
Machine Learning: Linear Models

Roberto Esposito

roberto.esposito@unito.it

mailto:roberto.esposito@unito.it

Least squares
The treatment of this topic is significantly different from the one taken in the
book. I find the approach proposed here simpler and clearer. The book treatment
however has its merits offering insights that are not apparent here. I suggest the
interested students to have a look at the book contents even though that material
will not be part of the mandatory readings.

Part of this material is based on Gilbert Strang linear algebra lessons (freely
available on iTunesU and at https://ocw.mit.edu/courses/mathematics/18-06-
linear-algebra-spring-2010/video-lectures/).

https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/

Best fitting line

-2,00

-1,00

0,00

1,00

2,00

3,00

4,00

-1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 1

Matrix representation

x y
-1 -1,52

-0,8 -1,21
-0,6 -0,67
-0,4 -0,56
-0,2 1,46
0 0,57

0,2 1,37
0,4 1,91
0,6 1,31
0,8 2,78
1 3,84

We want to find the parameters
(C,D) of the linear model
that best fits the data.
Ideally we would like that, for each
row of the table on the left, the
linear equation above would hold.
I.e. we aim at finding (C,D) such
that: 8

>>><

>>>:

�1C +D = �1.52

�0.8C +D = �1.21

�0.6C +D = �0.67

. . .

Cx+D = y

Matrix equation
8
>>><

>>>:

�1C +D = �1.52

�0.8C +D = �1.21

�0.6C +D = �0.67

. . .

corresponding
to the matrix

equation:

0

BB@

�1 1
�0.8 1
�0.6 1
.

1

CCA ·
✓
C
D

◆
=

0

BB@

�1.52
�1.21
�0.67
. . .

1

CCA

X w y

i.e.,:

So we end up
with the system:

Xw = y

Solving the matrix equation — ideal case

In the ideal case X is squared and full rank, and the
equation can be solved simply by multiplying both sides by
the inverse of X.

Unfortunately, this is true only in the most trivial cases. X is
not usually invertible and a more general approach is
needed.

We start by noticing that by varying w we are actually
spanning the column space of X and that y does not
belong to it (otherwise we could solve for equality).

w = X�1 · y

Relationship between x and estimation errors

p

X =

0

@
| |
x1 x2

| |

1

A

x1

x2

Xŵ

y

C(X)

e = y � p

Least squares as a minimisation problem

We can then formulate the problem as the one of minimising the
norm of e, which is equivalent to minimise the sum of the
squared differences between components of y and p.

Since, by definition:

It follows that the whole problem can be formulated as

Error: kek2 = ky � pk2 =

sX

i

(yi � pi)2

minimizeŵkXŵ � yk22

p = Xŵ

Relationship between x and estimation errors

p

X =

0

@
| |
x1 x2

| |

1

A

x1

x2

Xŵ

y

C(X)

e = y � p

Least squares solution

Imposing orthogonality of e and C(X) is equivalent to
impose:

implying:

XT e = 0

XT (y �Xŵ) = 0

) XTy �XTXŵ = 0

) XTXŵ = XTy

) ŵ = (XTX)�1XTy

Example using three points

x y
1 1
2 2
3 2

0

1

2

3

0 1 2 3 4

Example: Matrix formulation

x y
1 1
2 2
3 2

X =

0

@
1 1
2 1
3 1

1

A y =

0

@
1
2
2

1

A

Example: calculating solution

Example: calculating solution

ŵ = (XTX)�1XTy

Example: calculating solution

ŵ = (XTX)�1XTy

XTX =

✓
1 2 3
1 1 1

◆0

@
1 1
2 1
3 1

1

A =

✓
14 6
6 3

◆

Example: calculating solution

ŵ = (XTX)�1XTy

XTX =

✓
1 2 3
1 1 1

◆0

@
1 1
2 1
3 1

1

A =

✓
14 6
6 3

◆✓
14 6 1 0
6 3 0 1

◆
!

✓
2 0 1 �2
6 3 0 1

◆

!
✓
1 0 1

2 �1
6 3 0 1

◆
!

