
Chapter 5

Stochastic Process Algebras

5.1 Introduction

In recent decades parallel and distributed systems have been extensively used

in many application areas, and there has been signi�cant e�ort in developing

formal methodologies for the speci�cation and analysis of such systems; un-

fortunately not always completely satisfactorily. The presence of concurrency,

communication, synchronisation and nondeterminism makes the study of the

correctness of concurrent systems particularly di�cult, especially when the pro-

cess interaction structure is not regular.

We have already presented in the previous chapters two approaches to mod-

elling complex systems. Here we introduce a new one, known as stochastic pro-

cess algebras, which provides a formal apparatus to reason about the qualitative

and quantitative behaviour of these systems.

Following the style of previous chapters the presentation will be rather in-

formal: we �rst start from the basics of the formalism and then describe some

of the extensions which have been recently proposed in the literature to make

it suitable for performance modelling. Stochastic process algebras, as was the

case for the previously presented formalisms, are suitable for both the modelling

and the analysis of discrete event dynamic systems, but here we are mainly con-

cerned with the modelling aspects, referring to chapters which will appear later

in this book for discussion of the analysis techniques. In the second part of the

chapter we briey discuss the relationship between stochastic process algebras

and stochastic Petri nets.

5.2 Process Algebras

Process algebras (PA) are abstract languages which have been introduced for the

speci�cation and understanding of complex systems characterised by communi-

cation and concurrency [35]. These systems are seen as collections of entities

that are acting independently most of the time, and which sometimes have to
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interact through communication in order to achieve a common goal. Process

algebras, as we will discuss, provide a formal framework in which such systems

can be de�ned, interpreted, and analysed.

5.2.1 Classical process algebras

Throughout this chapter we will refer to process algebras which have not been

extended with notions of probability or time, as classical process algebras. Here

we briey overview the fundamentals of process algebra in terms of two classical

process algebras which have been strongly inuential in the �eld: CCS and CSP.

In a process algebra concurrent systems are described as collections of en-

tities, called agents, that execute atomic actions which constitute the building

blocks of the language. Complex systems are built starting from these build-

ing blocks and by applying the constructors of the algebra. In addition to the

compositional operators, mechanisms for abstraction are provided which allow

internal details to be disregarded. Legal terms in the algebra are de�ned by

a grammar. The actions can be visible or not. We assume there is a set of

visible actions, denoted Act. By convention, actions are represented by lower

case letters.

The Calculus of Communicating Systems (CCS) [35] is considered the start-

ing point in the �eld of PA. In CCS, Act consists of two sets, � = fa; b; c; : : :g,
the set of names, and � = fa; b; c; : : :g, the set of co-names. An additional

action, called the silent or perfect action � , is introduced to represent internal

(not visible) activity. The syntax of CCS is de�ned by the following grammar:

P ::= Nil j a:P j P + P j P jP j P n L j P [f ] j rec(X = P )

where a 2 Act [ �; L � Act , and X is a process variable.

The names and the intuitive meanings of the operators are the following:

� Inactivity Nil represents the agent that cannot perform any action.

� Pre�x This operator constitutes the basic mechanism by which the be-

haviours of components are constructed: a:P is the agent that can perform

an action a and subsequently behaves like P .

� Choice P + Q is a composite process that can behave either like P or

like Q. When one component is selected the other is discarded, the choice

being performed nondeterministically.

� Parallel Composition P jQ is a process whose components P and Q

might proceed concurrently and independently or they might synchro-

nise. Two parallel agents can engage in a communication when one agent

performs an action, say a, and the other agent performs complementary

action a. The result of the communication between the two partners is a

� action which is no longer visible in the environment.

� RestrictionP nL represents the process that cannot perform any actions

fa; ag 2 L.
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� Relabelling P [f ] is an agent that behaves like P , but with the actions

relabelled by the function f .

� Recursion The recursive term rec(X = P ) may describe an in�nite be-

haviour: for example, the expression rec(X = a:X) may be read as \the

agent X such that X = a:X" and represents an agent that can perform

an in�nite number of actions a. In this so-called rec expression, X is a

bound variable and can be renamed without any semantic e�ect.

