total size of each level of the memory hierarchy can increase with the number of
processors without increasing the accesstime.

Extending these observations to disks, we see a similar divergence. Parallel disks storage sys-
tems, such as RAID, are becoming the norm. Large, multi-level cachesfor files or disk blocks are
predominant.

Architectural Trends

Advances in technology determine what is possible; architecture trandates the potential of the
technology into performance and capability. There are fundamentally two waysin which alarger
volume of resources, more transistors, improves performance: parallelism and locality. More-
over, these two fundamentally compete for the same resources. Whenever multiple operations are
performed in parallel the number of cycles required to execute the program is reduced. However,
resources are required to support each of the simultaneous activities. Whenever data references
are performed close to the processor, the latency of accessing deeper levels of the storage hierar-
chy is avoided and the number of cycles to execute the program is reduced. However, resources
are also required to provide this local storage. In general, the best performance is obtained by an
intermediate strategy which devotes resources to exploit a degree of parallelism and a degree of
locality. Indeed, we will see throughout the book that parallelism and locality interact in interest-
ing waysin systems of al scales, from within a chip to across alarge parallel machine. In current
microprocessors, the die areais divided roughly equally between cache storage, processing, and
off-chip interconnect. Larger scale systems may exhibit a somewhat different split, due to differ-
encesin the cost and performance trade-offs, but the basic issues are the same.

Examining the trends in microprocessor architecture will help build intuition towards the issues
we will be dealing with in parallel machines. It will also illustrate how fundamental parallelismis
to conventional computer architecture and how current architectura trends are leading toward
multiprocessor designs. (The discussion of processor design techniques in this book is cursory,
since many of the readers are expected to be familiar with those techniques from traditional
architecture textsfHeP90] or the many discussions in the trade literature. It does provide provide
an unique perspective on those techniques, however, and will serve to refresh your memory.)

The history of computer architecture has traditionally been divided into four generations identi-
fied by the basic logic technology: tubes, transistors, integrated circuits, and VLSI. The entire
period covered by the figures in this chapter is lumped into the fourth or VLS| generation.
Clearly, there has been tremendous architectural advance over this period, but what delineates
one era from the next within this generation? The strongest delineation is the kind of parallelism
that is exploited. The period up to about 1985 is dominated by advancementsin bit-level parallel-
ism, with 4-bit microprocessors replaced by 8-bit, 16-bit, and so on. Doubling the width of the
datapath reduces the number of cycles required to perform a full 32-bit operation. This trend
slows once a 32-hit word size is reached in the mid-80s, with only partial adoption of 64-bit oper-
ation obtained a decade later. Further increases in word-width will be driven by demands for
improved floating-point representation and a larger address space, rather than performance. With
address space requirements growing by less than one bit per year, the demand for 128-bit opera-
tion appears to be well in the future. The early microprocessor period was able to reap the bene-
fits of the easiest form of parallelism: bit-level parallelism in every operation. The dramatic
inflection point in the microprocessor growth curve in Figure 1-1 marks the arrival of full 32-bit
word operation combined with the prevalent use of caches.
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Figure 1-6 Number of transistors per processor chip over the last 25 years.

The growth essentially follows Moore's law which
casting from past trends we can reasonabl

s that the number of transistors doubles every 2 years. Fore-
ect to be designing for a 50-100 million transistor budget at the end

ex
of the decade. Also indicated are the epoc},\s _0? design within the fourth, or VLSI generation of computer architec-
ture reflecting the increasing level of parallelism.

The period from the mid-80s to mid-90s is dominated by advancements in instruction-level par-
allelism. Full word operation meant that the basic steps in instruction processing (instruction
decode, integer arithmetic, and address calculation) could be performed in a single cycle; with
cachestheinstruction fetch and data access could a so be performed in asingle cycle, most of the
time. The RISC approach demonstrated that, with care in the instruction set design, it was
straightforward to pipeline the stages of instruction processing so that an instruction is executed
amost every cycle, on average. Thus the parallelism inherent in the steps of instruction process-
ing could be exploited across a small number of instructions. While pipelined instruction pro-
cessing was not new, it had never before been so well suited to the underlying technology. In
addition, advances in compiler technology made instruction pipelines more effective.

The mid-80s microprocessor-based computers consisted of a small constellation of chips. an
integer processing unit, a floating-point unit, a cache controller, and SRAMs for the cache data
and tag storage. As chip capacity increased these components were coalesced into a single chip,
which reduced the cost of communicating among them. Thus, a single chip contained separate
hardware for integer arithmetic, memory operations, branch operations, and floating-point opera-
tions. In addition to pipelining individual instructions, it became very attractive to fetch multiple
instructions at atime and issue them in parallel to distinct function units whenever possible. This
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form of instruction level parallelism came to be called superscalar execution. It provided a natu-
ral way to exploit the ever increasing number of available chip resources. More function units
were added, more instructions were fetched at time, and more instructions could be issued in
each clock cycle to the function units.

However, increasing the amount of instruction level parallelism that the processor can exploit is
only worthwhile if the processor can be supplied with instructions and data fast enough to keep it
busy. In order to satisfy the increasing instruction and data bandwidth requirement, larger and
larger caches were placed on-chip with the processor, further consuming the ever increasing
number of transistors. With the processor and cache on the same chip, the path between the two
could be made very wide to statisfy the bandwidth requirement of multiple instruction and data
accesses per cycle. However, as more instructions are issued each cycle, the performance impact
of each control transfer and each cache miss becomes more significant. A control transfer may
have to wait for the depth, or latency, of the processor pipeline, until a particular instruction
reaches the end of the pipeline and determines which instruction to execute next. Similarly,
instructions which use a value loaded from memory may cause the processor to wait for the
latency of acache miss.

Processor designs in the 90s deploy a variety of complex instruction processing mechanisms in
an effort to reduce the performance degradation due to latency in “wide-issue’ superscalar pro-
cessors. Sophisticated branch prediction techniques are used to avoid pipeline latency by guess-
ing the direction of control flow before branches are actually resolved. Larger, more sophisticated
caches are used to avoid the latency of cache misses. Instructions are scheduled dynamically and
allowed to complete out of order so if one instruction encounters a miss, other instructions can
proceed ahead of it, as long as they do not depend on the result of the instruction. A larger win-
dow of instructions that are waiting to issue is maintained within the processor and whenever an
instruction produces a new result, several waiting instructions may be issued to the function
units. These complex mechanisms allow the processor to tolerate the latency of a cache-miss or
pipeline dependence when it does occur. However, each of these mechanisms place a heavy
demand on chip resources and a very heavy design cost.

Given the expected increases in chip density, the natural question to ask is how far will instruc-
tion level parallelism go within a single thread of control? At what point will the emphasis shift
to supporting the higher levels of parallelism available as multiple processes or multiple threads
of contol within a process, i.e, thread level parallelism? Severa research studies have sought to
answer the first part of the question, either through simulation of aggressive machine
designg[Cha*91,Hor* 90,Lee* 91,MePa91] or through analysis of the inherent properties of pro-
gramgBut* 91,JoWa89,Joh90,Smi*89,Wal91]. The most complete treatment appears in
Johnson’'s book devoted to the topic[Joh90]. Simulation of aggressive machine designs generally
shows that 2-way superscalar, i.e., issuing two instructions per cycle, is very profitable and 4-way
offers substantial additional benefit, but wider issue widths, e.g., 8-way superscalar, providelittle
additional gain. The design complexity increases dramatically, because control transfers occur
roughly once in five instructions, on average.

To estimate the maximum potential speedup that can be obtained by issuing multiple instructions
per cycle, the execution trace of a program is simulated on an ideal machine with unlimited
instruction fetch bandwidth, as many functions units as the program can use, and perfect branch
prediction. (The latter is easy, since the trace correctly follows each branch.) These generous
machine assumptions ensure that no instruction is held up because a function unit is busy or
because the instruction is beyond the look-ahead capability of the processor. Furthermore, to
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ensure that no instruction is delayed because it updates alocation that is used by logically previ-
ous instructions, storage resource dependences are removed by a technique called renaming.
Each update to a register or memory location is treated as introducing a new “name,” and subse-
guent uses of the value in the execution trace refer to the new name. In this way, the execution
order of the program is constrained only by essential data dependences; each instruction is exe-
cuted as soon as its operands are available. Figure 1-7 summarizes the result of this “ideal
machine” analysis based on data presented by Johnson[Joh91]. The histogram on the left shows
the fraction of cycles in which no instruction could issue, only one instruction, and so on.
Johnson's ideal machine retains realistic function unit latencies, including cache misses, which
accounts for the zero-issue cycles. (Other studies ignore cache effects or ignore pipeline laten-
cies, and thereby obtain more optimistic estimates.) We see that even with infinite machine
resources, perfect branch prediction, and idea renaming, 90% of the time no more than four
instructions issue in a cycle. Based on this distribution, we can estimate the speedup obtained at
various issue widths, as shown in the right portion of the figure. Recent work[Lawi92,Soh94]
provides empirical evidence that to obtain significantly larger amounts of parallelism, multiple
threads of control must be pursued simultaneously. Barring some unforeseen breakthrough in
instruction level parallelism, the leap to the next level of useful parallelism, multiple concurrent
threads, isincreasingly compelling as chipsincrease in capacity.
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Figure 1-7 Distribution of potentia instruction-level parallelism and estimated speedup under ideal superscalar
execution

The figure shows the distribution of available instruction-level parallelism and maximum potential speedup under ide-
alized superscalar execution, including unbounded %oc ng resources and perfect branch prediction. Data is an
average of that presented for several benchmarks by Johnson[Joh91].

Thetrend toward thread or process-level parallelism has been strong at the computer system level
for some time. Computers containing multiple state-of-the-art microprocessors sharing a com-
mon memory became prevalent in the mid 80's, when the 32-bit microprocessor was first intro-
duced[Bel85]. As indicated by Figure 1-8, which shows the number of processors available in
commercial multiprocessors over time, this bus-based shared-memory multiprocessor approach
has maintained a substantial multiplier to the increasing performance of the individual proces-
sors. Almost every commercial microprocessor introduced since the mid-80s provides hardware
support for multiprocessor configurations, as we discuss in Chapter 5. Multiprocessors dominate
the server and enterprise (or mainframe) markets and have migrated down to the desktop.
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The early multi-microprocessor systems were introduced by small companies competing for a
share of the minicomputer market, including Synapse]Nes85], Encore]Sha85], Flex|Mat85],
Sequent[Rod85] and Myriag[Sav85]. They combined 10 to 20 microprocessors to deliver com-
petitive throughput on timesharing loads. With the introduction of the 32-bit Intel i80386 as the
base processor, these system obtained substantial commercia success, especially in transaction
processing. However, the rapid performance advance of RISC microprocessors, exploiting
instruction level parallelism, sapped the CISC multiprocessor momentum in the late 80s (and al
but eliminated the minicomputer). Shortly thereafter, several large companies began producing
RISC multiprocessor systems, especially as servers and mainframe replacements. Again, we see
the critical role of bandwidth. In most of these multiprocessor designs, al the processors plug
into acommon bus. Since a bus has a fixed aggregate bandwidth, as the processors become faster,
asmaller number can be supported by the bus. The early 1990s brought a dramatic advance in the
shared memory bus technology, including faster electrical signalling, wider data paths, pipelined
protocols, and multiple paths. Each of these provided greater bandwidth, growing with time and
design experience, as indicated in Figure 1-9. This allowed the multiprocessor designs to ramp
back up to the ten to twenty range and beyond, while tracking the microprocessor
advances AR94,Cek* 93,Fen* 95,Fra93,Gal* 94,GoM a95].