✓
1 0 1

2 �1
0 3 �3 7

◆

!
✓
1 0 1

2 �1
0 1 �1 7

3

◆
�
XTX

��1
=

✓
1
2 �1
�1 7

3

◆

Example: calculating solution

ŵ = (XTX)�1XTy

XTX =

✓
1 2 3
1 1 1

◆0

@
1 1
2 1
3 1

1

A =

✓
14 6
6 3

◆

�
XTX

��1
=

✓
1
2 �1
�1 7

3

◆

XTy =

✓
1 2 3
1 1 1

◆0

@
1
2
2

1

A =

✓
11
5

◆

Example: calculating solution

ŵ = (XTX)�1XTy

XTX =

✓
1 2 3
1 1 1

◆0

@
1 1
2 1
3 1

1

A =

✓
14 6
6 3

◆

�
XTX

��1
=

✓
1
2 �1
�1 7

3

◆

XTy =

✓
1 2 3
1 1 1

◆0

@
1
2
2

1

A =

✓
11
5

◆

�
XTX

��1
XTy =

✓
1/2 �1
�1 7/3

◆✓
11
5

◆
=

✓
1/2
2/3

◆

Example: least squares solution plot

0

1

2

3

0 1 2 3 4

y =
1

2
x+

2

3

Least Squares Overfitting

Regularised regression

Regularisation is a general method to avoid overfitting by
applying additional constraints to the weight vector. A
common approach is to make sure the weights are, on
average, small in magnitude: this is referred to as
shrinkage.

The regularised version of the least squares optimisation is:

where λ is a scalar determining the amount of regularization.

7. Linear models 7.1 The least-squares method

? Regularised regression I

Regularisation is a general method to avoid overfitting by applying additional
constraints to the weight vector. A common approach is to make sure the
weights are, on average, small in magnitude: this is referred to as shrinkage.

The least-squares regression problem can be written as an optimisation problem:

w§ = argmin
w

(y°Xw)T(y°Xw)

The regularised version of this optimisation is then as follows:

w§ = argmin
w

(y°Xw)T(y°Xw)+∏||w||2

where ||w||2 =P
i w2

i is the squared norm of the vector w, or, equivalently, the
dot product wTw; ∏ is a scalar determining the amount of regularisation.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 281 / 540

Regularised regression

This regularised problem still has a closed-form solution:

where I denotes the identity matrix. Regularisation amounts
to adding λ to the diagonal of XTX, a well-known trick to
improve the numerical stability of matrix inversion. This form
of least-squares regression is known as ridge regression.

7. Linear models 7.1 The least-squares method

? Regularised regression II

This regularised problem still has a closed-form solution:

ŵ = (XTX+∏I)°1XTy

where I denotes the identity matrix. Regularisation amounts to adding ∏ to the
diagonal of XTX, a well-known trick to improve the numerical stability of matrix
inversion. This form of least-squares regression is known as ridge regression.

An interesting alternative form of regularised regression is provided by the lasso,
which stands for ‘least absolute shrinkage and selection operator’. It replaces the
ridge regularisation term

P
i w2

i with the sum of absolute weights
P

i |wi |. The
result is that some weights are shrunk, but others are set to 0, and so the lasso
regression favours sparse solutions.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 282 / 540

Regularised regression

An interesting alternative form of regularised regression is
provided by the lasso, which stands for ‘least absolute
shrinkage and selection operator’. It replaces the ridge
regularisation term ||w||2 with the sum of absolute weights:

The result is that some weights are shrunk, but others are
set to 0, and so the lasso regression favours sparse
solutions.

kwk1 =
X

i

|wi|

Example

 0

 5

 10

 15

 20

 0 2 4 6 8

ls
lasso
ridge

✓
�0.41663 7.4465e� 01 0.70500
7.77770 3.8439e� 06 0.55758

◆wls wlasso wridge

Understanding regularisation

Why does minimising the norm of the weight vector
improve results?

Understanding regularisation

Why does minimising the norm of the weight vector
improve results?

 Why does the lasso approach favour sparse solutions?

Minimisation of the norm of the weight vector

Several reasons justify minimising the norm of the weight
vector:

If you assume that X is affected by an error D then:

and minimising the norm of the weight vector minimizes
the effect of the error on X.
Smaller weight vectors can be thought as “simpler”
models. In this sense minimising the norm of the weight
vector is tantamount to following the Occam’s razor
principle.

(X+D)w = Xw +Dw

Minimisation of the norm of the weight vector (2)

by imposing these additional constraints we are imposing
a bias to the learning algorithm and this reduces the error
variance: as a consequence of its quadratic loss, least
squares is quite an unstable regressor: small variations in
the data are emphasised by the loss.

By regularising it we are improving the error by reducing
variance without hurting too much the bias component
(surely it can be the case that the true function has a
large ||w|| and that this is not reflected in the data, but we
can assume this is an uncommon situation).

Norm minimisation and sparsity

6.1 Norm approximation 297

p
=

1
p

=
2

D
ea

d
zo

n
e

L
og

b
ar

ri
er

r
−2

−2

−2

−2

−1

−1

−1

−1

0

0

0

0

1

1

1

1

2

2

2

2
0

40

0

10

0

20

0

10

Figure 6.2 Histogram of residual amplitudes for four penalty functions, with
the (scaled) penalty functions also shown for reference. For the log barrier
plot, the quadratic penalty is also shown, in dashed curve.

