
Android: User Interface / Layouts
http://developer.android.com/guide/topics/ui/declaring-layout.html

Ferruccio Damiani

Università di Torino
www.di.unito.it/~damiani

Mobile Device Programming
(Laurea Magistrale in Informatica, a.a. 2017-2018)

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 1 / 87

http://developer.android.com/guide/topics/ui/declaring-layout.html
www.di.unito.it/~damiani

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 2 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 3 / 87

Widgets/Views

Layouts are in charge of the placement of the elements on the screen.1

Views are the elements to be placed.

Widgets are pre-defined, commonly-used View objects.
I Each Widget has a set of properties defining the UI (e.g., size, colors, layout).
I Each Widget has a focus and a visibility that the user can modify.

1Layouts are subclasses of ViewGroup.
Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 4 / 87

Input events [http://developer.android.com/guide/topics/ui/ui-events.html]

The user interacts with the Views and generates events.

Events for clicks, long clicks, gestures, focus, external events

Android manages the creation and distribution of these events, but not the reactions to them:
You must implement them by hand: two possible ways:

1. Event Handlers
I Views have callback methods to handle specific events

F E.g., when a Button is touched, method onTouchEvent() is called

I Special-purpose reactions are obtained by extending the particular View class and by
overriding the method

F Suitable for custom elements

2. Event Listeners
I Are Interfaces that contain a single callback method
I This method is called by the Android framework when the event is fired on the particular

View

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 5 / 87

http://developer.android.com/guide/topics/ui/ui-events.html

Input events [http://developer.android.com/guide/topics/ui/ui-events.html]

The user interacts with the Views and generates events.

Events for clicks, long clicks, gestures, focus, external events

Android manages the creation and distribution of these events, but not the reactions to them:
You must implement them by hand: two possible ways:

1. Event Handlers
I Views have callback methods to handle specific events

F E.g., when a Button is touched, method onTouchEvent() is called

I Special-purpose reactions are obtained by extending the particular View class and by
overriding the method

F Suitable for custom elements

2. Event Listeners
I Are Interfaces that contain a single callback method
I This method is called by the Android framework when the event is fired on the particular

View

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 5 / 87

http://developer.android.com/guide/topics/ui/ui-events.html

Some Listeners

OnClickListener: onClick()

OnLongClickListener: onLongClick()

OnFocusChangeListener: onFocusChange()

OnKeyListener: onKey()

OnCheckedChangeListener: onCheckedChanged()

OnTouchListener: onTouch()

OnCreateContextMenuListener: onCreateContextMenu()

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 6 / 87

Listeners / Option 1

Implement the callback method

Define the listener object as an anonymous class

Pass an instance of the ActionListener implementation to the View through method
setOnXXXListener

1 button.setOnClickListener(

2 object: View.OnClickListener {

3 override fun onClick(view: View?) {

4 // Implementation

5 }

6 }

7)

→
1 button.setOnClickListener() { view ->

2 run {

3 // Implementation

4 }

5 }

→

1 button.setOnClickListener() { view ->

2 myOnClick(view)

3 }

4 ...

5 fun myOnClick(view: View) {

6 // Implementation

7 }

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 7 / 87

Listeners / Option 2

Implement the callback method

Implement the interface in the Activity

Pass an instance of the listener to the View through method setOnXXXListener

1 class MyActivity : AppCompatActivity(), View.OnClickListener {

2 ...

3 button.setOnClickListener(this)

4 ...

5
6 override fun onClick(v: View?) {

7 // Implementation

8 }

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 8 / 87

Listeners / Option 3

Use onClick in the XML definition of the View (if possible)

Implement the method in the activity

1 <Button

2 android:id="@+id/button"

3 android:layout_width="fill_parent"

4 android:layout_height="wrap_content"

5 android:text="@string/button"

6 android:onClick="myOnClick" />

1 fun myOnClick(view: View) {

2 // Implementation

3 }

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 9 / 87

How to fire events in the code

Through perform”something” methods
I The corresponding listener (if set) is activated
I performClick() activates the view’s OnClickListener, if defined

Used to produce events
I As consequences of other actions
I To test listeners

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 10 / 87

Some suggestions

Avoid displaying too many things
I Well-known anti-patterns

Display useful content on your start screen

Use action bars to provide consistent navigation

Keep your hierarchies shallow by using horizontal navigation and shortcuts

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 11 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 12 / 87

Styles and themes

A style is a collection of properties that specify the look and format of a View or window

Styles share a similar philosophy to cascading stylesheets

A theme is a style applied to an entire Activity or application

Every View in the Activity or application will apply each style property it supports

Android provides a large collection of styles and themes

A reference of all available styles is in the R.style class

To use the styles listed here, replace all underscores in the style name with a period
I Theme NoTitleBar → “@android:style/Theme.NoTitleBar”

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 13 / 87

Example [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/kotlinstyle.git]

ProjectName/res/layout/activity main.xml

1 <?xml version="1.0" encoding="utf-8"?>

2 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

3 >

4

5 <Button

6 android:layout_width="wrap_content"

7 android:layout_height="wrap_content"

8 android:textColor="#00FF00"

9 android:typeface="monospace"

10 android:text="@string/button_send"

11 android:onClick="sendMessage" />

12 </LinearLayout>

The above style can be referenced from an XML layout as @style/CodeFont

1 <Button

2 android:layout_width="wrap_content"

3 android:layout_height="wrap_content"

4 android:textColor="#00FF00"

5 android:typeface="monospace"

6 android:text="@string/button_send"

7 android:onClick="sendMessage" />

→
1 <Button

2 style="@style/CodeFont"

3 android:text="@string/button_send"

4 android:onClick="sendMessage" />

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 14 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 15 / 87

The graphical user interface for an Android app is built using a hierarchy of View and ViewGroup

objects.

View objects are usually UI widgets such as buttons or text fields.

ViewGroup objects are invisible view containers that define how the child views are laid
out, such as in a grid or a vertical list.