The picture in the mid-90s is very interesting. Not only has the bus-based shared-memory multi-
processor approach become ubiquitous in the industry, it is present at a wide range of scale.
Desktop systems and small servers commonly support two to four processors, larger servers sup-
port tens, and large commercial systems are moving toward a hundred. Indications are that this
trend will continue. As indication of the shift in emphasis, in 1994 Intel defined a standard
approach to the design of multiprocessor PC systems around its Pentium microprocessor[Sla94].
The follow-on PentiumPro microprocessor alows four-processor configurations to be con-
structed by wiring the chips together without even any glue logic; bus drivers, arbitration, and so
on are in the microprocessor. This development is expected to make small-scale multiprocessors
atrue commodity. Additionally, ashift in the industry business model has been noted, where mul-
tiprocessors are being pushed by software vendors, especialy database companies, rather than
just by the hardware vendors. Combining these trends with the technology trends, it appears that
the question is when, not if, multiple processors per chip will become prevalent.

Supercomputers

We have looked at the forces driving the development of parallel architecture in the general mar-
ket. A second, confluent set of forces come from the quest to achieve absolute maximum perfor-
mance, or supercomputing. Although commercial and information processing applications are
increasingly becoming important drivers of the high end, historicaly, scientific computing has
been akind of proving ground for innovative architecture. In the mid 60's this included pipelined
instruction processing and dynamic instruction scheduling, which are commonplace in micropro-
cessors today. Starting in the mid 70's, supercomputing was dominated by vector processors,
which perform operations on sequences of data elements, i.e, a vector, rather than individual sca-
lar data. Vector operations permit more parallelism to be obtained within a single thread of con-
trol. Also, these vector supercomputers were implemented in very fast, expensive, high power
circuit technologies.

Dense linear algebrais an important component of Scientific computing and the specific empha-
sis of the LINPACK benchmark. Although this benchmark evaluates a narrow aspect of system
performance, it is one of the few measurements available over avery wide class of machines over
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Figure 1-8 Number of processorsin fully configured commercial bus-based shared-memory multiprocessors.

After an initial era of 10 to 20-way SMPs based on slow CISC microprocessors, companies such as Sun, HP, DEC,
SGI, IBM and CRI began produ0| ng sizable RISC-based SMPs, as did commercia vendors not shown here, includi ng
NCR/ATT, Tandem, and Pyramid.

along period of time. Figure 1-10 shows the Linpack performance trend for one processor of the
leading Cray Research vector supercomputers] Aug* 89,Rus78] compared with that of the fastest
contemporary microprocessor-based workstations and servers. For each system two data points
are provided. The lower one is the performance obtained on a 100x100 matrix and the higher one
on a 1000x1000 matrix. Within the vector processing approach, the single processor performance
improvement is dominated by modest improvementsin cycle time and more substantial increases
in the vector memory bandwidth. In the microprocessor systems, we see the combined effect of
increasing clock rate, on-chip pipelined floating-point units, increasing on-chip cache size,
increasing off-chip second-level cache size, and increasing use of instruction level parallel-
ism.The gap in uniprocessor performanceisrapidly closing.

Multiprocessor architectures are adopted by both the vector processor and microprocessor
designs, but the scale is quite different. The Cray Xmp provided first two and later four proces-
sors, the Ymp eight, the C90 sixteen, and the T94 thirty-two. The microprocessor based super-
computers provided initially about a hundred processors, increasing to roughly athousand from
1990 onward. These massively parallel processors (MPPs) have tracked the microprocessor
advance, with typically alag of one to two years behind the leading microprocessor-based work-
station or personal computer. As shown in Figure 1-11, the large number of dlightly slower
microprocessors has proved dominant for this benchmark. (Note the change of scale from
MFLOPS Figure 1-10to GFLOPS.) The performance advantage of the MPP systems over tradi-
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Figure 1-9 Bandwidth of the shared memory busin commercial multiprocessors.

After slow growth for several years, a new era of memory bus design began in 1991. This supported the use of sub-
stantial numbers of very fast microprocessors.

125

tional vector supercomputers is less substantial on more complete applicationsf NAS] owing to
the relative immaturity of the programming languages, compilers, and agorithms, however, the
trend toward the MPPs is still very pronounced. The importance of this trend was apparent
enough that in 1993 Cray Research announced its T3D, based on the DEC Alpha microprocessor.
Recently the Linpack benchmark has been used to rank the fastest computers systems in the
world. Figure 1-12 shows the number of multiprocessor vector processors (PVP), MPPs, and
bus-based shared memory machines (SMP) appearing in the list of the top 500 systems. The lat-
ter two are both microprocessor based and the trend is clear.

Summary

In examining current trends from a variety of perspectives— economics, technology, architecture,
and application demand — we see that parallel architecture isincreasingly attractive and increas-
ingly central. The quest for performance is so keen that parallelism is being exploited at many
different levels at various points in the computer design space. Instruction level paralelism is
exploited in al modern high-performance processors. Essentialy all machines beyond the desk-
top are multiprocessors, including servers, mainframes, and supercomputers. The very high-end
of the performance curve is dominated by massively parallel processors. The use of large scale
parallelism in applications is broadening and small-scale multiprocessors are emerging on the
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Figure 1-10 Uniprocessor performance of supercomputers and microprocessor-based systems on the LINPACK
benchmark.

Performance in MFLOPS for a single processor on solving dense linear equations is shown for the leading Cray
vector supercomputer and the fastest workstations on a 100x100 and 1000x1000 matrix.

desktop and servers are scaling to larger configurations. The focus of this book is the multipro-
cessor level of parallelism. We study the design principles embodied in parallel machines from
the modest scale to the very large, so that we may understand the spectrum of viable parallel
architectures that can be built from well proven components.

Our discussion of the trends toward parallel computers has been primarily from the processor
perspective, but one may arrive at the same conclusion from the memory system perspective.
Consider briefly the design of a memory system to support a very large amount of data, i.e., the
data set of large problems. One of the few physical laws of computer architecture is that fast
memories are small, large memories are slow. This occurs as a result of many factors, including
the increased address decode time, the delays on the increasingly long bit lines, the small drive of
increasingly dense storage cells, and the selector delays. This is why memory systems are con-
structed as a hierarchy of increasingly larger and slower memories. On average, alarge hierarchi-
cal memory isfast, aslong as the references exhibit good locality. The other trick we can play to
“cheat the laws of physics’ and aobtain fast access on a very large data set is to replicate the pro-
cessor and have the different processors access independent smaller memories. Of course, phys-
icsisnot easily fooled. We pay the cost when a processor accesses non-local data, which we call
communication, and when we need to orchestrate the actions of the many processors, i.e., in syn-
chronization operations.
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Figure 1-11 Performance of supercomputers and MPPs on the LINPACK Peak-performance benchmark.

Peak performancein GFLOPS for solving dense linear equations is shown for the Ieadin%Cray multiprocessor vec-
tor supercomputer and the fastest MPP systems. Note the change in scale from Figure 1-10.
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Convergence of Parallel Architectures

131

Historically, paralel machines have developed within several distinct architectural “camps’ and
most texts on the subject are organized around a taxonomy of these designs. However, in looking
at the evolution of parallel architecture, it is clear that the designs are strongly influenced by the
same technological forces and similar application requirements. It is not surprising that thereisa
great deal of convergence in the field. In this section, our goal is to construct a framework for
understanding the entire spectrum of parallel computer architectures and to build intuition as to
the nature of the convergencein the field. Along the way, we will provide a quick overview of the
evolution of parallel machines, starting from the traditional camps and moving toward the point
of convergence.

Communication Architecture

Given that a parallel computer is “a collection of processing elements that communicate and
cooperate to solve large problems fast,” we may reasonably view paralel architecture as the
extension of conventional computer architecture to address issues of communication and cooper-
ation among processing elements. In essence, parallel architecture extends the usual concepts of
a computer architecture with a communication architecture. Computer architecture has two dis-
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Parallel vector processors S%F’VPS) have given way to microprocessor-based Massively Parallel Processors (MPPs)
and bus-based symmetric

ared-memory multiprocessors (SMPs) at the high-end of computing.

tinct facets. One isthe definition of critical abstractions, especially the hardware/software bound-
ary and the user/system boundary. The architecture specifies the set of operations at the boundary
and the data types that these operate on. The other facet is the organizational structure that real-
izes these abstractions to deliver high performance in a cost-effective manner. A communication
architecture has these two facets, aswell. It defines the basic communication and synchronization
operations, and it addresses the organizational structures that realize these operations.

The framework for understanding communication in a parallel machineisillustrated in Figure 1-
13. The top layer is the programming model, which is the conceptualization of the machine that
the programmer uses in coding applications. Each programming model specifies how parts of the
program running in parallel communicate information to one another and what synchronization
operations are available to coordinate their activities. Applications are written in a programming
model. In the simplest case, a multiprogramming workload in which a large number of indepen-
dent sequential programs are run on a parallel machine, there is no communication or coopera-
tion at the programming level. The more interesting cases include parallel programming models,
such as shared address space, message passing, and data parallel programming. We can describe
these models intuitively as follows:

e Shared address programming is like using a bulletin board, where one can communicate with
one or many colleagues by posting information at known, shared locations. Individual activi-
ties can be orchestrated by taking note of who is doing what task.
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* Message passing is akin to telephone calls or letters, which convey information from a spe-
cific sender to a specific receiver. There is a well-defined event when the information is sent
or received, and these events are the basis for orchestrating individual activities. However,
there is no shared locations accessible to all.

* Data parallel processing isamore regimented form of cooperation, where several agents per-
form an action on separate elements of a data set simultaneously and then exchange informa-
tion globally before continuing en masse. The global reorganization of data may be
accomplished through accesses to shared addresses or messages, since the programming
model only defines the overall effect of the parallel steps.