An alternative way for describing in�nite behaviours makes use of constants,

i.e. names that can be assigned to patterns of behaviour associated with com-

ponents. It is possible to specify equations like A
def

= P , which gives the constant

A the behaviour of the component P ; if the de�nition of P contains A then

an in�nite behaviour is obtained. In the following we will use constant names

instead of the rec operator.

Another well known process algebra is the Communicating Sequential Pro-

cesses (CSP) originally introduced in [28] and in a more abstract version in [40].

In contrast to CCS, this language does not include the notion of complemen-

tary actions and a new form of communication between components is proposed.

Together these allow the speci�cation of multiway synchronisations rather than

the strict pairings which are allowed in CCS.

The expression P jjSQ represents the parallel composition of P and Q with

respect to the set S of joint actions (� cannot belong to S). P jjSQ behaves like

P or Q running independently of each other except for all actions contained in

the set S on which they must synchronise and communicate. By varying the

synchronisation set S, parallel composition jjS ranges from arbitrary interleav-

ing, when S is the empty set (in this case the concise notation P jjQ is usually

used), to full synchrony, when S comprises all the possible actions. During the

communication the joint action remains visible to the environment and it can

be reused by other concurrent processes. This rule leads to a new kind of com-

munication (multiway synchronisation) in which more than two processes can

be involved.

In CSP it is also possible to abstract from internal details using a new

operator called hiding. The process P=b represents a process that behaves like

P except for the action b that is hidden from the external environment. The

hiding operator di�ers from the CCS restriction operator. Restriction actually

stops the actions with a given label from occurring, whereas hiding allows the

actions to proceed invisibly.

CSP provides several other operators which will not be explained in this

introductory description. The operators which have been presented here form

the core set of operators found in most process algebras. In the following section

we will introduce the process algebra which we will use for the remainder of this

chapter, which contains elements from both CCS and CSP.
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5.2.2 A process algebra: syntax and formal semantics

In this subsection we de�ne the process algebra on which we will base the remain-

der of our presentation. As well as the syntax and semantics of this language

we discuss some important features of process algebra, namely compositionality

and abstraction mechanisms, as exempli�ed in our language.

Syntax As already explained the language we will use is an amalgamation of

features from CCS and CSP. In particular we use some CCS operators plus

the CSP synchronisation and hiding mechanisms. The motivation for choosing

such a language is mainly that some PA extensions that we will discuss later in

the chapter use this set of operators. Additionally, we feel that this language

contains a su�cient set of operators to be expressive whilst not overawing the

reader with details.

The grammar of our PA language is:

P ::= Nil j a:P j P + P j P jjSP j P=L j A

where a 2 Act [ �; S � Act ; L � Act . The intuitive meanings of the operators

coincide with those given in the previous section (Section 5.2.1).

Once we have de�ned our set of language operators we need to associate a

precise meaning with each of them, i.e. we need to de�ne their semantics.

Interleaving semantics The formal semantic rules for the operators, which

are usually presented in the Structural Operational Semantics (SOS) style of

Plotkin [44], allow one to associate with each agent a Labelled Transition System

(LTS). In general a LTS = (S; T;!) is de�ned by a set of states S, a set of

transition labels T and a transition relation ! � S � T � S. In the case of

PA the set of states is given by the set of language terms, the set of transition

labels is given by the set of (atomic) actions, and the transition relation is given

by the operational rules.

An example of SOS may be found in Figure 5.1 where the rules for the pre�x

and parallel composition operators are shown. These rules are read as follows:

if the transition above the line is possible, then we can infer the transition below

the line.

No precondition is necessary for pre�x and the term a:P can evolve into P

by executing action a. Three di�erent rules are needed to specify precisely the

meaning of parallel composition. The �rst two rules de�ne the behaviour of P

and Q when executing independent actions. If P , by executing a, evolves into P 0

and a =2 S, then the composite process P kS Q, by executing a, can evolve into

P 0 kS Q (similarly for Q). The third rule de�nes the communication between

the two components when executing an action in the synchronisation set S. If

P executes a and Q executes a, an interaction can take place. The resulting

activity is a joint action a and the whole process evolves into P 0 kS Q0.

By applying the semantic rules it is possible to associate with each language

expression a transition tree that can be viewed as a way of describing the be-
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Pre�x
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a 2 S

Figure 5.1: Pre�x and parallel composition semantic rules.
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Figure 5.2: Transition tree of P .

haviour of the modelled system. The nodes of the tree are labelled with language

expressions and the arcs with the actions that cause their evolution.