Android provides an XML vocabulary that corresponds to the subclasses of View and ViewGroup

so you can define your UI in XML using a hierarchy of UI elements.
Layouts are subclasses of the ViewGroup.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 16 / 87

A layout defines the visual structure for a user interface, such as the UI for an activity or app
widget. You can declare a layout in two ways (in the following slides we focus on the first one):

Declare UI elements in XML. Android provides a straightforward XML vocabulary that corresponds to
the View classes and subclasses, such as those for widgets and layouts. As done, for instance, in the

java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt class.

Instantiate layout elements at runtime. Your application can create View and ViewGroup objects (and
manipulate their properties) programmatically. As done, for instance, in the

java/it.unito.di.educ.pdm18kotlin1/DisplayMessageActivity.kt class.

These methods can be used together:

Declare your application’s default layouts in XML.

Add code that modifies the state of the screen objects.

Example
You could declare your application’s default layouts in XML, including the screen elements that will appear in
them and their properties. You could then add code in your application that would modify the state of the
screen objects, including those declared in XML, at run time.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 17 / 87

In general, the XML vocabulary for declaring UI elements closely follows the structure and naming
of the classes and methods, where element names correspond to class names and attribute names
correspond to methods.

The correspondence is often so direct that you can guess what XML attribute corresponds to a class
method, or guess what class corresponds to a given XML element.

However, not all vocabulary is identical. In some cases, there are slight naming differences.

Example
The EditText element has a text attribute that corresponds to EditText.setText().

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 18 / 87

Write the XML

Using Android’s XML vocabulary, you can quickly design UI layouts and the screen elements they contain, in the
same way you create web pages in HTML — with a series of nested elements.

Each layout file must contain exactly one root element, which must be a View or ViewGroup object. Once you’ve
defined the root element, you can add additional layout objects or widgets as child elements to gradually build a
View hierarchy that defines your layout.

Example
The XML layout below uses a vertical LinearLayout to hold a TextView and a Button:

1 <?xml version="1.0" encoding="utf-8"?>

2 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent" android:layout_height="match_parent"

4 android:orientation="vertical" >

5 <TextView android:id="@+id/text" android:layout_width="wrap_content" android:layout_height="wrap_content"

6 android:text="Hello, I am a TextView" />

7 <Button android:id="@+id/button" android:layout_width="wrap_content" android:layout_height="wrap_content"

8 android:text="Hello, I am a Button" />

9 </LinearLayout>

After you’ve declared your layout in XML, save the file with the .xml extension, in your Android project’s res/layout/ directory,

so it will properly compile.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 19 / 87

Load the XML Resource

When you compile your application, each XML layout file is compiled into a View resource.

You should load the layout resource from your application code, in your Activity.onCreate() callback
implementation.

Do so by calling setContentView(), passing it the reference to your layout resource in the form of:
R.layout.layout file name.

Example
If your XML layout is saved as main layout.xml, you would load it for your Activity like so:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3 setContentView(R.layout.main_layout)

4 }

The onCreate() callback method in your Activity is called by the Android framework when your Activity is
launched.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 20 / 87

Attributes

Every View and ViewGroup object supports their own variety of XML attributes.

Some attributes are specific to a View object (for example, TextView supports the
textSize attribute).

These attributes are also inherited by any View objects that may extend this class.

Some attributes are common to all View objects, because they are inherited from the root
View class (like the id attribute).

Other attributes are considered “layout parameters”, which are attributes that describe
certain layout orientations of the View object, as defined by that object’s parent
ViewGroup object.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 21 / 87

Attributes / ID

Any View object may have an integer ID associated with it, to uniquely identify the View within the tree.

When the application is compiled, this ID is referenced as an integer, but the ID is typically assigned in
the layout XML file as a string, in the id attribute.

The syntax for an ID, inside an XML tag is:

1 android:id="@+id/my_button"

The at-symbol (@) at the beginning of the string indicates that the XML parser should parse and expand
the rest of the ID string and identify it as an ID resource.

The plus-symbol (+) means that this is a new resource name that must be created and added to our
resources (in the R.java file).

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 22 / 87

In order to create views and reference them from the application, a common pattern is to:

1. Define a view/widget in the layout file and assign it a unique ID:

1 <Button android:id="@+id/my_button"

2 android:layout_width="wrap_content"

3 android:layout_height="wrap_content"

4 android:text="@string/my_button_text"/>

2. Then create an instance of the view object and capture it from the layout (typically in the onCreate()
method):

1 val myButton = findViewById<Button>(R.id.my_button) →
1 import kotlinx.android.synthetic.main.activity_main.*

2 ...

3 my_button.YYYY

Defining IDs for view objects is important when creating a ConstraintLayout. In a ConstraintLayout, sibling
views can define their constraints relative to another sibling view, which is referenced by the unique ID.

An ID need not be unique throughout the entire tree, but it should be unique within the part of the tree
you are searching (which may often be the entire tree, so it’s best to be completely unique when possible).

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 23 / 87

There are a number of other ID resources that are offered by the Android framework.

When referencing an Android resource ID, you do not need the plus-symbol, but must add the android package
namespace, like so:

1 android:id="@android:id/empty"

With the android package namespace in place, we’re now referencing an ID from the android.R resources class,
rather than the local resources class.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 24 / 87

Attributes / Layout Parameters

XML layout attributes named layout something define layout parameters for the View that are appropriate for

the ViewGroup in which it resides.

Every ViewGroup class implements a nested

class that extends ViewGroup.LayoutParams.

This subclass contains property types that de-

fine the size and position for each child view,

as appropriate for the view group. As you see

below (in the visualization of a view hierarchy

with layout parameters associated with each

view), the parent view group defines layout

parameters for each child view (including the

child view group).

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 25 / 87

All view groups include a width and height (layout width and layout height), and each view is required to define
them.