Image courtesy of Stephen Boyd and Lieven Vandenberghe, from the book
“Convex Optimization". Cambridge University Press.

Least squares for classification

Using least squares for classification

The least squares approach can be easily adapted to cope
with classification tasks by representing the positive class
using “1” and the negative class using “-1”.

Then:

Note: t represents the intercepts. In previous slides this was
included in the parameter vector and x was assumed to
contain a 1 in the last position.

ĉ(x) =

8
><

>:

1 if xT ŵ � t > 0

0 if xT ŵ � t = 0

�1 if xT ŵ � t < 0

Example

-4

-2

 0

 2

 4

 6

-2 -1 0 1 2 3 4

ls
lasso
ridge

Example

Support Vector Machines
The treatment of this topic is in part different from the one taken in the book.

SVM: finding the hyperplane maximising the margin

+

+
+

+

-

-
w

-

SVM: finding the hyperplane maximising the margin

+
+

+-
-

-
w

Functional and
Geometric Margin

• Our first goal will be to reduce the
possible solutions only to those that do
not make any error. This will lead to the
definition of the functional margin.

• Then we can focus on the problem of
forcing the solution to maximise the
distance from the nearest positive/
negative examples. This will lead to the
definition of the geometric margin.

+

+
+

+

-

-
w

-

+
+

+-
-

-
w

Functional margin

Let us define f(xi) = w · xi - t to
be the value of the hyperplane
at point xi and let us use +1, -1

as our labels for positive and
negative examples.

Note that we can then use

f(xi) > 0

 as our decision rule to
discriminate between classes.

f

f(xi)

xi

+1

-1

++ +++

++ +++-----

 f(xi) example (3D)

xi

f(xi)

xj

f(xj)

https://www.monroecc.edu/faculty/paulseeburger/calcnsf/CalcPlot3D/?type=z;z=0;visible=true;umin=-128;umax=128;vmin=-128;vmax=128;grid=3;format=constant;alpha=-1;constcol=rgb(255,0,0);view=0;contourcolor=red;fixdomain=false&type=z;z=0.3x+0.2y-1;visible=true;umin=-128;umax=128;vmin=-128;vmax=128;grid=3;format=normal;alpha=73;constcol=rgb(106,168,79);view=0;contourcolor=red;fixdomain=false&type=point;point=(1.3,0.7,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(0.5,0.9,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(0.5,1.3,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(1.2,2.7,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(2.3,0.2,-1);visible=true;color=rgb(255,0,0);size=4&type=point;point=(2.8,1.8,1);visible=true;color=rgb(0,0,255);size=4&type=point;point=(3.8,0.4,1);visible=true;color=rgb(0,0,255);size=4&type=point;point=(3.9,1,1);visible=true;color=rgb(0,0,255);size=4&type=point;point=(3,3.3,1);visible=true;color=rgb(0,0,255);size=4&type=point;point=(4.8,1.4,1);visible=true;color=rgb(0,0,255);size=4&type=window;hsrmode=0;nomidpts=true;anaglyph=-1;center=0.41070462636812927,-1.382188288220688,0.4133730104694837,1;focus=0,0,0,1;up=-0.06498535569366203,0.26815232033739866,0.9611822078269227,1;transparent=true;alpha=140;twoviews=false;unlinkviews=false;axisextension=0.7;xaxislabel=x;yaxislabel=y;zaxislabel=z;edgeson=true;faceson=true;showbox=false;showaxes=true;showticks=false;perspective=true;centerxpercent=0.3987796123474514;centerypercent=0.4759519038076153;rotationsteps=30;autospin=true;xygrid=false;yzgrid=false;xzgrid=false;gridsonbox=false;gridplanes=false;gridcolor=rgb(128,128,128);xmin=-128;xmax=128;ymin=-128;ymax=128;zmin=-128;zmax=128;xscale=64;yscale=64;zscale=64;zcmin=-256;zcmax=256;zoom=0.351959;xscalefactor=1;yscalefactor=1;zscalefactor=-123456.654321#Examples

Functional margin

Let us define the functional
margin of example xi w.r.t.
the hyperplane determined
by w and t as the quantity:

µ(xi) = yi(w · xi - t) = yi f(xi)

Note that µ(xi) > 0 iff x is
correctly classified.

f

f(xi)

xi

+1

-1

++ +++

Functional margin

In our solution we will then want a functional margin larger
than 0 for each example, i.e.:

yi(w · xi - t) > 0

If we rescale w and t we just
change the slope of the
hyperplane without changing the
decision surface.