A more precise definition of these programming models will be developed later in the text; at this
stage it is most important to understand the layers of abstraction.

A programming model isrealized in terms of the user-level communication primitives of the sys-
tem, which we call the communication abstraction. Typically, the programming model is embod-
ied in a parallel language or programming environment, so there is a mapping from the generic
language constructs to the specific primitives of the system. These user-level primitives may be
provided directly by the hardware, by the operating system or by machine specific user software
which maps the communication abstractions to the actual hardware primitives. The distance
between the linesin the figure isintended to indicate that the mapping from operationsin the pro-
gramming model to the hardware primitives may be very simple or it may be very involved. For
example, access to a shared location is realized directly by load and store instructions on a
machine in which all processors use the same physical memory, however, passing a message on
such a machine may involve alibrary or system call to write the message into a buffer area or to
read it out. We will examine the mapping between layers more below.

CAD Database Scientific Modeling
Parallel Applications

Multi programming %%rr%%s Mgﬁge IE:rI;I o Programming Models

Compilation Communication Abstraction
or User/System Boundary
Library * Operating Systems Support

] 2 OV ar e/ Software Boundary
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Figure 1-13 Layers of Abstraction in Parallel Computer Architecture

Critical layers of abstractions lie between the application pro?ram and the actua hardware, The application iswrit-
ten for a programming model, which dictates how pieces of the program share information and coordinate their
activies. The specific operations providing communication and synchronization form the communication abstrac-
tion, which is he boundary between the user program and the s,?/ )

through compiler or library support using the primitives available from the hardware of from the operating system,
which uses priviledged hardware primtives. The communication hardware is organized to provide these operations
efficiently on the physical wires connecting together the machine.

stem implementation. This abstraction is realized

The communication architecture defines the set of communication operations available to the
user software, the format of these operations, and the data types they operate on, much as an
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instruction set architecture does for a processor. Note that even in conventional instruction sets,
some operations may be realized by a combination of hardware and software, such as a load
instruction which relies on operating system intervention in the case of a page fault. The commu-
nication architecture also extends the computer organization with the hardware structures that
support communication.

As with conventional computer architecture, there has been a great deal of debate over the years
as to what should be incorporated into each layer of abstraction in parallel architecture and how
large the “gap” should be between the layers. This debate has been fueled by various assumptions
about the underlying technology and more qualitative assessments of “ease of programming.” We
have drawn the hardware/software boundary as flat, which might indicate that the available hard-
ware primitivesin different designs have more or less uniform complexity. Indeed, thisis becom-
ing more the case as the field matures. In most early designs the physical hardware organization
was strongly oriented toward a particular programming model, i.e., the communication abstrac-
tion supported by the hardware was essentially identical to the programming model. This “high
level” parallel architecture approach resulted in tremendous diversity in the hardware organiza-
tions. However, as the programming models have become better understood and implementation
techniques have matured, compilers and run-time libraries have grown to provide an important
bridge between the programming model and the underlying hardware. Simultaneously, the tech-
nological trends discussed above have exerted a strong influence, regardless of programming
model. The result has been a convergence in the organizational structure with relatively ssimple,
general purpose communication primitives.

In the remainder of this section surveys the most widely used programming models and the cor-
responding styles of machine design in past and current parallel machines. Historically, parallel
machines were strongly tailored to a particular programming model, so it was common to lump
the programming model, the communication abstraction, and the machine organization together
as “the architecture”, e.g., a shared memory architecture, a message passing architecture, and so
on. This approach is less appropriate today, since there is a large commonality across parallel
machines and many machines support several programming models. It is important to see how
this convergence has come about, so we will begin from the traditional perspective and look at
machine designs associated with particular programming models, and explain their intended role
and the technological opportunities that influenced their design. The goal of the survey is not to
develop ataxonomy of parallel machines per se, but to identify a set of core concepts that form
the basis for assessing design trade-offs across the entire spectrum of potential designs today and
in the future. It also demonstrates the influence that the dominant technological direction estab-
lished by microprocessor and DRAM technologies has had on parallel machine design, which
makes a common treatment of the fundamental design issues natural or even imperative. Specifi-
cally, shared-address, message passing, data parallel, dataflow and systolic approaches are pre-
sented. In each case, we explain the abstraction embodied in the programming model and look at
the motivations for the particular style of design, as well as the intended scale and application.
The technological motivations for the approach are examine and how these changed over time.
These changes are reflected in the machine organization, which determines what is fast and what
is slow. The performance characteristics ripple up to influence aspects of the programming
model. The outcome of this brief survey isaclear organizational convergence, which is captured
in ageneric parallel machine at then end of the section.
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1.3.2 Shared Memory

One of the most important classes of parallel machines is shared memory multiprocessors. The
key property of this class is that communication occurs implicitly as a result of conventional
memory access instructions, i.e., loads and stores. This class has along history, dating at least to
precursors of mainframes in the early 60st, and today it has arolein almost every segment of the
computer industry. Shared memory multiprocessors serve to provide better throughput on multi-
programming workloads, as well as to support parallel programs. Thus, they are naturally found
across awide range of scale, from a few processors to perhaps hundreds. Below we examine the
communication architecture of shared-memory machines and the key organizational issues for
small-scale designs and large configurations.

The primary programming model for these machine is essentially that of timesharing on asingle
processor, except that real parallelism replaces interleaving in time. Formally, a processis avir-
tual address space and one or more threads of control. Processes can be configured so that por-
tions of their address space are shared, i.e.,, are mapped to common physical location, as
suggested by Figure 1-19. Multiple threads within a process, by definition, share portions of the
address space. Cooperation and coordination among threads is accomplished by reading and
writing shared variables and pointers referring to shared addresses. Writes to a logically shared
address by one thread are visible to reads of the other threads. The communication architecture
employs the conventional memory operations to provide communication through shared
addresses, aswell as special atomic operations for synchronization. Completely independent pro-
cesses typically share the kernel portion of the address space, athough thisis only accessed by
operating system code. Nonetheless, the shared address space mode! is utilized within the operat-
ing system to coordinate the execution of the processes.

While shared memory can be used for communication among arbitrary collections of processes,
most paralel programs are quite structured in their use of the virtual address space. They typi-
cally have a common code image, private segments for the stack and other private data, and
shared segments that are in the same region of the virtual address space of each process or thread
of the program. This simple structure implies that the private variablesin the program are present
in each process and that shared variables have the same address and meaning in each process or
thread. Often straightforward parall€elization strategies are employed; for example, each process
may perform a subset of the iterations of a common parallel loop or, more generally, processes
may operate as a pool of workers obtaining work from a shared queue. We will discuss the struc-
ture of parallel program more deeply in Chapter 2. Here we look at the basic evolution and devel -
opment of thisimportant architectural approach.

The communication hardware for shared-memory multiprocessors is a natural extension of the
memory system found in most computers. Essentially all computer systems allow a processor
and a set of 1/0 controllers to access a collection of memory modules through some kind of hard-
ware interconnect, as illustrated in Figure 1-15. The memory capacity is increased simply by
adding memory modules. Additional capacity may or may not increase the available memory
bandwidth, depending on the specific system organization. 1/O capacity is increased by adding

1. Some say that BINAC was the first multiprocessors, but it was intended to improve reliability. The two
processors check each other at every instruction. They never agreed, so people eventually turned one of
them off.
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Figure 1-14 Typical memory model for shared-memory parallel programs

Collection of processes have a common rePi on of physical addresses mapped into their virtual address space, in
addition to the private region, which typical

y contains the stack and private data.

devicesto 1/O controllers or by inserting additional 1/O controllers. There are two possible ways
to increase the processing capacity: wait for a faster processor to become available, or add more
processors. On a timesharing workload, this should increase the throughput of the system. With
more Processors, more processes run at once and throughput is increased. If a single application
is programmed to make use of multiple threads, more processors should speed up the application.
The primitives provided by the hardware are essentially one-to-one with the operations available
in the programming model.

Within the general framework of Figure 1-15, there has been a great deal of evolution of shared
memory machines as the underlying technology advanced. The early machines were “high end”
mainframe configurations [Lon61,Padeg]. On the technology side, memory in early mainframes
was slow compared to the processor, so it was necessary to interleave data across several memory
banks to obtain adequate bandwidth for a single processor; this required an interconnect between
the processor and each of the banks. On the application side, these systems were primarily
designed for throughput on alarge number of jobs. Thus, to meet the I/O demands of aworkload,
several /0 channels and devices were attached. The I/O channels also required direct access each
of the memory banks. Therefore, these systems were typically organized with a cross-bar switch
connecting the CPU and several 1/O channels to several memory banks, asindicated by Figure 1-
16a. Adding processors was primarily amatter of expanding the switch; the hardware structure to
access amemory location from aport on the processor and /0O side of the switch was unchanged.
The size and cost of the processor limited these early systems to a small number of processors.
As the hardware density and cost improved, larger systems could be contemplated. The cost of
scaling the cross-bar became the limiting factor, and in many cases it was replaced by a multi-
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Figure 1-15 Extending a system into a shared-memory multiprocessor by adding processor modules

Most systems consist of one or more memory modules accessible by a processor and 1/0 controllers through a hard-
ware interconnect, typically a bus, cross-bar or multistage interconnect. Memory and /O capacity is increased by
attaching metgolry and I/0O modules. Shared-memory machines allow processing capacity to be increased by adding
processor modulés.

stage interconnect, suggested by Figure 1-16b, for which the cost increases more slowly with the
number of ports. These savings come at the expense of increased latency and decreased band-
width per port, if al are used at once. The ability to access all memory directly from each proces-
sor has several advantages. any processor can run any process or handle any 1/0 event and within
the operating system data structures can be shared.

M M| M| M[| M M| M| M| M
M
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Figure 1-16 Typical Shared-Memory Multiprocessor Interconnection schemes.

The interconnection of multiple processors, with their local caches (indicated by $), and 1/0 controllers to multiple
memory modules may be a cross-bar, multistage interconnection network, or bus.

The widespread use of shared-memory multiprocessor designs came about with the 32-bit micro-
processor revolution in the mid 80s, because the processor, cache, floating point, and memory
management unit fit on asingle board[Bel95], or even two to aboard. Most mid-range machines,
including minicomputers, servers, workstations, and personal computers are organized around a
central memory bus, as illustrated in Figure 1-16a. The standard bus access mechanism allows
any processor to access any physical address in the system. Like the switch based designs, al
memory locations are equidistant to al processors, so al processors experience the same access
time, or latency, on a memory reference. This configuration is usually called a symmetric multi-
processor (SMP)L. SMPs are heavily used for execution of parallel programs, as well as multi-
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programming. The typical organization of bus-based symmetric multiprocessor is illustrated by
Figure 1-17, which describes the first highly integrated SMP for the commodity market.
Figure 1-18 illustrates a high-end server organization which distributes the physical memory over
the processor modules.