An example of a transition tree for the term P = a:b:Nil k c:Nil is shown

in Figure 5.2. This tree corresponds to the interleaving semantics of P and

gives all the possible sequences of actions that could be observed during the

evolution of the model. Notice that in the interleaving semantics we abstract

from the fact that the system is composed of separate components (only two

in this simple example, a:b:Nil and c:Nil) because we consider a global state

without considering its distributed nature. Actions of independent components

are merged with actions of the others in such a way that all possible interleavings

are represented.

Some nodes in the tree of Figure 5.2 are labelled with the same syntactic

expression. When we consider an equivalence notion between nodes for which

the nodes characterised by the same label are considered to be equivalent, we

can collapse them into a single one and obtain the transition diagram (also

called derivation graph) of Figure 5.3. This notion of syntactic equivalence is
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Figure 5.3: Transition diagram of P .

quite simple, probably the simplest notion of equivalence that could be de�ned.

In the theory of PA signi�cant e�ort has been given to the study of equivalence

relations between states and between processes, and we will present some of

them later in this chapter. We end this discussion by inviting the reader to

observe the close relationship between the reachability graph underlying a net

model and the derivation graph underlying a process algebra model.

Concurrent semantics A major drawback of interleaving models is that

they abstract from the independence of the actions executed in independent

subsystems. Noninterleaving models capture the fact that a system consists

of a set of (partially) independent components and do not refer to the notion

of a global state. The system's behaviour is modelled in terms of sequences of

actions which are not required to be totally ordered, but which are only partially

ordered. This partial order reects the causal dependences between actions.

There is a strong debate around the choice of interleaving versus noninter-

leaving models for the de�nition of the semantics of PA and this chapter is not

the right place to discuss this problem. We simply recall that some examples of

noninterleaving models are Petri nets, event structures [52], and partial order

traces [33] and that there is a branch of the research in this �eld related to the

de�nition of a concurrent semantics for PA by means of noninterleaving models

[9, 18, 41, 48, 31, 43].

Compositionality Process algebra models have been used extensively to es-

tablish the correct behaviour of complex systems [10, 6, 1]. These models are

built following a compositional approach which constitutes a central feature of

model construction.

Each subsystem is modelled in isolation and then the submodels are com-

posed using the operators provided by the calculus in order to obtain the model

of the whole system. Model components can be developed by di�erent modellers

and libraries of re-usable components may be established.

This leads to a hierarchical approach to model construction: the resulting

model has a structure which reects the structure of the system itself, is easy to

understand, and readily modi�able. Moreover, this structure may be exploited
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during analysis.

The profound bene�ts of compositionality become apparent when we con-

sider equivalence relations over models. If the relation can be shown to be a

congruence|meaning that it respects the operators of the language in such a

way that equivalence of components can be considered in isolation|analysis of

the model via the relation can be carried out component by component. In

general, this greatly reduces the complexity of the models which need to be

tackled, during model veri�cation for example.

Abstractionmechanism The abstraction mechanism allows some behaviour

of the system to be abstracted away, for example because it is more detailed

than necessary for the current model. In our PA this is provided by the hiding

operator which allows us to abstract some aspect of the behaviour of a compo-

nent so that it is not visible to an external observer, or to other components.

The component P=L in fact behaves as P , except that the activities of types

within the set L are hidden. They appear as the silent type � and they are

considered to be internal to the component in which they occur. Thus hiding

allows an interface to a model or component to be de�ned.

This is particularly powerful when used in conjunction with the parallel com-

position combinator as it may restrict the interactions of a component. Compo-

nents of a system may be modelled individually in detail, but subsequently in a

more abstract form as the interactions between them are developed. For exam-

ple, let us consider the term P = a:b:Nil which o�ers the two actions a and b

to the environment. By hiding one of the two actions, say a, we have P 0 = P=a

and we change the system interface since now P 0 o�ers only b. This means that

if we want to compose P 0 with other components, or with new replicas of P , we

can only require synchronisation on b, the action a now being internal.

5.2.3 The PLC multicomputer example

To better understand how PA may be used to describe system behaviours we

now consider the simple multicomputer PLC example discussed earlier in the

book (see Example 2.1 in Chapter 2). We recall that the example consists of

a multicomputer architecture responsible for the control of a distributed plant.