You can specify width and height with exact measurements, though you probably won’t want to do this often.
More often, you will use one of these constants to set the width or height:

wrap content tells your view to size itself to the dimensions required by its content.

match parent (named fill parent before API Level 8) tells your view to become as big as its parent view
group will allow.

Best Practice
In general, specifying a layout width and height using absolute units such as pixels is not recommended. Instead, using relative measurements such as
density-independent pixel units (dp), wrap content, or match parent, is a better approach, because it helps ensure that your application will display properly across
a variety of device screen sizes.

Many LayoutParams also include optional margins and borders.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 26 / 87

Layout Position

The geometry of a view is that of a rectangle. A view has a location, expressed as a pair of left and top
coordinates, and two dimensions, expressed as a width and a height. The unit for location and dimensions is the
pixel.

It is possible to retrieve the location of a view by invoking the methods getLeft() and getTop().

getLeft() returns the left, or X, coordinate of the rectangle representing the view.

getTop() returns the top, or Y, coordinate of the rectangle representing the view.

These methods both return the location of the view relative to its parent.

Example

When getLeft() returns 20, that means the view is located 20 pixels to the right of the left edge of its direct
parent.

Several convenience methods are offered to avoid unnecessary computations. For instance:

the methods getRight() and getBottom() return the coordinates of the right and bottom edges of the
rectangle representing the view.

Calling getRight() is similar to the following computation: getLeft() + getWidth().

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 27 / 87

Size, Padding and Margins

The size of a view is expressed with a width and a height. A view actually possess two pairs of width and height
values.

The measured width and measured height dimensions define how big a view wants to be within its parent.
The measured dimensions can be obtained by calling getMeasuredWidth() and getMeasuredHeight().

The width and height (a.k.a. drawing width and drawing height) define the actual size of the view on
screen, at drawing time and after layout. These values may, but do not have to, be different from the
measured width and height. The width and height can be obtained by calling getWidth() and getHeight().

To measure its dimensions, a view takes into account its padding. The padding is expressed in pixels for the left,
top, right and bottom parts of the view. Padding can be used to offset the content of the view by a specific
number of pixels.

Example
A left padding of 2 will push the view’s content by 2 pixels to the right of the left edge.

Padding can be set using the setPadding(int, int, int, int) method and queried by calling getPaddingLeft(),
getPaddingTop(), getPaddingRight() and getPaddingBottom().

Even though a view can define a padding, it does not provide any support for margins. However, view groups

provide such a support.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 28 / 87

Common Layouts

Each subclass of the ViewGroup class provides a unique way to display the views you nest within it. Below are
some of the more common layout types that are built into the Android platform.

Best Practice
Although you can nest one or more layouts within another layout to acheive your UI design, you should strive to keep your layout hierarchy as shallow as possible.
Your layout draws faster if it has fewer nested layouts (a wide view hierarchy is better than a deep view hierarchy).

Constraint Layout

Enables you to specify constraints between

objects.

Linear Layout

A layout that organizes its children into a single

horizontal or vertical row. It creates a scrollbar

if the length of the window exceeds the length of

the screen.

Web View

Displays web pages.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 29 / 87

Building Layouts with an Adapter

When the content for your layout is dynamic or not pre-determined, you can use a layout that subclasses Adapter-
View to populate the layout with views at runtime.

A subclass of the AdapterView class uses an Adapter to bind data to its layout.

The Adapter behaves as a middleman between the data source and the AdapterView layout—the Adapter
retrieves the data (from a source such as an array or a database query) and converts each entry into a
view that can be added into the AdapterView layout.

Recycler View

Displays a scrolling grid of columns and rows.

Card View

Displays a scrolling single column list of cards.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 30 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 31 / 87

Other layout

there are also other layouts but for performance and tooling support reasons they are not recommended:

Relative Layout

Frame Layout

Table Layout

I For better performance and tooling support, you should instead build your layout with
ConstraintLayout.

Grid View

List View

I For better performance in your list, you should instead build your list with RecyclerView.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 32 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 33 / 87

LinearLayout: overview

Views presented on a single row/column
I Defined by layout orientation
I Or setOrientation(int orientation)

F Where orientation is either HORIZONTAL or VERTICAL

Two further attributes
I Gravity specifies how to position the child view w.r.t. the parent
I Weight indicates how much of the extra space in the LinearLayout will be allocated to the

view

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 34 / 87

Example 1 [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinLinearFirst.git]

1 <LinearLayout xmlns:android= ...

2 android:layout_width="match_parent"

3 android:layout_height="match_parent"

4 android:paddingLeft="@dimen/activity_margin"

5 android:paddingRight="@dimen/activity_margin"

6 android:orientation="vertical"

7 tools:context=".MainActivity" >

8 <EditText

9 android:layout_width="fill_parent"

10 android:layout_height="wrap_content"

11 android:hint="@string/to" />

12 <EditText

13 android:layout_width="fill_parent"

14 android:layout_height="wrap_content"

15 android:hint="@string/subject" />

16 <EditText

17 android:layout_width="fill_parent"

18 android:layout_height="0dp"

19 android:layout_weight="1"

20 android:gravity="top"

21 android:hint="@string/message" />

22 <Button

23 android:layout_width="100dp"

24 android:layout_height="wrap_content"

25 android:layout_gravity="right"

26 android:text="@string/send" />

27 </LinearLayout>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 35 / 87

Example 2 [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinLinearSecond.git]

1 <LinearLayout xmlns:android= ...

2 android:layout_width="match_parent"

3 android:layout_height="match_parent"

4 android:orientation="horizontal"

5 tools:context=".MainActivity" >

6 <Button

7 android:id="@+id/button1"

8 android:layout_width="0dp"

9 android:layout_height="wrap_content"

10 android:layout_weight="1"

11 android:text="@string/button1" />

12 <Button

13 android:id="@+id/button2"

14 android:layout_width="0dp"

15 android:layout_height="wrap_content"

16 android:layout_gravity="center_vertical"

17 android:layout_weight="2"

18 android:gravity="center_horizontal|center_vertical"

19 android:text="@string/button2" />

20 </LinearLayout>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 36 / 87

Example 3

1 <LinearLayout xmlns:android= ...