+1

-1

++ +++

Support vectors

We are then free to require that for each example in the
dataset it holds:

yi(w · xi � t) � 1

and also that strict equality holds for the examples on the
boundary:

Examples on the boundary have a special name in the SVM
theory: they are called the support vectors.

yi(w · xi � t) = 1

Geometric margin

+

+
+

+-
-

-
w

x+
x�

(x+ � x�) ·
w

kwk

w

kwk

(w0,w1) is orthogonal to the discriminating line (hyperplane)

The discriminating line is at the
intersection of the plane with z = 0.

The plane has equation:

The line has then equation:

For any two points r1 and r2 on the
line it holds:

w0x + w1y + w2z + d = 0

w0x + w1y + d = 0

(w0, w1) ⋅ (r1 − r2) = 0

x
<latexit sha1_base64="WBQ6po/p5LK1PKuvRDf0H0/wKrM=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiRWfOyKbly2YB/QhjKZTtqxk0mYmYgl9AvcuFDErZ/kzr9xkgZR64ELh3Pu5d57vIgzpW370yosLa+srhXXSxubW9s75d29tgpjSWiLhDyUXQ8rypmgLc00p91IUhx4nHa8yXXqd+6pVCwUt3oaUTfAI8F8RrA2UvNhUK7YVTsDWiROTiqQozEof/SHIYkDKjThWKmeY0faTbDUjHA6K/VjRSNMJnhEe4YKHFDlJtmhM3RklCHyQ2lKaJSpPycSHCg1DTzTGWA9Vn+9VPzP68Xav3ATJqJYU0Hmi/yYIx2i9Gs0ZJISzaeGYCKZuRWRMZaYaJNNKQvhMsXZ98uLpH1SdWrVWvO0Ur/K4yjCARzCMThwDnW4gQa0gACFR3iGF+vOerJerbd5a8HKZ/bhF6z3L/8BjTM=</latexit>

y
<latexit sha1_base64="NZ6boFnOmWjw9jRHpv0m4i6agHw=">AAAB6HicbVDLSsNAFL2pr1pfVZduBovgqiQqPnZFNy5bsA9oQ5lMJ+3YySTMTIQQ+gVuXCji1k9y5984SYOo9cCFwzn3cu89XsSZ0rb9aZWWlldW18rrlY3Nre2d6u5eR4WxJLRNQh7KnocV5UzQtmaa014kKQ48Trve9Cbzuw9UKhaKO51E1A3wWDCfEayN1EqG1Zpdt3OgReIUpAYFmsPqx2AUkjigQhOOleo7dqTdFEvNCKezyiBWNMJkise0b6jAAVVumh86Q0dGGSE/lKaERrn6cyLFgVJJ4JnOAOuJ+utl4n9eP9b+pZsyEcWaCjJf5Mcc6RBlX6MRk5RonhiCiWTmVkQmWGKiTTaVPISrDOffLy+SzkndOa2fts5qjesijjIcwCEcgwMX0IBbaEIbCFB4hGd4se6tJ+vVepu3lqxiZh9+wXr/AgCUjTQ=</latexit>

(w0, w1)
<latexit sha1_base64="IIYLEkusP8fvoh//sdb8oF0FUyU=">AAAB8HicbVDLSsNAFJ34rPVVdelmsAgVpCRWfOyKblxWsA9pQ5hMJ+3QmUmYmVhK6Fe4caGIWz/HnX/jJA2i1gMXDufcy733+BGjStv2p7WwuLS8slpYK65vbG5tl3Z2WyqMJSZNHLJQdnykCKOCNDXVjHQiSRD3GWn7o+vUbz8QqWgo7vQkIi5HA0EDipE20n1l7NnHY8858kplu2pngPPEyUkZ5Gh4pY9eP8QxJ0JjhpTqOnak3QRJTTEj02IvViRCeIQGpGuoQJwoN8kOnsJDo/RhEEpTQsNM/TmRIK7UhPumkyM9VH+9VPzP68Y6uHATKqJYE4Fni4KYQR3C9HvYp5JgzSaGICypuRXiIZIIa5NRMQvhMsXZ98vzpHVSdWrV2u1puX6Vx1EA++AAVIADzkEd3IAGaAIMOHgEz+DFktaT9Wq9zVoXrHxmD/yC9f4FVJuPlQ==</latexit>