Each computer has a double access memory which is connected to a common

bus. The behaviour of the PLC is cyclic: �rst the computers synchronise to

start a control cycle, then they perform their calculation independently as long

as they need to read external data.

The actions executed by the PLC components form the set:

ActPLC = fstart cycle; local comp; end cycle; acq bus; read ext data;

req ext datag

The entities involved in the system are �rst modelled in isolation. Each com-

puter is a sequential component whose behaviour may be expressed by means
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Comp2
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Comp4

acq bus

Comp5

read ext data

end cycle

req ext data

Bus1

Bus2

acq bus

read ext data

Figure 5.4: Transition diagrams of the computer (left) and the bus (right) com-

ponents.

of the pre�x and choice operators as follows:

Comp1 = start cycle:Comp2
Comp2 = local comp:Comp3
Comp3 = end cycle:Comp1 + req ext data:Comp4
Comp4 = acq bus:Comp5
Comp5 = read ext data:Comp2

The bus is acquired and used for reading external data; a possible speci�cation

could be the following:

Bus1 = acq bus:Bus2
Bus2 = read ext data:Bus1

By applying the semantic rules we can derive the transition diagrams of Comp1
and Bus1 which are shown in the left and right parts of Figure 5.4 respectively.

After having speci�ed the behaviour of the single entities, we need to express

the behaviour of the complete system. This is done by composing the entities

and by establishing their interactions.

As in the Example 2.1 discussed in Chapter 2, let us suppose the system

is formed by two computers which synchronise to start a control cycle. This

system is modelled by two instances of the entity Comp1 which synchronise on

the action start cycle, representing the beginning of the control cycle. Moreover,

both computers need the bus in order to read external data. This behaviour is

achieved by adding one instance of the Bus1 component with an appropriate

synchronisation set. The speci�cation of the PLC example is thus the following:

PLC = (Comp1jjfstart cyclegComp1)jjfacq bus;read ext datagBus1

Once we have speci�ed the complete model, we can derive the underlying tran-

sition diagram. Investigation of this diagram may prove several qualitative

properties of the system as we will see in Chapter 6 when discussing the anal-

ysis methods based on the construction of the reachability (derivative) graph.

Figure 5.5 shows a portion of the transition diagram underlying the PLC speci-

�cation where, for simplicity, we have used short labels for the states (the name
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local comp

local comp

local comp

local comp local comp

req ext data

acq bus

end cycle

local comp

end cycle

req ext datareq ext data

end cycle
s13 s15

s12 s14

s3

s5 s7s6

s9

read ext data read ext data

s10 s11

Figure 5.5: Portion of the transition diagram underlying the PLC example.

s1 (Comp1jjSComp1)jjLBus1
s2 (Comp2jjSComp2)jjLBus1
s3 (Comp3jjSComp2)jjLBus1
s4 (Comp2jjSComp3)jjLBus1
s5 (Comp3jjSComp3)jjLBus1
s6 (Comp4jjSComp2)jjLBus1
s7 (Comp2jjSComp4)jjLBus1
s8 (Comp4jjSComp3)jjLBus1
s9 (Comp3jjSComp4)jjLBus1
s10 (Comp2jjSComp5)jjLBus2
s11 (Comp5jjSComp2)jjLBus2
s12 (Comp1jjSComp2)jjLBus1
s13 (Comp1jjSComp3)jjLBus1
s14 (Comp2jjSComp1)jjLBus1
s15 (Comp3jjSComp1)jjLBus1

Table 5.1: Labels of the states in the transition diagram of Figure 1.4 (where

S = fstart cycleg; L = facq bus; read ext datag).
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of each state is listed in Table 5.1). The complete transition diagram has 24

states and 47 transitions.

Let us now suppose that we want to add new computers to our system.