The factors limiting the number of processors that can be supported with a bus-based organiza-
tion are quite different from those in the switch-based approach. Adding processors to the switch
is expensive, however, the aggregate bandwidth increases with the number of ports. The cost of
adding a processor to the bus is small, but the aggregate bandwidth is fixed. Dividing this fixed
bandwidth among the larger number of processors limits the practical scalability of the approach.
Fortunately, caches reduce the bandwidth demand of each processor, since many references are
satisfied by the cache, rather than by the memory. However, with data replicated in local caches
there is a potentialy challenging problem of keeping the caches “consistent”, which we will
examine in detail later in the book.

Starting from a baseline of small-scale shared memory machines, illustrated in the figures above,
we may ask what is required to scale the design to a large number of processors. The basic pro-
cessor component iswell-suited to the task, sinceit is small and economical, but thereisclearly a
problem with the interconnect. The bus does not scale because it has a fixed aggregate band-
width. The cross-bar does not scale well, because the cost increases as the square of the number
of ports. Many alternative scalable interconnection networks exist, such that the aggregate band-
width increases as more processors are added, but the cost does not become excessive. We need
to be careful about the resulting increase in latency, because the processor may stall while a
memory operation moves from the processor to the memory module and back. If the latency of
access becomes too large, the processors will spend much of their time waiting and the advan-
tages of more processors may be offset by poor utilization.

One natural approach to building scalable shared memory machines is to maintain the uniform
memory access (or “dancehall”) approach of Figure 1-15 and provide a scalable interconnect
between the processors and the memories. Every memory access is trandated into a message
transaction over the network, much as it might be trandated to a bus transaction in the SMP
designs. The primary disadvantage of this approach isthat the round-trip network latency is expe-
rienced on every memory access and a large bandwidth must be supplied to every processor.

An dternative approach is to interconnect complete processors, each with a local memory, as
illustrated in Figure 1-19. In this non-uniform memory access (NUMA) approach, the local
memory controller determines whether to perform alocal memory access or a message transac-
tion with a remote memory controller. Accessing local memory is faster than accessing remote
memory. (The 1/O system may either be a part of every node or consolidated into special 1/0
nodes, not shown.) Accesses to private data, such as code and stack, can often be performed
locally, as can accesses to shared data that, by accident or intent, are stored on the local node. The
ability to access the local memory quickly does not increase the time to access remote data appre-
ciably, so it reduces the average access time, especially when alarge fraction of the accesses are

1. Theterm SMP iswidely used, but causes abit of confusion. What exactly needs to be symmetric? Many
designs are symmetric in some respect. The more precise description of what isintended by SMPisashared
memory multiprocessor where the cost of accessing amemory location isthe same for all processors, i.e., it
has uniform access costs when the access actually isto memory. If the location is cached, the access will be
faster, but still it is symmetric with respect to processors.
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Figure 1-17 Physical and logica organization of the Intel PentiumPro four processor “quad pack”

The Intel quad-processor Pentium Pro motherboard employed in many multiprocessor servers illustrates the major
design elements of most small scale SMPs. Itslogica block diagram shows there can be up to four processor mod-
ules, each containing a Pentium-Pro processor, first level caches, TLB, 256 KB second level cache, interrupt con-
troller (IC), and abusinterface (Bl) in asingle chip connecting directly to a 64-bit memory bus. The bus operates at
66 MHz and memory transactions are pipelined to give a peak bandwidth of 528 MB/s. A two-chip memory con-
troller and four-chip memory interleave unit (M1U) connect the bus to multiple banks of DRAM. Bridges connect
the memory bus to two independent PCI busses, which host display, network, SCSI, and lower speed 1/0 connec-
tions. The Pentium-Pro module contains all the logic necessary to support the multiprocessor communication archi-
tecture, including that required for memory and cache consistency. The structure of the Pentium-Pro “quad pack” is
similar to alarge number of earlier SMP designs, but has a much higher degree of integration and is targeted at a
much larger volume.

to local data. The bandwidth demand placed on the network is also reduced. Although some con-
ceptual simplicity arises from having al shared data equidistant from any processor, the NUMA
approach has become far more prevalent because of its inherent performance advantages and
because it harnesses more of the mainstream processor memory system technology. One example
of this style of design isthe Cray T3E, illustrated in Figure 1-20. This machine reflects the view-
point where, although all memory is accessible to every processor, the distribution of memory
across processors is exposed to the programmer. Caches are used only to hold data (and instruc-
tions) from local mmory. It is the programmer’s job to avoid frequent report references. The SGI
Origin is an example of a machine with a similar organizational structure, but it allows data from
any memory to be replicated into any of the caches and provide hardware support to keep these
caches consistent, without relying on a bus connecting all the modules with a common set of
wires. While this book was being written, the two dsigns literally converged after the two compa-
nies merged.

To summarize, the communication abstraction underlying the shared address space programming
model is reads and writes to shared variables, this is mapped one-to-one to a communication
abstraction consisting of load and store instructions accessing a global, shared address space,
which is supported directly in hardware through access to shared physical memory locations. The
communication abstraction is very “close” to the actual hardware. Each processor can name
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Figure 1-18 Physical and logica organization of the Sun Enterprise Server

A larger scale design is illustrated by the Sun Ultrasparc-based Enterprise multiprocessor server. The diagram
shows its physical structure and logical organization. A wide (256 bit), highly pipelined memory bus delivers 2.5
GB/s of memory bandwidth. This design uses a hierarchical structure, where each card is either a complete dual-
processor with memory or a complete 1/0O system. The full configuration supports 16 cards of either type, with at
least one of each. The CPU/Mem card contains two Ultrasparc processor modules, each with 16 KB level-1 and 512
KB level-2 caches, plus two 512-bit wide memory banks and an internal switch. Thus, adding processors adds
memory capacity and memory interleaving. The 1/O card provides three SBUS slots for I/O extensions, a SCSI con-
nector, 100bT Ethernet port, and two FiberChannel interfaces. A typical complete configuration would be 24 pro-
cessors and 6 1/0 cards. Although memory banks are physically packaged with pairs of processors, all
memory is equidistant from all processors and accessed over the common bus, preserving the SMP
characteristics. Data may be placed anywhere in the machine with no performance impact.

Scalable Network

M $ M $ ooo M $

P P P

Figure 1-19 Non-uniform Memory Access (NUMA) Scalable shared memory multiprocessor organization.

Processor and memory modules are closely integrated such that access to local memory is faster than access to
remote memories.

every physical location in the machine; a process can name all data it shares with otherswithinits
virtual address space. Data transfer isaresult of conventional 1oad and store instructions, and the
data is transferred either as primitive types in the instruction set, bytes, words, etc., or as cache
blocks. Each process performs memory operations on addresses in its virtual address space; the
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Figure 1-20 Cray T3E Scalable Shared Address Space Machine

The Cray T3E isdesigned to scale up to athousand processors supporting a global shared address space.
Each node contains a DEC Alpha processor, local memory, a network interface integrated with the
memory controller, and a network switch. The machine is organized as a three dimensional cube, with
each node connected to its six neighbors through 480 M B/s pdint-to-point links. Any processor can read
or write any memory location, however, the NUMA characteristic of the machine is'exposed in the com-
munjcation architecture, aswell asin its performance characteristics. A short sequence of instructionsis
required to establish addressability to remote memory, which can then be acCessed by conventional
loads and stores. The memory controller captures the access to a remote memory and conducts a mes-
sage transaction with the memory controller of the remote node on the local processor’s behalf. The
mi e transaction is automatically routed through intermediate nodes to the desired destination, with
asmall delay per “hop”. The remoté datais typically not cached, since there is no hardware mechanism
to keep it consistent. (Wewill 1ook at other désign pointsthat allow shared datato be replicated through-
out the processor caches.) The Cray T3E 1/0O system is distributed over a collection of hodes on the sur-
face of the cube, which are connected to the external world through an addition 1/O network

address translation process identifies a physical location, which may be local or remote to the
processor and may be shared with other processes. In either case, the hardware accesses it
directly, without user or operating system software intervention. The address translation realizes
protection within the shared address space, just as it does for uniprocessors, since a process can
only access the data in its virtual address space. The effectiveness of the shared memory
approach depends on the latency incurred on memory accesses, as well as the bandwidth of data
transfer that can be supported. Just as a memory storage hierarchy allows that data that is bound
to an address to be migrated toward the processor, expressing communication in terms of the
storage address space allows shared data to be migrated toward the processor that accesses it.
However, migrating and replicating data across a general purpose interconnect presents a unique
set of challenges. We will see that to achieve scalability in such a design it is necessary, but not
sufficient, for the hardware interconnect to scale well. The entire solution, including the mecha
nisms used for maintaining the consistent shared memory abstractions, must also scale well.

1.3.3 Message-Passing

A second important class of parallel machines, message passing architectures, employs complete
computers as building blocks — including the microprocessor, memory and I/O system — and pro-
vides communication between processors as explicit 1/0 operations. The high-level block dia-
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gram for a message passing machine is essentially the same as the NUMA shared-memory
approach, shown in Figure 1-19. The primary difference is that communication is integrated at
the 1/O level, rather than into the memory system. This style of design aso has much in common
with networks of workstations, or “clusters’, except the packaging of the nodesistypically much
tighter, there is no monitor or direct user access, and the network is of much higher capability
than standard local area network. The integration between the processor and the network tends to
be much tighter than in traditional 1/O structures, which support connection to devices that are
much slower than the processor, since message passing is fundamentally processor-to-processor
communication.

In message-passing there is generally a substantial distance between the programming model and
the communication operations at the physical hardware level, because user communication is
performed through operating system or library calls which perform many lower level actions,
including the actual communication operation. Thus, the discussion of message-passing begins
with alook at the communication abstraction, and then briefly surveys the evolution of hardware
organi zations supporting this abstraction.

The most common user-level communication operations on message passing systems are variants
of send and receive. Inits simplest form, send specifiesalocal data buffer that isto be transmitted
and a receiving process (typically on a remote processor). Receive specifies a sending process
and alocal data buffer into which the transmitted data is to be placed. Together, the matching
send and receive cause a datatransfer from one process to another, asindicated in Figure 1-19. In
most message passing systems, the send operation also alows an identifier or tag to be attached
to the message and the receiving operation specifies amatching rule, such as a specific tag from a
specific processor, any tag from any processor. Thus, the user program names local addresses and
entries in an abstract process-tag space. The combination of a send and a matching receive
accomplishes a memory to memory copy, where each end specifies its local data address, and a
pairwise synchronization event. There are severa possible variants of this synchronization event,
depending upon whether the send compl etes when the receive has been executed, when the send
buffer is available for reuse, or when the request has been accepted. Similarly, the receive can
potentially wait until a matching send occurs or simply post the receive. Each of these variants
have somewhat different semantics and different implementation reguirements.