r1
<latexit sha1_base64="EJROXnnujxPPJ64IbU52xPg3+ew=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiS2+NgV3bisYB/QhDKZTtqhk0mYmQgl9DfcuFDErT/jzr9xkgZR64GBwzn3cs8cP+ZMadv+tEorq2vrG+XNytb2zu5edf+gq6JEEtohEY9k38eKciZoRzPNaT+WFIc+pz1/epP5vQcqFYvEvZ7F1AvxWLCAEayN5Loh1hM/SOV86AyrNbtu50DLxClIDQq0h9UPdxSRJKRCE46VGjh2rL0US80Ip/OKmygaYzLFYzowVOCQKi/NM8/RiVFGKIikeUKjXP25keJQqVnom8kso/rrZeJ/3iDRwaWXMhEnmgqyOBQkHOkIZQWgEZOUaD4zBBPJTFZEJlhiok1NlbyEqwzn319eJt2zutOoN+6atdZ1UUcZjuAYTsGBC2jBLbShAwRieIRneLES68l6td4WoyWr2DmEX7DevwA5/pHx</latexit>

r2
<latexit sha1_base64="8hhOmepcFu/NzRVXwXMmsL9aFAc=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSt+NgV3bisYB/QhDKZTtqhk0mYmQgl9DfcuFDErT/jzr9xkgZR64GBwzn3cs8cP+ZMadv+tEorq2vrG+XNytb2zu5edf+gq6JEEtohEY9k38eKciZoRzPNaT+WFIc+pz1/epP5vQcqFYvEvZ7F1AvxWLCAEayN5Loh1hM/SOV82BhWa3bdzoGWiVOQGhRoD6sf7igiSUiFJhwrNXDsWHsplpoRTucVN1E0xmSKx3RgqMAhVV6aZ56jE6OMUBBJ84RGufpzI8WhUrPQN5NZRvXXy8T/vEGig0svZSJONBVkcShIONIRygpAIyYp0XxmCCaSmayITLDERJuaKnkJVxnOv7+8TLqNutOsN+/Oaq3roo4yHMExnIIDF9CCW2hDBwjE8AjP8GIl1pP1ar0tRktWsXMIv2C9fwE7gpHy</latexit>

r
2 �

r
1

<latexit sha1_base64="zbGyIxkqh0qpUjLvFsXV2fngRW8=">AAACBHicbVDLSsNAFL3xWesr6rKbwSK4sSSt+NgV3bisYB/QhjKZTtqhk0mYmQgldOHGX3HjQhG3foQ7/8YkDVKtBwbOnHMv997jhpwpbVlfxtLyyuraemGjuLm1vbNr7u23VBBJQpsk4IHsuFhRzgRtaqY57YSSYt/ltO2Or1O/fU+lYoG405OQOj4eCuYxgnUi9c1Sz8d65HqxnPar6ATNfe2+WbYqVga0SOyclCFHo29+9gYBiXwqNOFYqa5thdqJsdSMcDot9iJFQ0zGeEi7CRXYp8qJsyOm6ChRBsgLZPKERpk63xFjX6mJ7yaV6Y7qr5eK/3ndSHsXTsxEGGkqyGyQF3GkA5QmggZMUqL5JCGYSJbsisgIS0x0klsxC+EyxdnPyYukVa3YtUrt9rRcv8rjKEAJDuEYbDiHOtxAA5pA4AGe4AVejUfj2Xgz3melS0becwC/YHx8Ay1ol+4=</latexit>

(w0,w1) is orthogonal to the discriminating line (hyperplane)

From the line equation:

It follows:

,

w0x + w1y + d = 0

r1 = (x1, −
w0x1 + d

w1) r2 = (x2, −
w0x2 + d

w1)
implying:

(w0, w1) ⋅ (r2 − r1) = (w0, w1) ⋅ (x2 − x1, −
w0x2 + d

w1
+

w0x1 + d
w1)

= w0(x2 − x1) + w1 (−
w0x2 − w0x1

w1) = 0

SVM: finding the hyperplane maximising the margin

The margin size can be then evaluated as:
µ = (x+ � x�) ·

w

kwk

=
x+ ·w
kwk � x� ·w

kwk

For x+ and x_, being examples on the boundary, it holds
that:

�(x� ·w � t) = 1) x� ·w = t� 1

implying:

x+ ·w � t = 1) x+ ·w = 1 + t

µ =
1 + t

kwk � t� 1

kwk =
2

kwk

SVM: optimisation problem

To maximise 1/||w|| is equivalent to minimise ||w|| which, in
turn, is equivalent to minimise ||w||2. The SVM optimisation
problem can be then formulated as:

minimize
w,t

1

2
kwk2

subject to yi(w · xi � t) � 1; 0 i n

Dual formulations

Let us consider the optimisation problem:
minimizex f0(x)

subject to fi(x) 0, i = 1, . . . ,m

gi(x) = 0, i = 1, . . . , p

The Lagrange dual function is, by definition:

g(↵, ⌫) = inf
x

⇤(x,↵, ⌫)

= inf
x

f0(x) +

mX

i=1

↵ifi(x) +
pX

i=1

⌫igi(x)

!