2 android:layout_width="match_parent"

3 android:layout_height="match_parent"

4 android:orientation="horizontal"

5 tools:context=".MainActivity" >

6 <Button

7 android:id="@+id/button1"

8 android:layout_width="0dp"

9 android:layout_height="fill_parent"

10 android:layout_weight="1"

11 android:text="@string/button1" />

12 <Button

13 android:id="@+id/button2"

14 android:layout_width="0dp"

15 android:layout_height="wrap_content"

16 android:layout_gravity="center_vertical"

17 android:layout_weight="2"

18 android:gravity="center_horizontal|center_vertical"

19 android:text="@string/button2" />

20 </LinearLayout>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 37 / 87

(Counter)Example 4

1 <Button

2 android:id="@+id/buttonN"

3 android:layout_width="0dp"

4 android:layout_height="wrap_content"

5 android:layout_gravity="center_vertical"

6 android:layout_weight="1"

7 android:text="@string/buttonN" />

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 38 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 39 / 87

Why ConstraintLayout?
[https://developer.android.com/training/constraint-layout/index.html]
[https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html]
[https://developer.android.com/studio/write/layout-editor.html]

Introduced to:

create large and complex layouts with a flat view hierarchy (no nested view groups)2

overcome the performance problems of other layouts (e.g., nested weighted Linear
Layouts)

It:

allows us to lay out child views using ‘constraints’ to define position based relationships
between different views found in our layout

is similar to RelativeLayout in that all views are laid out according to relationships
between sibling views and the parent layout

is more flexible than RelativeLayout and easier to use with Android Studio’s Layout Editor

2Flat hierarchies display quick and are memory efficient
Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 40 / 87

https://developer.android.com/training/constraint-layout/index.html
https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html
https://developer.android.com/studio/write/layout-editor.html

How to define a ConstraintLayout?

A ConstraintLayout is a ViewGroup which allows you to position and size widgets in a flexible
way.

To define a view’s position, you must add at least one horizontal and one vertical
constraint for the view.

Each constraint:
I represents a connection or alignment to another view, the parent layout, or an invisible

guideline
I defines the view’s position along either the vertical or horizontal axis

F so each view must have a minimum of one constraint for each axis3

3Often more are necessary
Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 41 / 87

Layout Editor
In the left figure, the layout looks good in the editor, but there’s no vertical constraint on view C. When this layout draws

on a device, view C horizontally aligns with the left and right edges of view A, but appears at the top of the screen because

it has no vertical constraint.

Although a missing constraint won’t cause a compilation error, the Layout Editor indicates missing constraints as an

error in the toolbar. To view the errors and other warnings, click Show Warnings and Errors (!). To help you avoid

missing constraints, the Layout Editor can automatically add constraints for you with the Autoconnect and infer constraints

features.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 42 / 87

Types of constraints

There are currently various types of constraints that you can use:

Relative positioning

Margins

Centering positioning

Circular positioning

Visibility behavior

Dimension constraints

Chains

Virtual Helpers objects

Note that you cannot have a circular dependency in constraints.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 43 / 87

Layout Editor’s visual tools: Types of layout behavior

You can use constraints to achieve different types of layout behavior, as described in the
following:

1. Parent position

2. Order position

3. Alignment

4. Baseline alignment

5. Constrain to a guideline

6. Constrain to a barrier

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 44 / 87

1. Parent position

Constrain the side of a view to the corresponding edge of the layout.

In the figure, the left side of the view is connected to the left edge of the parent layout. You can define the
distance from the edge with margin.

A horizontal constraint to the parent

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 45 / 87

2. Order position

CDefine the order of appearance for two views, either vertically or horizontally.

In the figure, B is constrained to always be to the right of A, and C is constrained below A. However, these
constraints do not imply alignment, so B can still move up and down.

A horizontal and vertical constraint

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 46 / 87

3. Alignment

Align the edge of a view to the same edge of another view.

In the figure, the left side of B is aligned to the left side of A. If you want to align the view centers, create a
constraint on both sides.

You can offset the alignment by dragging the view inward from the constraint. For example, figure 7 shows B with a 24dp
offset alignment. The offset is defined by the constrained view’s margin.

You can also select all the views you want to align, and then click Align in the toolbar to select the alignment type.

Left: A horizontal alignment constraint. Right: An offset horizontal alignment constraint

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 47 / 87

4. Baseline alignment

Align the text baseline of a view to the text baseline of another view.

In the figure, the first line of B is aligned with the text in A.

To create a baseline constraint, select the text view you want to constrain and then click Edit Baseline, which appears

below the view. Then click the text baseline and drag the line to another baseline.

A baseline alignment constraint

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 48 / 87

5. Constrain to a guideline

You can add a vertical or horizontal guideline to which you can constrain views, and the guideline will be invisible
to app users. You can position the guideline within the layout based on either dp units or percent, relative to
the layout’s edge.

To create a guideline, click Guidelines in the toolbar, and then click either Add Vertical Guideline or Add Horizontal
Guideline.

Drag the dotted line to reposition it and click the circle at the edge of the guideline to toggle the measurement mode.

A view constrained to a guideline

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 49 / 87

6. Constrain to a barrier

Similar to a guideline, a barrier is an invisible line that you can constrain views to. Except a barrier does not
define its own position; instead, the barrier position moves based on the position of views contained within it.
This is useful when you want to constrain a view to the a set of views rather than to one specific view.

In the figure, view C is constrained to the right side of a barrier. The barrier is set to the ”end” (or the right side
in a left-to-right layout) of both view A and view B. So the barrier moves depending on whether the right side of
view A or view B is is farthest right.