Message passing has long been used as a means of communication and synchronization among
arbitrary collections of cooperating sequential processes, even on a single processor. |mportant
exampl es include programming languages, such as CSP and Occam, and common operating sys-
tems functions, such as sockets. Paralel programs using message passing are typicaly quite
structured, like their shared-memory counter parts. Most often, all nodes execute identical copies
of a program, with the same code and private variables. Usually, processes can name each other
using asimple linear ordering of the processes comprising a program.

Early message passing machines provided hardware primitives that were very close to the simple
send/receive user-level communication abstraction, with some additional restrictions. A hode was
connected to afixed set of neighborsin aregular pattern by point-to-point links that behaved as
simple FIFOS[Sei85]. This sort of design isillustrated in Figure 1-22 for a small 3D cube. Most
early machines were hypercubes, where each node is connected to n other nodes differing by one
bit in the binary address, for a total of 2" nodes, or meshes, where the nodes are connect to
neighbors on two or three dimensions. The network topology was especialy important in the
early message passing machines, because only the neighboring processors could be named in a
send or receive operation. The data transfer involved the sender writing into a link and the
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Figure 1-21 User level send/receive message passing abstraction

A data transfer from one local address space to another occurs when a send to a particular process is matched with
areceived postd by that process.

receiver reading from the link. The FIFOs were small, so the sender would not be able to finish
writing the message until the receiver started reading it, so the send would block until the receive
occured. In modern terms this is called synchronous message passing because the two events
coincide in time. The details of moving data were hidden from the programmer in a message
passi qg library, forming a layer of software between send and receive calls and the actual hard-
ware.

The direct FIFO design was soon replaced by more versatile and more robust designs which pro-
vided direct memory access (DMA) transfers on either end of the communication event. The use
of DMA allowed non-blocking sends, where the sender is able to initiate a send and continue
with useful computation (or even perform areceive) while the send completes. On the receiving
end, the transfer is accepted viaa DMA transfer by the message layer into a buffer and queued
until the target process performs a matching receive, at which point the data is copying into the
address space of the receiving process.

The physical topology of the communication network dominated the programming model of
these early machines and parallel algorithms were often stated in terms of a specific interconnec-
tion topology, e.g., aring, agrid, or a hypercube[Fox* 88]. However, to make the machines more
generally useful, the designers of the message layers provided support for communication
between arbitrary processors, rather than only between physical neighbors[NX]. This was origi-
nally supported by forwarding the data within the message layer along linksin the network. Soon
this routing function was moved into the hardware, so each node consisted of a processor with
mmory, and a switch that could forward messsages, called a router. However, in this store-and-
forward approach the time to transfer a message is proportional to the number of hops it takes

1. The motivation for synchronous message passing was not just from the machine structure; it
was also was also present in important programming languages, especially CSP[***CSP]. Early
in the microprocesor era the approach was captured in a single chip building block, the Trans-
puter, which was widely touted during its development by INMOS as a revolution in computing.
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Figure 1-22 Typical structure of an early message passing machines

Each node is connected to neighborsin three dimensions via FIFOs.

134

through the network, so there remained an emphasis on interconnection topology.(See
Exercise 1.7)

The emphasis on network topology was significantly reduced with the introduction of more gen-
eral purpose networks, which pipelined the message transfer through each of the routers forming
the interconnection network[Bar* 94,BoR089,Dun88,HoMc93,Lei* 92,PiRe94,VEi*92]. In most
modern message passing machines, the incremental delay introduced by each router is small
enough that the transfer time is dominated by the time to simply move that data between the pro-
cessor and the network, not how far it travels.[Gro92,HoM c93,Hor* 93PiRe94]. This greatly sim-
plifies the programming model; typically the processors are viewed as simply forming a linear
sequence with uniform communication costs. In other words, the communication abstraction
reflects an organizational structure much as in Figure 1-19. One important example of such
machine is the IBM SP-2, illustrated in Figure 1-23, which is constructed from conventional
RS6000 workstations, a scalable network, and a network interface containing a dedicated proces-
sor. Another is the Intel Paragon, illustrated in Figure 1-24, which integrates the network inter-
face more tightly to the processors in an SMP nodes, where one of the processors is dedicated to
supporting message passing.

A processor in a message passing machine can name only the locations in its local memory, and
it can name each of the procesors, perhaps by number or by route. A user process can only name
private addresses and other processes; it can transfer data using the send/receive calls.

Convergence

Evolution of the hardware and software has blurred the once clear boundary between the shared
memory and message passing camps. First, consider the communication operations available to
the user process.
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Figure 1-23 IBM SP-2 Message Passing Machine

The IBM SP-2 is a scalable parallel machine constructed essentially out of complete RS6000 workstations. Modest
modifications are made to packaging the workstations into standing racks. A network interface card (NIC) is
inserted at the MicroChannel 1/0 bus. The NIC contains the drivers for the actual link into the network, a substan-
tial amount of memory to buffer message data, and a complete i960 microprocessor to move data between host
memory and the network. The network itself is a butterfly-like structure, constructed by cascading 8x8 cross-bar
switches. The links operate at 40 MB/s in each direction, which is the full capability of the 1/O bus. Several other
machine employ a similar network interface design, but connect directly to the memory bus, rather than at the I/0

bus.

* Traditional message passing operations (send/receive) are supported on most shared memory
machines through shared buffer storage. Send involves writing data, or a pointer to data, into
the buffer, receive involves reading the data from shared storage. Flags or locks are used to

control access to the buffer and to indicate events, such as message arrival.

¢ On amessage passing machine, a user process may construct a global address space of sorts
by carrying along pointers specifying the process and local virtual address in that process.
Access to such a global address can be performed in software, through an explicit message
transaction. Most message passing libraries allow a process to accept a message for “any”
process, so each process can serve data requests from the others. A logical read is realized by
sending an request to the process containing the object and receiving a response. The actual
message transaction may be hidden from the user; it may be carried out by compiler gener-

ated code for access to a shared variable.[ Split-C,Midway,CID,CilK]
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Figure 1-24 Intel Paragon

The Intel Paragon illustrates a much tighter packaging of nodes. Each card is an SMP with two or more i860 pro-
cessors and a network interface chip connected to the cache-coherent memory bus. One of the processors is dedi-
cated to servicing the network. In addition, the node hasa DMA engine to transfer contiguous chunks of datato and
from the network at a high rate. The network isa 3D grid, much like the Cray T3E, with links operating at 175 MB/
sin each direction.

e A shared virtual address space can be established on a message passing machine at the page
level. A collection of processes have a region of shared addresses, but for each process only
the pages that are local to it are accessible. Upon access to a missing (i.e., remote) page, a
page fault occurs and the operating system engages the remote node in a message transaction
to transfer the page and map it into the user address space.

At the level of machine organization, there has been substantial convergence as well. Modern
message passing architectures appear essentially identical at the block diagram level to the scal-
able NUMA design illustrated in Figure 1-19. In the shared memory case, the network interface
was integrated with the cache controller or memory controller, in order for that device to observe
cache misses and conduct a message transaction to access memory in aremote node. In the mes-
sage passing approach, the network interface is essentially an 1/0 device. However, the trend has
been to integrate this device more deeply into the memory system as well, and to transfer data
directly from the user address space. Some designs provide DMA transfers across the network,
from memory on one machine to memory on the other machine, so the network interface isinte-
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grated fairly deeply with the memory system. Message passing is implemented on top of these
remote memory copiesfHoMc92]. In some designs a complete processor assists in communica-
tion, sharing a cache-coherent memory bus with the main processor[Gro92,PiRe94,HoM c92].
Viewing the convergence from the other side, clearly al large-scale shared memory operations
are ultimately implemented as message transactions at some level.

In addition to the convergeence of scalable message passing and shared memory machines,
switched-based local area networks, including fast ethernet, ATM, FiberChannel, and several
proprietary design[Bod95, Gil96] have emerged, providing scalable interconnects that are
approaching what traditional parallel machines offer. These new networks are being used to con-
nect collections of machines, which may be shared-memory multiprocessors in their own right,
into clusters, which may operate as a parallel machine on individual large problems or as many
individual machines on a multiprogramming load. Also, essentially all SMP vendors provide
some form of network clustering to obtain better reliability.

In summary, message passing and a shared address space represent two clearly distinct program-
ming models, each providing a well-defined paradigm for sharing, communication, and synchro-
nization. However, the underlying machine structures have converged toward a common
organization, represented by a collection of complete computers, augmented by a communication
assist connecting each node to a scalable communication network. Thus, it is natural to consider
supporting aspects of both in a common framework. Integrating the communication assist more
tightly into the memory system tends to reduce the latency of network transactions and improve
the bandwidth that can be supplied to or accepted from the network. We will want to look much
more carefully at the precise nature of thisintegration and understand how it interacts with cache
design, address trandation, protection, and other traditional aspects of computer architecture.

Data Parallel Processing

A third important class of parallel machines has been variously called: processor arrays, single-
instruction-multiple-data machines, and data parallel architectures. The changing names reflect a
gradual separation of the user-level abstraction from the machine operation. The key characteris-
tic of the programming model is that operations can be performed in parallel on each element of
a large regular data structure, such as an array or matrix. The program is logically a single
thread of control, carrying out a sequence of either sequential or parallel steps. Within this gen-
eral paradigm, there has been many novel designs, exploiting various technological opportuni-
ties, and considerable evolution as microprocessor technology has become such a dominate
force.

An influential paper in the early 70'qFly72] developed a taxonomy of computers, known as
Flynn's taxonomy , which characterizes designs in terms of the number of distinct instructions
issued at atime and the number of data elements they operate on. Conventional sequential com-
puters being single-instruction-single-data (SISD) and parallel machines built from multiple con-
ventional processors being multiple-instruction-multiple-data (MIMD). The revolutionary
aternative was single-instruction-multiple-data (SIMD). Its history is rooted in the mid-60s
when an individua processor was a cabinet full of equipment and an instruction fetch cost as
much in time and hardware as performing the actual instruction. The ideawas that all the instruc-
tion sequencing could be consolidated in the control processor. The data processorsincluded only
the ALU, memory, and a simple connection to nearest neighbors.
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In the early data parallel machines, the data parallel programming model was rendered directly in
the physical hardware[Bal* 62, Bou* 72,Cor72,Red73,Slo*62,Slot67,ViCo78]. Typicaly, a con-
trol processor broadcast each instruction to an array of data processing elements (PEs), which
were connected to form aregular grid, as suggested by Figure 1-25. It was observed that many
important scientific computations involved uniform calculation on every element of an array or
matrix, often involving neighboring elements in the row or column. Thus, the parallel problem
data was distributed over the memories of the data processors and scalar data was retained in the
control processor’'s memory. The control processor instructed the data processors to each perform
an operation on local data elements or all to perform acommunication operation. For example, to
average each element of a matrix with its four neighbors, a copy of the matrix would be shifted
across the PEsin each of the four directions and alocal accumulation performed in each PE. Data
PEs typically included a condition flag, allowing some to abstain from an operation. In some
designs, the local address can be specified with an indirect addressing mode, allowing processors
to al do the same operation, but with different local data addresses.