Duality

Duality can be thought of as “an organised way to form
highly non trivial bounds on optimisation
problems” (Stephen Boyd).

In convex problems the bound is (usually) strict and
maximising the bound (which is the dual formulation of the
problem) leads to the same solution as minimising the
original function (the primal formulation). In such case we
have strong duality.

For strong duality a set of conditions known as the
Karush-Kuhn-Tucker (KKT) conditions needs to hold.

SVM dual problem

In the SVM case, we start by adding multipliers αi for each
inequality constraint to obtain the Lagrange function (with
the constraint αi ≥ 0):

7. Linear models 7.3 Support vector machines

? Deriving the dual problem I

Adding the constraints with multipliers Æi for each training example gives the
Lagrange function

§(w, t ,Æ1, . . . ,Æn) = 1
2
||w||2 °

nX

i=1
Æi (yi (w ·xi ° t)°1)

= 1
2
||w||2 °

nX

i=1
Æi yi (w ·xi)+

nX

i=1
Æi yi t +

nX

i=1
Æi

= 1
2

w ·w°w ·
√

nX

i=1
Æi yi xi

!

+ t

√
nX

i=1
Æi yi

!

+
nX

i=1
Æi

t By taking the partial derivative of the Lagrange function with respect to t
and setting it to 0 we find

Pn
i=1Æi yi = 0.

t Similarly, by taking the partial derivative of the Lagrange function with
respect to w and setting to 0 we obtain w =Pn

i=1Æi yi xi – the same
expression as we derived for the perceptron.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 299 / 540

SVM dual problem

To write the dual formulation we still have to take the
infimum (w.r.t. x and t) of the Lagrangian. To find the
infimum, we start by calculating the partial derivatives of the
Lagrangian.

@⇤

@t
=

X

i

↵iyi

⇤(w, t,↵1, . . . ,↵n) =
1

2
w ·w �w ·

nX

i=1

↵iyixi

!
+ t

nX

i=1

↵iyi

!
+

nX

i=1

↵i

@⇤

@w
= w �

X

i

↵iyixi

yielding (by setting them equal to zero):
w =

X

i

↵iyixi

X

i

↵iyi = 0

SVM dual problem

By substituting back into the Lagrangian, we get the
formulation of the dual function:

g(↵) = �1

2

nX

i=1

nX

j=1

↵i↵jyiyjxixj +
nX

i=1

↵i

which, as mentioned, is a general lower bound on the
solution parametrised by α. By maximising it, we get the
dual formulation of the SVM problem:

maximize↵ � 1

2

nX

i=1

nX

j=1

↵i↵jyiyjxixj +
nX

i=1

↵i

subject to ↵i � 0 for i = 1, . . . , n, and
X

i

yi↵i = 0

Finding solutions to the SVM problem

How can one find a solution to the primal problem?

Convex optimization (numerical algorithms).

How can one find a solution to the dual problem?

Convex optimization (numerical algorithms).

Why, then, bother to formulate the dual problem?

Advantages of the dual formulation

We learn something about the solution:

• the solution vector w is a linear combination of the
support vectors;

• positive Lagrange multipliers are associated with support
vectors (implying that non support vectors have null
Lagrange multipliers);

• both learning and classification can be done in terms of
dot products of support vectors;

In the dual formulation SVM can be used to learn non-
linear concepts by using the kernel trick;

Positive Lagrange multipliers are associated with
support vectors

Among the previous observations, the only one that still
needs a justification is the assertion that positive Lagrange
multipliers are associated with support vectors.

This property follows from the KKT condition:

↵i(yi(w · xi � t)� 1) = 0

Allowing margin errors

+

+

+

+
-

-

-
w

+
⇠i

yi(w · xi � t) � 1� ⇠i

Allowing margin errors

The idea is to introduce slack variables, one for each
example, which allow some of them to be inside the margin
or even at the wrong side of the decision boundary.