View C is constrained to a barrier, which moves based on the position/size of both view A and view B

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 50 / 87

Adjust the view size

You can use the corner handles to resize a view, but this hard codes the size so the view will not resize for different content
or screen sizes. To select a different sizing mode, click a view and open the Attributes window on the right side of the
editor.
Near the top of the Attributes window is the view inspector, which includes controls for several layout attributes, as shown
in the figure (this is available only for views in a constraint layout).
You can change the way the height and width are calculated by clicking the symbols indicated with callout 3 in the figure.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 51 / 87

Control linear groups with a chain

A chain is a group of views that are linked to each other with bi-directional position
constraints.
A chain allows you to distribute a group of views horizontally or vertically with
the following styles (as shown in the figure):

1. Spread: The views are evenly distributed (after margins are accounted
for). This is the default.

2. Spread inside: The first and last view are affixed to the constraints on
each end of the chain and the rest are evenly distributed.

3. Weighted: When the chain is set to either spread or spread inside, you
can fill the remaining space by setting one or more views to ‘match
constraints” (0dp).

4. Packed: The views are packed together (after margins are accounted for).
You can then adjust the whole chain’s bias (left/right or up/down) by
changing the chain’s head view bias.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 52 / 87

Example [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinConstraintLayout.git]

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 53 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 54 / 87

WebView [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinWebView.git]

The WebView class is an extension of Android’s View class.

Allows you to display web pages as a part of your activity
layout.

I It does not include any features of a fully developed web
browser, such as navigation controls or an address bar.

I All that WebView does, by default, is show a web page.

You
I Must enable JavaScript if needed.
I Can create interfaces between JavaScript code and Android

code.
I Can control navigation.

1 webview.apply {

2 loadUrl("http://magistrale.educ.di.unito.it/")

3 settings.javaScriptEnabled = true

4 }

5 ...

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 55 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 56 / 87

RecycleView
https://developer.android.com/guide/topics/ui/layout/recyclerview

The RecyclerView widget is a more advanced and flexible version of ListView.

The RecyclerView fills itself with views provided by a layout manager that you provide. You can use one of
standard layout managers (LinearLayoutManager or GridLayoutManager), or implement your own.

The views in the list are represented by view holder objects. The RecyclerView creates only as many view holders
as are needed to display the on-screen portion of the dynamic content, plus a few extra. As the user scrolls through
the list, the RecyclerView takes the off-screen views and rebinds them to the data which is scrolling onto the screen.

The view holder objects are managed by an adapter. The adapter creates view holders as needed. The adapter

also binds the view holders to their data. It does this by assigning the view holder to a position, and calling

the adapter’s onBindViewHolder() method. That method uses the view holder’s position to determine what the

contents should be, based on its list position.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 57 / 87

https://developer.android.com/guide/topics/ui/layout/recyclerview

RecycleView - How to create it [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinRecycleView.git]

Add the support library

Open the build.gradle file for your app module and add the support library:

1 dependencies {

2 ...

3 implementation com.android.support:recyclerview-v7:28.0.0

4 }

Add RecyclerView to your layout

Now you can add the RecyclerView to your layout file, activity main.xml:

1 <?xml version="1.0" encoding="utf-8"?>

2 <android.support.v7.widget.RecyclerView

3 xmlns:android="http://schemas.android.com/apk/res/android"

4 xmlns:tools="http://schemas.android.com/tools"

5 android:layout_width="match_parent"

6 android:layout_height="match_parent"

7 tools:context=".MainActivity"

8 android:id="@+id/lista"

9 android:layout_marginLeft="16dp"

10 android:layout_marginRight="16dp"

11 tools:listitem="@layout/element" />

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 58 / 87

RecycleView - How to create it [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinRecycleView.git]

Connect the RecycleView to a layout manager and attach an adapter for the data to be displayed:

MainActivity.kt:

1 private val mColumnCount = 1

2 private val enableStaggeredGrid = false

3 private val staggeredGridOrientation = StaggeredGridLayoutManager.VERTICAL

4 private lateinit var viewAdapter: RecyclerView.Adapter<*>

5 private lateinit var viewManager: RecyclerView.LayoutManager

6
7 override fun onCreate(savedInstanceState: Bundle?) {

8 ...

9 if (mColumnCount <= 1) {

10 viewManager = LinearLayoutManager(this)

11 } else {

12 if (enableStaggeredGrid) {

13 viewManager = StaggeredGridLayoutManager(mColumnCount, staggeredGridOrientation)

14 } else {

15 viewManager = GridLayoutManager(this, mColumnCount)

16 } }

17 viewAdapter = MyElementRecyclerViewAdapter(DummyList.getLista())

18 lista.apply {

19 layoutManager = viewManager

20 adapter = viewAdapter

21 }

22 }

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 59 / 87

RecycleView - How to create it [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinRecycleView.git]

Define the adapter to use:

MyElementRecyclerViewAdapter.kt:

1 class MyElementRecyclerViewAdapter(private val mValues: List<DummyList.DummyItem>) :

2 RecyclerView.Adapter<MyElementRecyclerViewAdapter.ViewHolder>() {

3
4 // Provide a reference to the views for each data item

5 class ViewHolder(val mView: View) : RecyclerView.ViewHolder(mView)

6
7 // Return the size of your dataset (invoked by the layout manager)

8 override fun getItemCount() = mValues.size

9
10 // Create new views (invoked by the layout manager)

11 override fun onCreateViewHolder(parent: ViewGroup, viewType: Int): MyElementRecyclerViewAdapter.ViewHolder {

12 val view = LayoutInflater.from(parent.context).inflate(R.layout.element, parent, false) as View

13 return ViewHolder(view)

14 }

15
16 // Replace the contents of a view (invoked by the layout manager)

17 override fun onBindViewHolder(holder: MyElementRecyclerViewAdapter.ViewHolder, position: Int) {

18 holder.mView.apply {

19 nome.text = mValues[position].titolo

20 imageView.setBackgroundResource(mValues[position].id)

21 }

22 }

23 }

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 60 / 87

RecycleView - How to create it [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinRecycleView.git]

Other resources:

DummyList.kt:

Contains the list of items to display

element.xml:

Contains the layout for displaying a sigle element

The standard layout manager:

I LinearLayoutManager: arranges the items in a
one-dimensional list.