This extension may be achieved compositionally by combining more instances

of the Comp1 component. For example, in the case of four computers and one

common bus we have:

PLC0 = (Comp1jjfstart cyclegComp1jjfstart cyclegComp1jjfstart cyclegComp1)

jjfacq bus;read ext datagBus1

Finally, let us suppose that we do not want to observe the acquisition of the

global bus, but only the data exchange. We can model this situation by taking

advantage of the abstraction mechanism and by hiding the action acq bus:

PLC00 = ((Comp1jjfstart cyclegComp1jjfstart cyclegComp1jjfstart cyclegComp1)

jjfacq bus;read ext datagBus1)=facq busg

5.2.4 Modelling features

Causal dependences, Concurrency, and Conicts Bearing in mind the

informal meanings of the algebraic operators, let us briey discuss now the

adequacy of the formalism for modelling causal dependences, concurrency, and

conicts between actions, modelling features that we have already discussed in

Chapter 2 in the context of PN models.

Causal dependences appear in the form of sequences of actions which can

be easily modelled by means of the pre�x operator. In the PN context we said

that a transition tj follows a transition ti when they are connected through a

place. In the PA context we can say that an action b follows an action a when

they are in the form a:b. Paraphrasing the net terminology, we could say that

\a and b are connected through the pre�x operator."

Concurrency between actions is syntactically represented by means of the

parallel composition operator. For instance, a:Nil k b:Nil denotes an expression

in which the two actions a and b are simultaneously enabled and independent

from each other. However, as we have already discussed, when we consider the

interleaving semantics of this term, we have that a and b can occur in any order,

�rst a and then b, or vice versa, but never simultaneously.

Moreover, in the interleaving approach causality information may be lost.

Let us consider, for example, the two agents P = a:Nil k b:Nil and Q =

a:b:Nil+ b:a:Nil. Under the interleaving assumption the external behaviour of

P and Q is the same: an external observer will either see �rst an a and then

a b, or �rst a b and then an a, and therefore will not be able to distinguish

between them. The observer is not able to detect that in a:Nil k b:Nil the

actions a and b occur independently, while in a:b:Nil+ b:a:Nil there is a causal

dependence between them: a occurs before b or b occurs before a. In contrast,

in the noninterleaving approach to semantics, these two agents are no longer

indistinguishable because a distinction occurs between P , in which a and b can

occur simultaneously, and Q in which this option is not present.
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Conicts in sequential systems represent situations in which two or more

actions are enabled but only one can occur. The basic mechanism to model

conicts in PA makes use of the alternative or choice operator: the expression

P = a:Nil+ b:Nil models a situation in which both actions a and b are enabled

but only one of them can occur, the choice being performed nondeterministi-

cally. This simple form of conict can be assimilated to the free-choice conict

already discussed. When we move to concurrent systems things become more

complicated. Consider again the term P and suppose it is composed in parallel

with another term Q, requiring that they have to synchronise on one of the two

actions, for example a (i.e. P jjfagQ). Depending on the speci�cation of Q we

can have a conict or not: indeed, if Q does not o�er any action a, the choice

will be always resolved in favour of b. The reader is invited to observe the close

relation between this situation and the non free-choice conicts of PN.

Structure and state As already discussed in Chapter 2, a PN model of a

dynamic system consists of a net structure and a marking and it is possible to

reason at two di�erent levels, structural and behavioural.

There is no syntactic distinction between structure and state in PA. How-

ever, at the semantic level, in the LTS, a state is associated with each syntactic

term. Thus for a PA model each derivative of the initial expression representing

the model is considered to be a state. Observe that, since the model and each

derivative are speci�ed in the algebraic language, it is impossible to distinguish

syntactically whether a term is a derivative of a model or a model itself.

Model analysis Due to the lack of an explicit structure it is not generally

possible to prove properties which hold for any initial state, as in the case of PN

models. Qualitative properties, like the absence of deadlock or the reachability

of a given state, are then investigated by inspecting the transition diagram

associated with the model as will be discussed in detail in Chapter 6. Recent

work by Gilmore et al. [16] has established a structural theory for PA and this

is currently under development.

5.2.5 Equivalence notions and equational laws

One of the most attractive features of PA is their compositional nature, but it

is not the only one. Another important aspect of the formalism is the de�ni-

tion of equivalence relations [35], which can be used to compare agents (model

veri�cation) and to replace one agent by another which exhibits an equivalent

behaviour, but has a simpler representation (model simpli�cation). Such no-

tions of equivalence are considered part of the semantics of the language, and

therefore their de�nition is an integral part of its development. Another use of

equivalence relations is over the states within a model. When a set of states

are found to have equivalent behaviour we can simplify analysis by using the

relation to partition the state space and considering only one representative of

each partition (model aggregation). This is an important means of state space

reduction.
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Figure 5.6: Transition diagrams of the two agents P (left) and Q (right).