Slack variables relax the constraints, but are penalised in
the objective: to find the optimal solution the solver needs
to struck a good balance between the maximisation of the
margin and the minimisation of the number (and magnitude)
of the slack variables.

minimize
w,t,⇠

1

2
kwk2 + C

nX

i=1

⇠i

subject to yi(w · xi � t) � 1� ⇠i; 1 i n

⇠i � 0; 1 i n

Allowing margin errors

C is a user-defined parameter trading off margin
maximisation against slack variable minimisation: a high
value of C means that margin errors incur a high penalty,
while a low value permits more margin errors (possibly
including misclassifications) in order to achieve a large
margin.

minimize
w,t,⇠

1

2
kwk2 + C

nX

i=1

⇠i

subject to yi(w · xi � t) � 1� ⇠i; 1 i n

⇠i � 0; 1 i n

Allowing margin errors

If we allow more margin errors we need fewer support
vectors, hence C controls to some extent the ‘complexity’
of the SVM and hence is often referred to as the complexity
parameter.

minimize
w,t,⇠

1

2
kwk2 + C

nX

i=1

⇠i

subject to yi(w · xi � t) � 1� ⇠i; 1 i n

⇠i � 0; 1 i n

Dual formulation

The Lagrange function is:
⇤(w, t, ⇠i,↵i,�i) =

1

2
kwk2 + C

nX

i=1

⇠i �
nX

i=1

↵i(yi(w · xi � t)� (1� ⇠i))�
nX

i=1

�i⇠i

=
1

2
kwk2 +

nX

i=1

C⇠i �
nX

i=1

↵i(yi(w · xi � t)� 1)�
nX

i=1

↵i⇠i �
nX

i=1

�i⇠i

= ⇤(w, t,↵i) +
nX

i=1

C⇠i �
nX

i=1

↵i⇠i �
nX

i=1

�i⇠i

= ⇤(w, t,↵i) +
nX

i=1

⇠i(C � ↵i � �i)

minimize
w,t,⇠

1

2
kwk2 + C

nX

i=1

⇠i

subject to yi(w · xi � t) � 1� ⇠i; 1 i n

⇠i � 0; 1 i n

Dual formulation

By setting the derivative of the ξi variables to zero we obtain
C - αi - βi = 0, implying:

⇤(w, t, ⇠i,↵i,�i) = ⇤(w, t,↵i)

maximize
↵

� 1

2

nX

i=1

nX

j=1

↵i↵jyiyjxixj +
nX

i=1

↵i

subject to 0 ↵i C; i = 1, . . . , n
nX

i=1

yi↵i = 0

Which allows us to write the dual formulation of the soft
margin SVM problem as:

Dual formulation

Also, one of the KKT conditions states that βiξi=0
implying that if an example is a margin error (i.e., has ξi>0)
then βi=0, which in turns implies αi=C (see previous slide).
From these considerations (and from everything we already
know about support vectors) it follows that examples for
which:
αi = 0 	 are examples outside (or on) the margin;
0 < αi < C are support vectors
αi = C 	 are margin errors

Slack variables interpretation

+

+

+

+
-

-

-
w

+
↵i = C

0 < ↵i < C

↵i = 0

Kernels

The kernel trick

The “kernel trick” is an established way to extend (some)
linear algorithms to cope with non-linear hypotheses
spaces.

The main idea is based on the fact that a linear decision
surface on a transformed space may correspond to a non-
linear decision surface on the original feature space.

The kernel trick

Example: consider the mapping

and the form of the classification function of the svm:

�(x) = (x2
1,
p
2x1x2, x

2
2, c)

ĉ(x) = sign(w · x� t)

and how it changes after substituting the dot product with a
kernel based on the above mapping:
ĉ(x) = sign(K(w,x)� t) = sign(�(w) · �(x)� t)

= sign((w2
1,
p
2w1w2, w

2
2, c) · (x2

1,
p
2x1x2, x

2
2, c)� t)

= sign(w2
1x

2
1 + 2w1w2x1x2 + w2

2x
2
2 + c2 � t)

Kernel functions

A kernel function is a function K: 𝕍 × 𝕍 → ℝ for which it
holds that there exists a mapping ϕ: 𝕍 → 𝔽 (with 𝔽 being a
Hilbert space, i.e., a complete vector space equipped with
an inner product), such that:

K(x,y) = ⟨ϕ(x), ϕ(y)⟩

i.e., a kernel function computes an inner product of x and y
after mapping them into a different (possibly very high
dimensional) Hilbert space.

Inner products

An inner product is a generalisation of a dot product to
arbitrary vector spaces. It is axiomatically defined as a
function that associates each pair of vectors a scalar (let’s
say a real number, even though it should be defined over
arbitrary fields). To be an inner product the function must
satisfy:
- symmetry: ⟨x,y⟩ = ⟨y, x⟩

- linearity in the first argument: ⟨ax+by,z⟩ = a⟨x,z⟩ + b⟨y,z⟩

- positive-definiteness: ⟨x,x⟩ ≥ 0; ⟨x,x⟩ = 0 ⇔ x = 0

Kernels: motivations

representational:
• extend linear classifiers to cope with non-linear

problems;
computational:

• compute a similarity function in a high-dimensional
feature space without actually computing the feature
vectors;

theoretical:
• conditions exist to establish if a given function is a kernel

(to actually prove they hold, can be hard);
• compositional properties allow one to build new kernels

from known ones.