Control
Processor

ooo 000 ©coo

Figure 1-25 Typical organization of adataparallel (SIMD) parallel machine

Individual processing elements (PES) operate in |ock-step under the direction of a single control processor. Tradi-
tionally, SIMD machines provide a limited, regular interconnect _amon% the PEs, although this was generalized in
later machines, such as the Thinking Machines Connection Machine and the MasPar.

The devel opment of arrays of processors was almost completely eclipsed in the mid 70s with the
development of vector processors. In these machines, a scalar processor is integrated with a col-
lection of function units that operate on vectors of data out of one memory in a pipelined fashion.
The ability to operate on vectors anywhere in memory eliminated the need to map application
data structures onto arigid interconnection structure and greatly simplified the problem of getting
data aligned so that local operations could be performed. The first vector processor, the CDC
Star-100, provided vector operations in its instruction set that combined two source vectors from
memory and produced a result vector in memory. The machine only operated at full speed if the
vectors were contiguous and hence a large fraction of the execution time was spent smply trans-
posing matrices. A dramatic change occurred in 1976 with the introduction of the Cray-1, which
extended the concept of aload-store architecture employed in the CDC 6600 and CDC 7600 (and
rediscovered in modern RISC machines) to apply to vectors. Vectors in memory, of any fixed
stride, were transferred to or from contiguous vector registers by vector load and store instruc-
tions. Arithmetic was performed on the vector registers. The use of a very fast scalar processor
(operating at the unprecedented rate of 80 MHZz) tightly integrated with the vector operations and
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utilizing a large semiconductor memory, rather than core, took over the world of supercomput-
ing. Over the next twenty years Cray Research led the supercomputing market by increasing the
bandwidth for vector memory transfers, increasing the number of processors, the number of vec-
tor pipelines, and the length of the vector registers, resulting in the performance growth indicated
by Figure 1-10 and Figure 1-11.

The SIMD data parallel machine experienced a renaissance in the mid-80s, as VLS| advances
made simple 32-bit processor just barely practical[Bat79,Bat80,Hill85,Nic90,TuR088]. The
unique twist in the data parallel regime was to place thirty-two very simple 1-bit processing ele-
ments on each chip, along with serial connections to neighboring processors, while consolidating
the instruction sequencing capability in the control processor. In this way, systems with severa
thousand bit-serial processing elements could be constructed at reasonable cost. In addition, it
was recognized that the utility of such a system could be increased dramatically with the provi-
sion of ageneral interconnect allowing an arbitrary communication pattern to take placein asin-
gle rather long step, in addition to the regular grid neighbor connections[Hill85,HiSt86,Nic90].
The sequencing mechanism which expands conventional integer and floating point operations
into a sequence of bit serial operations also provided a means of “virtualizing” the processing
elements, so that afew thousand processing elements can give the illusion of operating in parallel
on millions of data elements with one virtual PE per data element.

The technological factors that made this bit-serial design attractive also provided fast, inexpen-
sive, single-chip floating point units, and rapidly gave way to very fast microprocessors with inte-
grated floating point and caches. This eliminated the cost advantage of consolidating the
sequencing logic and provided equal peak performance on a much smaller number of complete
processors. The simple, regular calculations on large matrices which motivated the data parallel
approach also have tremendous spatial and temporal locality, if the computation is properly
mapped onto a smaller number of complete processors, with each processor responsible for a
large number of logically contiguous data points. Caches and local memory can be brought to
bear on the set of data points local to each node, while communication occurs across the bound-
aries or asaglobal rearrangement of data.

Thus, while the user-level abstraction of parallel operations on large regular data structures con-
tinued to offer an attractive solution to an important class of problems, the machine organization
employed with data parallel programming models evolved towards a more generic parallel archi-
tecture of multiple cooperating microprocessors, much like scalable shared memory and message
passing machines, often with the inclusion of specialized network support for global synchroni-
zation, such as a barrier , which causes each process to wait at a particular point in the program
until al other processes have reach that point[Hor93,Lei* 92,Kum92,KeSc93,Koe*94]. Indeed,
the SIMD approach evolved into the SPMD (single-program-multiple-data) approach, in which
all processors execute copies of the same program, and has thus largely converged with the more
structured forms of shared memory and message passing programming.

Data parallel programming languages are usualy implemented by viewing the local address
spaces of a collection of processes, one per processor, as forming an explicit global address
space. Data structures are laid out across this global address space and there is a simple mapping
from indexes to processor and local offset. The computation is organized as a sequence of “bulk
synchronous’ phases of either local computation or global communication, separated by a global
barrier [cite BSP]. Because all processors do communication together and there is a global view
of what is going on, either a shared address space or message passing can be employed. For
example, if a phase involved every processor doing awrite to an address in the processor “to the
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left”, it could be realized by each doing a send to the left and a receive “from the right” into the
destination address. Similarly, every processor reading can be realized by every processor send-
ing the address and then every processor sending back the data. In fact, the code that is produced
by compilers for modern data parallel languages is essentially the same as for the structured con-
trol-parallel programs that are most common in shared-memory and message passing program-
ming models. With the convergence in machine structure, there has been a convergence in how
the machines are actually used.

Other Parallel Architectures

The mid-80s renaissance gave rise to severa other architectural directions which received con-
siderable investigation by academia and industry, but enjoyed less commercial success than the
three classes discussed above and therefore experienced less use as a vehicle for parallel pro-
gramming. Two approaches that were developed into complete programming systems were data-
flow architectures and systolic architectures. Both represent important conceptual devel opments
of continuing value as the field evolves.

Dataflow Architecture

Dataflow models of computation sought to make the essential aspects of a parallel computation
explicit at the machine level, without imposing artificial constraints that would limit the available
paralelism in the program. The idea is that the program is represented by a graph of essential
data dependences, as illustrated in Figure 1-26, rather than as a fixed collection of explicitly
sequenced threads of control. An instruction may execute whenever its data operands are avail-
able. The graph may be spread arbitrarily over a collection of processors. Each node specifies an
operation to perform and the address of each of the nodes that need the result. In the original
form, a processor in a dataflow machine operates a simple circular pipeline. A message, or token,
from the network consists of data and an address, or tag, of its destination node. The tag is com-
pared against those in a matching store. If present, the matching token is extracted and the
instruction is issued for execution. If not, the token is placed in the store to await its partner.
When aresult is computed, a new message, or token, containing the result data is sent to each of
the destinations specified in the instruction. The same mechanism can be used whether the suc-
cessor instructions are local or on some remote processor. The primary division within dataflow
architectures is whether the graph is static, with each node representing a primitive operation, or
dynamic, in which case a node can represent the invocation of an arbitrary function, itself repre-
sented by a graph. In dynamic or tagged-token architectures, the effect of dynamically expanding
the graph on function invocation is usually achieved by carrying additional context information
in the tag, rather than actually modifying the program graph.

The key characteristic of dataflow architectures is the ability to name operations performed any-
where in the machine, the support for synchronization of independent operations, and dynamic
scheduling at the machine level. As the dataflow machine designs matured into real systems, pro-
grammed in high level parallel languages, a more conventional structure emerged. Typically, par-
allelism was generated in the program as aresult of parallel function calls and parallel loops, so it
was attractive to allocate these larger chunks of work to processors. This led to a family of
designs organized essentially like the NUMA design of Figure 1-19. The key differentiating fea-
tures being direct support for a large, dynamic set of threads of control and the integration of
communication with thread generation. The network was closely integrated with the processor;
in many designs the “ current message” is available in special registers, and there is hardware sup-
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Figure 1-26 Dataflow graph and basic execution pipeline

port for dispatching to athread identified in the message. In addition, many designs provide extra
state bits on memory locations in order to provide fine-grained synchronization, i.e., synchroni-
zation on an element-by-element basis, rather than using locks to synchronize accesses to an
entire data structure. In particular, each message could schedule a chunk of computation which
could make use of local registers and memory.

By contrast, in shared memory machines one generally adopts the view that a static or slowly
varying set of processes operate within a shared address space, so the compiler or program maps
thelogical parallelism in the program to a set of processes by assigning loop iterations, maintain-
ing a shared work queue, or the like. Similarly, message passing programs involve a static, or
nearly static, collection of processes which can name one another in order to communicate. In
data parallel architectures, the compiler or sequencer maps alarge set of “virtual processor” oper-
ations onto processors by assigning iterations of a regular loop nest. In the dataflow case, the
machine provides the ability to name a very large and dynamic set of threads which can be
mapped arbitrarily to processors. Typically, these machines provided a global address space as
well. As we have seen with message passing and data parallel machines, dataflow architectures
experienced a gradual separation of programming model and hardware structure as the approach
matured.
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Systolic Architectures

Another novel approach was systolic architectures, which sought to replace a single sequential
processor by a regular array of simple processing elements and, by carefully orchestrating the
flow of data between PEs, obtain very high throughput with modest memory bandwidth require-
ments. These designs differ from conventional pipelined function units, in that the array structure
can be non-linear, e.g. hexagonal, the pathways between PEs may be multidirectional, and each
PE may have a small amount of local instruction and data memory. They differ from SIMD in
that each PE might do a different operation.

The early proposals were driven by the opportunity offered by VLSI to provide inexpensive spe-
cial purpose chips. A given algorithm could be represented directly as a collection of specialized
computational units connected in aregular, space-efficient pattern. Data would move through the
system at regular “heartbeats’ as determined by local state. Figure 1-27 illustrates a design for
computing convolutions using a simple linear array. At each beat the input data advances to the
right, is multiplied by a local weight, and is accumulated into the output sequence as it aso
advances to the right. The systolic approach has aspects in common with message passing, data
parallel, and dataflow models, but takes on a unique character for a specialized class of problems.