I GridLayoutManager: arranges the items in a two-dimensional
grid, like the squares on a checkerboard.

I StaggeredGridLayoutManager: arranges the items in a
two-dimensional grid, with each column slightly offset from
the one before.

res\raw:

The list of images to display

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 61 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 62 / 87

CardView [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinCardView.git]

A card is a sheet of material that may contain a photo, text, and a link about
a single subject. They may display content containing elements of varying size,
such as photos with captions of variable length.

Cards contain content and actions about a single subject. They can be used
standalone, or as part of a list. Cards are meant to be interactive, and aren’t
meant to be be used solely for style purposes.

app module’s build.gradle file: add the new dependence for cards

element.xml: design of a single card

Additional information on Cards of Material Design:
https://material.io/design/components/cards.html

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 63 / 87

https://material.io/design/components/cards.html

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 64 / 87

Re-using Layouts with <include/>
http://developer.android.com/training/improving-layouts/reusing-layouts.html

To efficiently re-use complete layouts, you can use the <include/> and <merge/> tags to
embed another layout inside the current layout.

Create a new XML file and define the layout
I Example: a title bar that should be included in each activity

Add the <include/> tag inside the new layout

The <merge/> tag helps eliminate redundant view groups in your view hierarchy
I When you include this layout in another layout, the system ignores the <merge/> element

and places the elements directly in the layout

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 65 / 87

http://developer.android.com/training/improving-layouts/reusing-layouts.html

Create a Re-usable Layout

If you already know the layout that you want to re-use, create a new XML file and define the
layout. For example, here’s a layout from the G-Kenya codelab that defines a title bar to be
included in each activity (titlebar.xml):

1 <FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 android:layout_width="match_parent"

3 android:layout_height="wrap_content"

4 android:background="@color/titlebar_bg">

5
6 <ImageView android:layout_width="wrap_content"

7 android:layout_height="wrap_content"

8 android:src="@drawable/gafricalogo" />

9 </FrameLayout>

The root View should be exactly how you’d like it to appear in each layout to which you add
this layout.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 66 / 87

Use the <include/> Tag

Inside the layout to which you want to add the re-usable component, add the <include/> tag.
For example, here’s a layout file from the G-Kenya codelab that includes the title bar from the
above slide:

1 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 android:orientation="vertical"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent"

5 android:background="@color/app_bg"

6 android:gravity="center_horizontal">

7
8 <include layout="@layout/titlebar"/>

9
10 <TextView android:layout_width="match_parent"

11 android:layout_height="wrap_content"

12 android:text="@string/hello"

13 android:padding="10dp" />

14
15 ...

16
17 </LinearLayout>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 67 / 87

You can also override all the layout parameters (any android:layout * attributes) of the
included layout’s root view by specifying them in the <include/> tag. For example:

1 <include android:id="@+id/news_title"

2 android:layout_width="match_parent"

3 android:layout_height="match_parent"

4 layout="@layout/title"/>

However, if you want to override layout attributes using the <include/> tag, you must
override both android:layout height and android:layout width in order for other layout
attributes to take effect.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 68 / 87

Use the <merge> Tag

The <merge> tag helps eliminate redundant view groups in your view hierarchy when including one layout within another.

Example
If your main layout is a vertical LinearLayout in which two consecutive views can be re-used in multiple layouts, then the
re-usable layout in which you place the two views requires its own root view. However, using another LinearLayout as the
root for the re-usable layout would result in a vertical LinearLayout inside a vertical LinearLayout. The nested
LinearLayout serves no real purpose other than to slow down your UI performance.

To avoid including such a redundant view group, you can instead use the <merge> element as the root view for the
re-usable layout. For example:

1 <merge xmlns:android="http://schemas.android.com/apk/res/android">

2 <Button

3 android:layout_width="fill_parent"

4 android:layout_height="wrap_content"

5 android:text="@string/add"/>

6 <Button

7 android:layout_width="fill_parent"

8 android:layout_height="wrap_content"

9 android:text="@string/delete"/>

10 </merge>

Now, when you include this layout in another layout (using the <include/> tag), the system ignores the <merge>
element and places the two buttons directly in the layout, in place of the <include/> tag.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 69 / 87

Outline

1 Prologue

2 Styles and themes

3 Layouts

4 Other layout

5 LinearLayout

6 ConstraintLayout

7 WebView

8 RecycleView

9 CardView

10 Composing layouts

11 Older Layouts
RelativeLayout
FrameLayout
TableLayout
Lists and Grids

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 70 / 87

RelativeLayout: overview

Displays child views in relative positions

The position of each view can be specified as
I Relative to sibling elements (such as to the left-of or below another view)
I Relative to the parent area (such as aligned to the bottom, left or center)

Useful to align views

Can eliminate nested view groups and keep your layout hierarchy flat

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 71 / 87

Positioning Views

By default, all child views are drawn at the top-left of the layout, so you must define the
position of each view using the various layout properties available from
RelativeLayout.LayoutParams.
Some of the many layout properties available to views in a RelativeLayout include:

android:layout alignParentTop
I If ”true”, makes the top edge of this view match the top edge of the parent.

android:layout centerVertical
I If ”true”, centers this child vertically within its parent.

android:layout below
I Positions the top edge of this view below the view specified with a resource ID.

android:layout toRightOf
I Positions the left edge of this view to the right of the view specified with a resource ID.

In your XML layout, dependencies against other views in the layout can be declared in any
order.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 72 / 87

Example [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/HelloRelative.git]

1 <RelativeLayout xmlns:android= ... >

2
3 <EditText

4 android:id="@+id/name" ...