Important kernels

Polinomial Kernel of degree d:
K(x,y) = (x ⋅ y)d or K(x,y) = (x ⋅ y + 1)d

Notice:
for d = 1 we have the linear (trivial/identity) Kernel

for d = 2 we have the quadratic Kernel (often used in
Natural Language Processing problems)
for a generic d the considered feature space has a
dimensionality which is exponential in d.

Important Kernels

Gaussian Kernel:

Note:

the features space has infinite dimensionality

σ is a parameter usually set by cross validation on an
independent validation set

K(x,y) = exp

✓
�kx� yk2

2�2

◆

<latexit sha1_base64="QlVSi5mr3Uz7wKLv77+rtsFar7s=">AAACSHicbZBLSyNBFIWrM46PjI84Lt0UBiHCGLqj4GwE0Y3gRsGokIqhunI7KVL9oOr2kND2z3Pj0p2/wY0LRdxZifE9Fwo+zjmXqjp+oqRB171xCj8mfk5OTc8Uf83OzS+UFn+fmDjVAuoiVrE+87kBJSOoo0QFZ4kGHvoKTv3e3tA//QfayDg6xkECzZB3IhlIwdFKrVLroMIQ+ugHWT//84qDfG2bMugnlCkIsELXKQs0Fxm7eE8Pxbc8uziv5VmNGdkJuUXKtOx0ca1VKrtVdzT0O3hjKJPxHLZK16wdizSECIXixjQ8N8FmxjVKoSAvstRAwkWPd6BhMeIhmGY2KiKnq1Zp0yDW9kRIR+rHjYyHxgxC3yZDjl3z1RuK//MaKQZ/m5mMkhQhEi8XBamiGNNhq7QtNQhUAwtcaGnfSkWX28bQdl+0JXhfv/wdTmpVb6PqHm2Wd3bHdUyTZbJCKsQjW2SH7JNDUieCXJJbck8enCvnznl0nl6iBWe8s0Q+TaHwDKZnsts=</latexit>

Other kernels

Many other kernels exist. The concept can also be applied to
structured data such as strings or trees.

String kernel (often used in biology) example:

 ϕ(x) = (1, 2, 0, …., 0)

 AAA AAB AAC …. ZZZ

The mapping function stores in a vector the number of times
each substring of the given length (3 in our example) appear
in string x. The kernel is actually computed using a dynamic
programming algorithm.

Kernel intuition

Kernels can be thought of similarity functions in the “output”
feature space.

In fact, if the vectors are “similar” then they probably point in
a similar direction and the dot product is likely to be large.

If the vectors are “dissimilar” then they probably point in
different directions and the dot product ought to be small.

Mercer’s conditions

Let’s say that one has built a function K(x,y) which
implements a similarity between x and y. How can he/she
be sure that K is a valid kernel? I.e., how can he/she be
sure that there exists a Hilbert space H such that K
evaluates the inner product in H?

Mercer’s conditions:

 A function K is a valid kernel if and only if for any finite set
of points {x1,…,xm}, the matrix K (defined as Ki,j = K(xi,xj)) is
symmetric and positive semi-definite.

Mercer’s conditions: if K is a kernel, then K is
symmetric and K ⪰ 0

Let us prove the if part of the statement about the Mercer’s
conditions (the other direction will not be proved here).

We want to prove that if there exists ϕ such that
K(x,y)=⟨ϕ(x), ϕ(y)⟩, then for any set of points {x1,…,xn}, K is
symmetric and positive semidefinite.

The symmetric part is trivial (by definition of inner product).

Mercer’s conditions: if K is a kernel, then K ⪰ 0

Let us now show that K ⪰ 0, i.e., that for all z: zT K z ≥ 0.

zTKz =
X

i

X

j

zizjKi,j =
X

i

X

j

zizjK(xi,xj) =

=
X

i

X

j

zizjh�(xi),�(xj)i

=
X

i

X

j

hzi�(xi), zj�(xj)i

=
X

i

hzi�(xi),
X

j

zj�(xj)i

= h
X

i

zi�(xi),
X

j

zj�(xj)i = h
X

i

zi�(xi),
X

i

zi�(xi)i � 0

Building new kernels

• K(x,y) = K1(x,y) K2(x,y) Roughly equivalent to AND ops

• K(x,y) = K1(x,y) + K2(x,y) Roughly equivalent to OR ops

• K(x,y) = aK1(x,y), for a>0

• K(x,y) = f(x) f(y), for any function f

• …