Practical realizations of these ideas, such as iWarp[Bor*90], provided quite general programma-
bility in the nodes, in order for a variety of algorithms to be realized on the same hardware. The
key differentiation is that the network can be configured as a collection of dedicated channels,
representing the systolic communication pattern, and data can be transferred directly from pro-
Cessor registersto processor registers across achannel. The global knowledge of the communica-
tion pattern is exploited to reduce contention and even to avoid deadlock. The key characteristic
of systolic architectures is the ability to integrate highly specialized computation under asimple,
regular, and highly localized communication patterns.

y(i) = wl*x(i) + w2*x(i+1) + w3*x(i+2) + wa*x(i+3)
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Figure 1-27 Systolic Array computation of an inner product
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Systolic algorithms have also been generally amenable to solutions on generic machines, using
the fast barrier to delineate coarser grained phases. The regular, local communication pattern of
these algorithms yield good locality when large portions of the logical systolic array are executed
on each process, the communication bandwidth needed is low, and the synchronization require-
ments are simple. Thus, these algorithms have proved effective on the entire spectrum of parallel
machines.

A Generic Parallel Architecture

In examining the evolution of the major approaches to parallel architecture, we see a clear con-
vergence for scalable machines toward a generic paralel machine organization, illustrated in
Figure 1-28. The machine comprises a collection of essentially complete computers, each with
one or more processors and memory, connected through a scalable communication network via
communications assist, some kind of controller or auxiliary processing unit which assistsin gen-
erating outgoing messages or handling incoming messages. While the consolidation within the
field may seem to narrow the interesting design space, in fact, there is great diversity and debate
as to what functionality should be provided within the assist and how it interfaces to the proces-
sor, memory system, and network. Recognizing that these are specific differences within a
largely similar organization helps to understand and evaluate the important organizational trade-
offs.

Not surprisingly, different programming models place different requirements on the design of the
communication assist, and influence which operations are common and should be optimized. In
the shared memory case, the assist is tightly integrated with the memory system in order to cap-
ture the memory events that may require interaction with other nodes. Also, the assist must
accept messages and perform memory operations and state transitions on behalf of other nodes.
In the message passing case, communication is initiated by explicit actions, either at the system
or user level, so it is not required that memory system events be observed. Instead, thereis aneed
to initiate the messages quickly and to respond to incoming messages. The response may reguire
that a tag match be performed, that buffers be allocated, that data transfer commence, or that an
event be posted. The data parallel and systolic approaches place an emphasis on fast global syn-
chronization, which may be supported directly in the network or in the assist. Dataflow places an
emphasis on fast dynamic scheduling of computation based on an incoming message. Systolic
algorithms present the opportunity to exploit global patternsin local scheduling. Even with these
differences, isimportant to observe that al of these approaches share common aspects; they need
to initiate network transactions as a result of specific processor events, and they need to perform
simple operations on the remote node to carry out the desired event.

We also see that a separation has emerged between programming model and machine organiza-
tion as parallel programming environments have matured. For example, Fortran 90 and High Per-
formance Fortran provide a shared-address data-parallel programming model, which is
implemented on awide range of machines, some supporting a shared physical address space, oth-
ers with only message passing. The compilation techniques for these machines differ radically,
even though the machines appear organizationally similar, because of differencesin communica
tion and synchronization operations provided at the user level (i.e., the communication abstrac-
tion) and vast differences in the performance characteristics of these communication operations.
As a second example, popular message passing libraries, such as PVM (parallel virtual machine)
and MPI (message passing interface), are implemented on this same range of machines, but the
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implementation of the libraries differ dramatically from one kind of machine to another. The
same observations hold for parallel operating systems.

( Networ k >

$ 1] /
P

Figure 1-28 Generic scalable multiprocessor organization.

A collection of essentially comﬁlete computers, including one or more processors and memory, communicating
through a general purpose, high-perfo
which assists in communi cation operations across the network.

performance, scalable interconnect. Typically, each node contains a controller

1.4 Fundamental Design | ssues

Given how the state of the art in parallel architecture has advanced, we need to take a fresh look
at how to organize the body of material in the field. Traditional machine taxonomies, such as
SIMD/MIMD, are of little help since multiple general purpose processors are so dominant. One
cannot focus entirely on programming models, since in many cases widely differing machine
organizations support a common programming model. One cannot just look at hardware struc-
tures, since common elements are employed in many different way. instead, we ought to focus
our attention on the architectural distinctions that make a difference to the software that isto run
on the machine. In particular, we need to highlight those aspects that influence how a compiler
should generate code from a high-level parallel language, how alibrary writer would code awell-
optimized library, or how an application would be written in a low-level parallel language. We
can then approach the design problem as one that is constrained from above by how programs use
the machine and from below by what the basic technology can provide.

In our view, the guiding principles for understanding modern parallel architecture are indicated
by the layers of abstraction presented in Figure 1-13. Fundamentally, we must understand the
operations that are provided at the user-level communication abstraction, how various program-
ming models are mapped to these primitives, and how these primitives are mapped to the actual
hardware. Excessive emphasis on the high-level programming model without attention to how it
can be mapped to the machine would detract from understanding the fundamental architectural
issues, as would excessive emphasis on the specific hardware mechanisms in each particular
machine.

This section looks more closely at the communication abstraction and the basic requirements of a
programming model. It then defines more formally the key concepts that tie together the layers:
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naming, ordering, and communication and replication of data. Finaly, it introduces the basic per-
formance models required to resolve design trade-offs.

Communication Abstraction

The communication abstraction forms the key interface between the programming model and the
system implementation. It plays arole very much like the instruction set in conventional sequen-
tial computer architecture. Viewed from the software side, it must have a precise, well-defined
meaning so that the same program will run correctly on many implementations. Also the opera-
tions provided at this layer must be simple, composable entities with clear costs, so that the soft-
ware can be optimized for performance. Viewed from the hardware side, it also must have awell-
defined meaning so that the machine designer can determine where performance optimizations
can be performed without violating the software assumptions. While the abstraction needs to be
precise, the machine designer would like it not to be overly specific, so it does not prohibit useful
techniques for performance enhancement or frustrate efforts to exploit properties of newer tech-
nologies.

The communication abstraction is, in effect, a contract between the hardware and the software
allowing each the flexibility to improve what it does, while working correctly together. To under-
stand the “terms” of this contract, we need to look more carefully at the basic requirements of a
programming model.

Programming M odel Requirements

A paralel program consists of one or more threads of control operating on data. A parallel pro-
gramming model specifies what data can be named by the threads, what operations can be per-
formed on the named data, and what ordering exists among these operations.

To make these issues concrete, consider the programming model for a uniprocessor. A thread can
name the locations in its virtual address space and can name machine registers. In some systems
the address space is broken up into distinct code, stack, and heap segments, while in othersit is
flat. Similarly, different programming languages provide access to the address space in different
ways, for example, some alow pointers and dynamic storage allocation, while others do not.
Regardless of these variations, the instruction set provides the operations that can be performed
on the named locations. For example, in RISC machines the thread can load data from or store
data to memory, but perform arithmetic and comparisons only on data in registers. Older instruc-
tion sets support arithmetic on either. Compilers typically mask these differences at the hardware/
software boundary, so the user’s programing model is one of performing operations on variables
which hold data. The hardware translates each virtual address to a physical address on every
operation.

The ordering among these operations is sequential program order — the programmer’s view is
that variables are read and modified in the top-to-bottom, left-to-right order specified in the pro-
gram. More precisely, the value returned by a read to an address is the last value written to the
addressin the sequential execution order of the program. This ordering assumption is essential to
the logic of the program. However, the reads and writes may not actually be performed in pro-
gram order, because the compiler performs optimizations when translating the program to the
instruction set and the hardware performs optimizations when executing the instructions. Both
make sure the program cannot tell that the order has been changed. The compiler and hardware
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preserve the dependence order. If avariable is written and then read later in the program order,
they make sure that the later operation uses the proper value, but they may avoid actually writing
and reading the value to and from memory or may defer the write until later. Collections of reads
with no intervening writes may be completely reordered and, generaly, writes to different
addresses can be reordered as long as dependences from intervening reads are preserved. This
reordering occurs at the compilation level, for example, when the compiler allocates variables to
registers, manipulates expressions to improve pipelining, or transforms loops to reduce overhead
and improve the data access pattern. It occurs at the machine level when instruction execution is
pipelined, multiple instructions are issued per cycle, or when write buffers are used to hide mem-
ory latency. We depend on these optimizations for performance. They work because for the pro-
gram to observe the effect of a write, it must read the variable, and this creates a dependence,
which is preserved. Thus, the illusion of program order is preserved while actually executing the
program in the looser dependence order.! We operate in a world where essentially all program-
ming languages embody a programming model of sequential order of operations on variablesin a
virtual address space and the system enforces a weaker order wherever it can do so without get-
ting caught.

Now let’s return to parallel programming models. The informal discussion earlier in this chapter
indicated the distinct positions adopted on naming, operation set, and ordering. Naming and
operation set are what typically characterize the models, however, ordering is of key importance.
A parallel program must coordinate the activity of its threads to ensure that the dependences
within the program are enforced; this requires explicit synchronization operations when the
ordering implicit in the basic operationsis not sufficient. As architects (and compiler writers) we
need to understand the ordering properties to see what optimization “tricks’” we can play for per-
formance. We can focus on shared address and message passing programming models, since they
are the most widely used and other models, such as data parallel, are usually implemented in
terms of one of them.

The shared address space programming model assumes one or more threads of control, each
operating in an address space which contains a region that is shared between threads, and may
contain a region that is private to each thread. Typically, the shared region is shared by al
threads. All the operations defined on private addresses are defined on shared addresses, in partic-
ular the program accesses and updates shared variables ssimply by using them in expressions and
assignment statements.

Message passing models assume a collection of processes each operating in a private address
space and each able to name the other processes. The normal uniprocessor operations are pro-
vided on the private address space, in program order. The additional operations, send and receive,
operate on the local address space and the globa process space. Send transfers data from the
local address space to a process. Receive accepts datainto the local address space from a process.
Each send/receive pair is a specific point-to-point synchronization operation. Many message
passing languages offer global or collective communication operations as well, such as broad-
cast.

1. Theillusion breaks down alittle bit for system programmers, say, if the variable is actually a
control register on a device. Then the actual program order must be preserved. This is usually
accomplished by flagging the variable as special, for example using the volatile type modifier in
C.
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1.4.3 Naming

The position adopted on naming in the programming model is presented to the programmer
through the programming language or programming environment. It is what the logic of the pro-
gram is based upon. However, the issue of naming is critical at each level of the communication
architecture. Certainly one possible strategy is to have the operations in the programming model
be one-to-one with the communication abstraction at the user/system boundary and to have this
be one-to-one with the hardware primitives. However, it is also possible for the compiler and
libraries to provide a level of trandation between the programming model and the communica-
tion abstraction, or for the operating system to intervene to handle some of the operations at the
user/system boundary. These alternatives allow the architect to consider implementing the com-
mon, simple operations directly in hardware and supporting the more complex operations partly
or wholely in software.