5 android:hint="@string/reminder" />

6 <Spinner

7 android:id="@+id/options" ...

8 android:layout_below="@id/name"

9 android:layout_alignParentLeft="true"

10 android:layout_toLeftOf="@+id/ok"

11 android:entries="@array/days_of_week" />

12 <EditText

13 android:id="@+id/password" ...

14 android:inputType="textPassword"

15 android:layout_below="@id/options"

16 android:layout_alignParentRight="true"

17 android:layout_toRightOf="@+id/passwordLabel" />

18 <TextView

19 android:id="@id/passwordLabel" ...

20 android:layout_alignBaseline="@id/password" />

21 <Button

22 android:id="@id/ok" ...

23 android:layout_below="@id/name"

24 android:layout_alignParentRight="true" />

25 </RelativeLayout>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 73 / 87

FrameLayout

Designed to display a single or multiple UI elements
I The position of multiple children can be controlled by assigning a gravity to each child
I Elements that overlap are displayed overlapping

Child views are drawn in a stack, with the most recently added child on top

Adds android:visibility to manage the visibility of views

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 74 / 87

Example [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/HelloFrame.git]

1 <FrameLayout xmlns:android= ...

2 android:layout_width="match_parent"

3 android:layout_height="match_parent" >

4
5 <ImageView

6 android:src="@drawable/main_logo"

7 android:contentDescription="@string/key"

8 android:scaleType="fitCenter"

9 android:layout_height="fill_parent"

10 android:layout_width="fill_parent"/>

11 <TextView

12 android:text="@string/test"

13 android:textSize="30sp"

14 android:textStyle="bold"

15 android:textColor="@color/colorText"

16 android:layout_height="fill_parent"

17 android:layout_width="fill_parent"

18 android:gravity="center"/>

19 </FrameLayout>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 75 / 87

TableLayout

TableLayout is a ViewGroup that displays child View elements in rows and columns.
I TableLayout containers do not display border lines for their rows, columns, or cells.
I The table will have as many columns as the row with the most cells.
I A table can leave cells empty, cells can span columns (as they can in HTML).

TableRow objects are the child views of a TableLayout (each TableRow defines a single
row in the table).

I Each row has zero or more cells, each of which is defined by any kind of other View.
I So, the cells of a row may be composed of a variety of View objects, like ImageView or

TextView objects.
I A cell may also be a ViewGroup object (for example, you can nest another TableLayout as a

cell).

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 76 / 87

Example

1. Start a new project named HelloTableLayout (Empty
Activity).

2. Open the res/layout/main.xml file and insert the XML
in the next slide.

3. Make your HelloTableLayout Activity load this layout in
the onCreate() method:

1 public void onCreate(Bundle savedInstanceState) {

2 super.onCreate(savedInstanceState);

3 setContentView(R.layout.main);

4 }

4. Run the application. You should see the following:
[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/HelloTable.git]

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 77 / 87

res/layout/main.xml

1 <TableLayout android:stretchColumns="1"

... >

2 <TableRow>

3 <TextView

4 android:layout_column="1"

5 android:text="Open..."

6 android:padding="3dp" />

7 <TextView

8 android:text="Ctrl-O"

9 android:gravity="right"

10 android:padding="3dp" />

11 </TableRow>

12 <TableRow>

13 <TextView

14 android:layout_column="1"

15 android:text="Save..."

16 android:padding="3dp" />

17 <TextView

18 android:text="Ctrl-S"

19 android:gravity="right"

20 android:padding="3dp" />

21 </TableRow>

1
2 <TableRow>

3 <TextView

4 android:layout_column="1"

5 android:text="Save As..."

6 android:padding="3dp" />

7 <TextView

8 android:text="Ctrl-Shift-S"

9 android:gravity="right"

10 android:padding="3dp" />

11 </TableRow>

12 <TableRow>

13 <View android:layout_span="3"

14 android:layout_height="2dp"

15 android:background="#FF909090" />

16 </TableRow>

17 <TableRow>

18 <TextView

19 android:text="X"

20 android:padding="3dp" />

21 <TextView

22 android:text="Import..."

23 android:padding="3dp" />

24 </TableRow>

1
2 <TableRow>

3 <TextView

4 android:text="X"

5 android:padding="3dp" />

6 <TextView

7 android:text="Export..."

8 android:padding="3dp" />

9 <TextView

10 android:text="Ctrl-E"

11 android:gravity="right"

12 android:padding="3dp" />

13 </TableRow>

14 <TableRow>

15 <View android:layout_span="3"

16 android:layout_height="2dp"

17 android:background="#FF909090" />

18 </TableRow>

19 <TableRow>

20 <TextView

21 android:layout_column="1"

22 android:text="Quit"

23 android:padding="3dp" />

24 </TableRow>

25
26 </TableLayout>

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 78 / 87

Lists and grids

When the content for a Layout is dynamic or not predetermined, we need a layout that
subclasses AdapterView to populate the layout with Views at runtime

Items are automatically inserted into the Layout by an Adapter
I It pulls content from a source such as an array or database query
I Converts each item result into a View that is placed into the Layout

ListView displays a list of scrollable items

GridView displays items in a two-dimensional, scrollable grid

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 79 / 87

Adapter

Used to visualize data
I Acts as a bridge between an AdapterView and the underlying data for that view

F ListView, GridView, Spinner are subclasses of AdapterView query

I Provides access to the data items

Makes a ViewGroup to interact with data
I Also responsible for making a View for each item in the data set

Some methods
I isEmpty(), getItem(), getCount(), getView()

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 80 / 87

A couple of Adapters

1. ArrayAdapter should be used when the data source is an array
I Acts as a bridge between an AdapterView and the underlying data for that view
I It creates a view for each array item by calling toString() on each item and placing the

contents in a TextView

2. SimpleCursorAdapter should be used when data come from a Cursor
I We must specify a layout for each row in the Cursor and specify the columns that should be

inserted into each view of the layout

onItemClickListener should be used to respond to click events on each item in an AdapterView