We have already briey discussed the notion of syntactic equivalence between

the states forming the transition tree of a model. Unfortunately this relation has

no bene�ts for model aggregation since the number of states remains unchanged.

However, other equivalence notions between states have been proved to be very

powerful for model aggregation and will be discussed in Chapter 16 while here

we limit the discussion to the equivalence notions between agents.

The semantic theory of PA is an observational theory: the behaviour of a sys-

tem corresponds to what is observable, and to observe a system corresponds to

communicating with it. This approach is based on a single observer (interleav-

ing) model in which the occurrence of events is serialised even for independent

processes. Let us consider the agents:

P = a:P1 Q = a:Q1 + a:Q2

P1 = b:Nil + c:P2 Q1 = b:Nil

P2 = d:P3 Q2 = c:Q3

Q3 = d:Q4

and imagine an observer R trying to interact with them, i.e. RjjSP and RjjSQ,
with S = fa; b; c; dg. At the beginning both agents P and Q o�er a to R (see

their transition diagrams in Figure 5.6). But after the action a is performed,

a di�erence emerges between them. P is deterministic: after the execution of

action a, it always evolves into P1 and it subsequently o�ers to the observer both

actions b and c. The agent Q is instead nondeterministic due to the presence

of the choice operator in its description. After the execution of the action a, Q

can evolve into Q1 or into Q2 and it o�ers to the observer sometimes an action

b and sometimes an action c. Thus, even though P and Q o�er the same set of

actions to R, they do not exhibit an equivalent behaviour.

We need to de�ne some criteria to decide when two agents can be consid-

ered equivalent. As the meaning of agents is expressed by their corresponding

transition diagrams we could think of two agents being equivalent when these

graphs are isomorphic. However, isomorphism has been proved to be too strong

a requirement and new notions of equivalence have been proposed [35]. In CCS

for example, two agents are considered to be equivalent when their externally

observed behaviours appear to be the same or, in other words, when any action

by one can be matched by an action of the other and afterwards they remain

equivalent. This notion of equivalence is known as strong bisimulation; it was
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�rst introduced in [42] and formally de�ned for CCS in [35] and it is fundamental

in the PA theory.

De�nition 5.1 A binary relation R over agents is a strong bisimulation if

(P;Q) 2 R implies, for all a 2 Act [ � :

1. Whenever P
a
�! P 0

, then for some Q0
, Q

a
�! Q0

and (P 0; Q0) 2 R;

2. Whenever Q
a
�! Q0

, then for some P 0
, P

a
�! P 0

and (P 0; Q0) 2 R.

Any relation which satis�es De�nition 5.1 is a strong bisimulation. The notion

of strong equivalence (�), also called strong bisimilarity, is then introduced as

the largest strong bisimulation.

To establish a bisimilarity between two agents P and Q it is necessary to set

up a correspondence between the states in the respective transition diagrams.

We may build such a correspondence starting with the pair (P;Q) and seeing

which pairs must be in correspondence given that (P;Q) is such a pair. The

procedure is then repeated with each of the new pairs so introduced until no

more new pairs exist. In the end, if all the states in the transition diagrams are

contained in some pair, it can be concluded that the two agents are strongly

bisimilar.

The agents P and Q described earlier (see Figure 5.6) do not satisfy De�-

nition 5.1. When we start from the pair of initial states (P;Q), both processes

can execute action a evolving into P1 and Q1 or Q2. The new pairs (P1; Q1) and

(P1; Q2) seem to be the candidates for setting up the correspondence. However,

P1 and Q1 (resp. P1 and Q2) are not equivalent because they do not o�er the

same actions. The computation stops and, since not all the states belong to

some pair, we can conclude that the two agents are not strongly bisimilar.

As already mentioned, another fundamental notion in the PA theory is the

notion of congruence. An equivalence relation is a congruence when it is pre-

served by all combinators of the language. Strong equivalence is a congruence

and therefore allows the full advantages of compositionality. In fact, whenever

two agents P and Q are strongly equivalent, they can be interchanged in any

complex system S, with con�dence that its behaviour remains the same. This

means that model veri�cation and model simpli�cation can be carried out on

the components within a model, rather than across the whole model at once.