Let us consider the ramification of naming at the layers under the two primary progrramming
models. shared address and mssage passing. First, in a shared address model, accesses to shared
variables in the program are usually mapped by the compiler to load and store instructions on
shared virtual addresses, just like access to any other variable. This is not the only option, the
compiler could generate special code sequences for accesses to shared variables, the uniform
access to private and shared addresses is appealing in many respects. A machine supports a glo-
bal physical address spaceif any processor is able to generate a physical address for any location
in the machine and access the location in a single memory operation. It is straightforward to real -
ize a shared virtual address space on a machine providing a global physical address space: estab-
lish the virtual-to-physical mapping so that shared virtual addresses map to the same physical
location, i.e., the processes have the same entries in their page tables. However, the existence of
the level of tranglation allows for other approaches. A machine supports independent local physi-
cal address spaces, if each processor can only access a distinct set of locations. Even on such a
machine, a shared virtual address space can be provided by mapping virtual addresses which are
local to a process to the corresponding physical address. The non-local addresses are left
unmapped, so upon access to a non-local shared address a page fault will occur, allowing the
operating system to intervene and access the remote shared data. While this approach can provide
the same naming, operations, and ordering to the program, it clearly has different hardware
requirements at the hardware/software boundary. The architect’s job is resolve these design
trade-offs across layers of the system implementation so that the result is efficient and cost effec-
tive for the target application workload on available technol ogy.

Secondly, message passing operations could be realized directly in hardware, but the matching
and buffering aspects of the send/receive operations are better suited to software implementation.
More basic data transport primitives are well supported in hardware. Thus, in essentialy all par-
allel machines, the message passing programming model is readlized via a software layer that is
built upon asimpler communication abstraction. At the user/system boundary, one approach isto
have al message operations go through the operating system, as if they were I/O operations.
However, the frequency of message operations is much greater than 1/O operations, so it makes
sense to use the operating system support to set up resources, priviledges etc. and alow the fre-
quent, simple data transfer operations to be supported directly in hardware. On the other hand,
we might consider adopting a shared virtual address space as the lower level communication
abstraction, in which case send and receive operations involve writing and reading shared buffers
and posting the appropriate synchronization events. The issue of naming arises at each level of
abstraction in a paralléel architecture, not just in the programming model. As architects, we need
to design against the frequency and type of operations that occur at the communication abstrac-
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tion, understanding that there are trade-offs at this boundary involving what is supported directly
in hardware and what in software.

Operations

Each programming model defines a specific set of operationsthat can be performed on the data or
objects that can be named within the model. For the case of a shared address model, theseinclude
reading and writing shared variables, as well as various atomic read-modify-write operations on
shared variables, which are used to synchronize the threads. For message passing the operations
are send and receive on private (local) addresses and process identifiers, as described above. One
can observe that there is a global address space defined by a message passing model. Each ele-
ment of datain the program is named by a process number and local address within the process.
However, there are no operations defined on these global addresses. They can be passed around
and interpreted by the program, for example, to emulate a shared address style of programming
on top of message passing, but they cannot be operated on directly at the communication abstrac-
tion. As architects we need to be aware of the operations defined at each level of abstraction. In
particular, we need to be very clear on what ordering among operations is assumed to be present
at eacg level of abstraction, where communication takes place, and how datais replicated.

Ordering

The properties of the specified order among operations also has a profound effect throughout the
layers of parallel architecture. Notice, for example, that the message passing model places no
assumption on the ordering of operations by distinct processes, except the explicit program order
associated with the send/receive operations, whereas a shared address model must specify
aspects of how processes see the order of operations performed by other processes. Ordering
issues are important and rather subtle. Many of the “tricks’ that we play for performance in the
uniprocessor context involve relaxing the order assumed by the programmer to gain performance,
either through parallelism or improved locality or both. Exploiting parallelism and locality is
even more important in the multiprocessor case. Thus, we will need to understand what new
tricks can be played. We also need to examine what of the old tricks are till valid. Can we per-
form the traditional sequential optimizations, at the compiler and architecture level, on each pro-
cess of a parallel program? Where can the explicit synchronization operations be used to allow
ordering to be relaxed on the conventional operations? To answer these questions we will need to
develop a much more complete understanding of how programs use the communication abstrac-
tion, what properties they rely upon, and what machine structures we would like to exploit for
performance.

A natural position to adopt on ordering is that operationsin athread are in program order. That is
what the programmer would assume for the special case of one thread. However, there remains
the question of what ordering can be assumed among operations performed on shared variables
by different threads. The threads operate independently and, potentially, at different speeds so
thereis no clear notion of “latest”. If one hasin mind that the machines behave as a collection of
simple processors operating on a common, centralized memory, then it is reasonable to expect
that the global order of memory accesses will be some arbitrary interleaving of the individual
program orders. In reality we won't build the machines this way, but it establishes what opera-
tions are implicitly ordered by the basic operations in the model. This interleaving is also what
we expect if acollection of threads that are timeshared, perhaps at a very fine level, on a unipro-
Cessor.
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Where the implicit ordering is not enough, explicit synchronization operations are required.
There are two types of synchronization required in parallel programs:

* Mutual exclusion ensures that certain operations on certain data are performed by only
one thread or process at atime. We can imagine aroom that must be entered to perform
such an operation, and only one process can be in the room at a time. This is accom-
plished by locking the door upon entry and unlocking it on exit. If several processes
arrive at the door together, only one will get in and the others will wait till it leaves. The
order in which the processes are allowed to enter does not matter and may vary from one
execution of the program to the next; what matters is that they do so one at a time.
Mutual exclusion operations tend to serialize the execution of processes.

* Eventsare used to inform other processes that some point of execution has been reached
so that they can proceed knowing that certain dependences have been satisfied. These
operations are like passing a batton from one runner to the next in a relay race or the
starter firing a gun to indicate the start of a race. If one process writes a value which
another is supposed to read, there needs to be an event synchronization operation to
indicate that the value is ready to be read. Events may be point-to-point, involving apair
of processes, or they may be global, involving all processes, or a group of processes.

1.45 Communication and Replication

The final issues that are closely tied to the layers of parallel architecture are that of communica-
tion and data replication. Replication and communication are inherently related. Consider first a
message passing operation. The effect of the send/receive pair is to copy data that is in the
sender’s address space into a region of the receiver’s address space. This transfer is essential for
the receiver to access the data. If the data was produced by the sender, it reflects a true communi-
cation of information from one process to the other. If the data just happened to be stored at the
sender, perhaps because that was the initial configuration of the data or because the data set is
simply to large to fit on any one node, then this transfer merely replicates the data to where it is
used. The processes are not actually communicating via the data transfer. If the data was repli-
cated or positioned properly over the processes to begin with, there would be no need to commu-
nicate it in a message. More importantly, if the receiver uses the data over and over again, it can
reuse its replica without additional data transfers. The sender can modify the region of addresses
that was previously communicated with no effect on the previous receiver. If the effect of these
later updates are to be communicated, an additional transfer must occur.

Consider now a conventional data access on a uniprocessor through a cache. If the cache does not
contain the desired address, a miss occurs and the block is transfered from the memory that
serves as a backing store. The data is implicitly replicated into cache near the processor that
accesses it. If the processor resuses the data while it resides in the cache, further transfers with
the memory are avoided. In the uniprocessor case, the processor produces the data and the pro-
cessor that consumes it, so the “communication” with the memory occurs only because the data
does not fit in the cache or it is being accessed for the first time.

Interprocess communication and data transfer within the storage hierarchy become melded
together in a shared physica address space. Cache misses cause a data transfer across the
machine interconnect whenever the physical backing storage for an address is remote to the node
accessing the address, whether the address is private or shared and whether the transfer is aresult
of true communication or just a data access. The natural tendency of the machine is to replicate
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data into the caches of the processors that access the data. If the data is reused while it isin the
cache, no data transfers occur; this is a major advantage. However, when a write to shared data
occurs, something must be done to ensure that later reads by other processors get the new data,
rather than the old data that was replicated into their caches. Thiswill involve more than asimple
data transfer.

To be clear on the relationship of communication and replication it is important to distinguish
several concepts that are frequently bundled together. When a program performs awrite, it binds
adata value to an address; aread obtains the data value bound to an address. The dataresidesin
some physical storage element in the machine. A data transfer occurs whenever datain one stor-
age element istransfered into another. This does not necessarily change the bindings of addresses
and values. The same data may reside in multiple physical locations, as it does in the uniproces-
sor storage hierarchy, but the one nearest to the processor is the only one that the processor can
observe. If it is updated, the other hidden replicas, including the actual memory location, must
eventually be updated. Copying data binds a new set of addresses to the same set of values. Gen-
eraly, this will cause data transfers. Once the copy has been made, the two sets of bindings are
completely independent, unlike the implicit replication that occurs within the storage hierarchy,
S0 updates to one set of addresses do not effect the other. Communication between processes
occurs when data written by one processis read by another. This may cause a data transfer within
the machine, either on the write or the read, or the data transfer may occur for other reasons.
Communication may involve establishing a new binding, or not, depending on the particular
communication abstraction.

In general, replication avoids “unnecessary” communication, that is transferring data to a con-
sumer that was not produced since the data was previously accessed. The ability to perform repli-
cation automatically at a given level of the communication archtiecture depends very strongly on
the naming and ordering properties of the layer. Moreover, replication is not a panacea. Replica-
tion itself requires data transfers. It is disadvantageous to replicate data that is not going to be
used. We will see that replication plays an important role throughout parallel computer architec-
ture.

Performance

In defining the set of operations for communication and cooperation, the data types, and the
addressing modes, the communication abstraction specifies how shared objects are named, what
ordering properties are preserved, and how synchronization is performed. However, the perfor-
mance characteristics of the available primitives determines how they are actually used. Program-
mers and compiler writers will avoid costly operations where possible. In evaluating architectural
trade-offs, the decision between feasible aternatives ultimately rests upon the performance they
deliver. Thus, to complete our introduction to the fundamental issues of parallel computer archi-
tecture, we need to lay aframework for understanding performance at many levels of design.

Fundamentally, there are three performance metrics, latency, the time taken for an operation,
bandwidth, the rate at which operations are performed, and cost, the impact these operations have
on the execution time of the program. In a simple world where processors do only one thing at a
time these metrics are directly related; the bandwidth (operations per second) is the reciprocal of
the latency (seconds per operation) and the cost is simply the latency times the number of opera-
tions performed. However, modern computer systems do many different operations at once and
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the relationship between these performance metrics is much more complex. Consider the follow-
ing basic example.

Suppose a component can perform a specific operation in 100ns. Clearly it can
support a bandwidth of 10 million operations per second. However, if the
component is pipelined internally as ten equal stages, it is able to provide a peak
bandwidth of 100 million operations per second. The rate at which operations can
be initiated is determined by how long the slowest stage is occupied, 10 ns, rather
than by 