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 81 / 87

Example (ListView) [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/HelloListView.git]

1 Start a new project named Hello List View (Empty
Activity).

2 Open the res/layout/activity main.xml file and insert the
following XML:

1 <?xml version="1.0" encoding="utf-8"?>

2 <ListView xmlns:android="http://schemas.android.com/apk/res/android"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent"

5 android:orientation="vertical"

6 android:id="@+id/list" />

The “Design” rendering in AndroidStudio should be as
shown on the right.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 82 / 87

3 Create the res/layout/simple list item 1 file and insert
the following XML:

1 <?xml version="1.0" encoding="utf-8"?>

2 <TextView xmlns:android="http://schemas.android.com/apk/res/android"

3 android:id="@android:id/text1"

4 style="?android:attr/textAppearanceLarge"

5 android:paddingTop="2dip"

6 android:paddingBottom="3dip"

7 android:layout_width="fill_parent"

8 android:layout_height="wrap_content" />

4 Open the MainActivity.java file and modify the
onCreate() method as follows:

1 public void onCreate(Bundle savedInstanceState) {

2 super.onCreate(savedInstanceState);

3 setContentView(R.layout.activity_main);

4 String[] data = {"First", "Second", "Third"};

5 ListView lv = (ListView) findViewById(R.id.list);

6 lv.setAdapter(new ArrayAdapter<String>(this,

7 android.R.layout.simple_list_item_1, data));

8 }

5 Run the application. You should see the screen on the
right.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 83 / 87

Example (GridView) [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/HelloGridView.git]

1 Start a new project named HelloGridView (Empty
Activity).

2 Open the res/layout/activity main.xml file and insert the
following XML:

1 <?xml version="1.0" encoding="utf-8"?>

2 <GridView xmlns:android="http://schemas.android.com/apk/res/android"

3 android:id="@+id/gridview"

4 android:layout_width="fill_parent"

5 android:layout_height="fill_parent"

6 android:columnWidth="90dp"

7 android:numColumns="auto_fit"

8 android:verticalSpacing="10dp"

9 android:horizontalSpacing="10dp"

10 android:stretchMode="columnWidth"

11 android:gravity="center"

12 />

The “Design” rendering in AndroidStudio should be as
shown on the right.

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 84 / 87

3 Open the MainActivity.java file and modify the onCreate() method as follows:

1 public void onCreate(Bundle savedInstanceState) {

2 super.onCreate(savedInstanceState);

3 setContentView(R.layout.activity_main);

4 GridView gridview = (GridView) findViewById(R.id.gridview);

5 gridview.setAdapter(new ImageAdapter(this));

6 gridview.setOnItemClickListener(new AdapterView.OnItemClickListener() {

7 public void onItemClick(AdapterView<?> parent,

8 View v, int position, long id) {

9 Toast.makeText(MainActivity.this, "" + position,

10 Toast.LENGTH_SHORT).show();

11 }

12 });

13 }

After the main.xml layout is set for the content view, the GridView is captured from the layout with
findViewById(int).

The setAdapter() method then sets a custom adapter (ImageAdapter) as the source for all items to be
displayed in the grid. The ImageAdapter is created in the next step.

To do something when an item in the grid is clicked, the setOnItemClickListener() method is passed a new
AdapterView.OnItemClickListener. This anonymous instance defines the onItemClick() callback method to
show a Toast that displays the index position (zero-based) of the selected item (in a real world scenario,
the position could be used to get the full sized image for some other task).

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 85 / 87

4 Add to the MainActivity.java file the ImageAdapter class given below.

1 class ImageAdapter extends BaseAdapter {

2 private Context mContext;

3
4 // references to our images

5 private Integer[] mThumbIds = {

6 R.drawable.sample_2, R.drawable.sample_3, R.drawable.sample_4, R.drawable.sample_5,

7 R.drawable.sample_6, R.drawable.sample_7, R.drawable.sample_0, R.drawable.sample_1,

8 R.drawable.sample_2, R.drawable.sample_3, R.drawable.sample_4, R.drawable.sample_5,

9 R.drawable.sample_6, R.drawable.sample_7, R.drawable.sample_0, R.drawable.sample_1,

10 R.drawable.sample_2, R.drawable.sample_3, R.drawable.sample_4, R.drawable.sample_5,

11 R.drawable.sample_6, R.drawable.sample_7

12 };

13
14 public ImageAdapter(Context c) {

15 mContext = c;

16 }

17
18 public int getCount() {

19 return mThumbIds.length;

20 }

21
22 public Object getItem(int position) {

23 return null;

24 }

25
26 public long getItemId(int position) {

27 return 0;

28 }

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 86 / 87

1 // create a new ImageView for each item referenced by the Adapter

2 public View getView(int position, View convertView, ViewGroup parent) {

3 ImageView imageView;

4 if (convertView == null) {

5 // if it’s not recycled, initialize some attributes

6 imageView = new ImageView(mContext);

7 imageView.setLayoutParams(new GridView.LayoutParams(85, 85));

8 imageView.setScaleType(ImageView.ScaleType.CENTER_CROP);

9 imageView.setPadding(8, 8, 8, 8);

10 } else {

11 imageView = (ImageView) convertView;

12 }

13
14 imageView.setImageResource(mThumbIds[position]);

15 return imageView;

16 }

17
18 } // end of class ImageAdapter

5 Add to res/drawable the sample 0.jpg,...,sample 7.jpg files

6 Run the application. You should see the screen on the right. Then,
click on the fourth image and you will see...

Ferruccio Damiani (Università di Torino) Android: Layouts Mobile Device Programming 87 / 87

	Prologue
	Styles and themes
	Layouts
	Other layout
	LinearLayout
	ConstraintLayout
	WebView
	RecycleView
	CardView
	Composing layouts
	Older Layouts
	RelativeLayout
	FrameLayout
	TableLayout
	Lists and Grids