Strong bisimilarity is rather restrictive because every action an agent may

perform must be matched by an action of the same type in the equivalent agent

| even � actions. However, we would like to consider equivalent terms like

a:Nil and a:�:Nil since their observable behaviours are the same: they both

execute an action a and then terminate. The latter term in fact has an internal

state change that we wish to consider invisible. For this purpose, a weaker

notion of bisimulation, called weak bisimulation (�), has been de�ned [35]. In

this case it is required that each � action in one term must be matched by zero

or more � actions in the other term. Under weak bisimulation it can be proved

that a:Nil � a:�:Nil (while a:Nil 6� a:�:Nil). On the other hand, � is not

preserved by the choice operator: when we compose an agent in choice with
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two terms which are equivalent under weak bisimulation, we do not necessarily

obtain two expressions which are still equivalent. For instance we have:

b:Nil � �:b:Nil but a:Nil + b:Nil 6� a:Nil + �:b:Nil

because the second term can autonomously (by executing � ) reach a state in

which only b is possible while the �rst agent must always choose between a and

b. This fact implies that � is not a congruence. However, a re�nement of �,
observational congruence, is known to have this desirable property.

A lot of work has been done in the de�nition of di�erent equivalence notions

and we refer the reader to the literature (see for example [49, 50]) for an extensive

discussion. Chapter 16 also provides more insight into this topic.

Equational Laws The equivalence notions allow the proof of a set of equa-

tional laws that can be used to manipulate the language expressions. If an

algebraic characterisation of the equivalence (axiomatisation) is found, the ax-

ioms may be used to apply it at the level of the syntax rather than at the level

of the underlying transition system. We do not intend to give a complete list of

all the equational laws here, but we show some of them below to give an idea of

the algebraic axiomatisation of the strong bisimulation relation. More details

can be found in the literature; for example, the complete list of the CCS laws

can be found in [35].

1) P +Q � Q+ P 2) P kS Q � Q kS P

3) P +Nil � P 4) P kS Nil � P

5) P + P � P

The equations 1) and 2) show the commutativity of the \ + " and \ kS "

operators. Equations 3) and 4) are related to the Nil operator: no external

observer can detect if an agent is composed with the Nil agent using \ + " or

\ kS ": The last law, P + P � P , states that no external observer can detect

if the agent he is observing is composed with one or more copies of itself in a

nondeterministic choice: the two agents P + P and P cannot be distinguished

in terms of the actions they o�er to the environment.

The most important law is called the expansion principle or expansion law

and it expresses the behaviour of a complex system by means of the behaviours

of the composite subsystems. Generally, due to the interleaving semantics, the

parallel composition of a �nite number of agents can be transformed into an

equivalent speci�cation in which parallel composition is replaced by the choice

and the pre�x operators. For example the term P = a:b:Nil k c:Nil can be

rewritten as P = a:b:c:Nil+ a:c:b:Nil+ c:a:b:Nil.

In the case of a complex system P = P1 k P2 k : : : k Pn in which each

component Pi can proceed independently the overall behaviour of P can be

seen as follows:

P1 k P2 k � � �Pn �
X

fa:(P1k � � � k P
0
i k � � � k Pn) : 1 � i � n; Pi

a
�! P 0

ig
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In its most general form the expansion law is more complicated and we refer

the reader to the literature for more details.

Notice that the expansion law makes interleaving between actions explicit

since all possible sequences of actions are represented.

When an equivalence relation has been identi�ed which is useful for model

simpli�cation, if an axiomatisation exists it opens the possibility of the sim-

pli�cation procedure being automated via a rewriting system, see for example

[29].

5.2.6 The PLC multicomputer example revisited

Let us consider again the PLC model presented in Section 5.2.3. Using axiom

2) from the previous section we can see that the derivatives:

(Comp2jjfstart cyclegComp4)jjfacq bus;read ext datagBus1

(Comp4jjfstart cyclegComp2)jjfacq bus;read ext datagBus1

are strongly bisimilar, because

(Comp2jjfstart cyclegComp4) � (Comp4jjfstart cyclegComp2)

and � is a congruence. Intuitively we can see that this makes sense, from

the point of view of an external observer, if one computer is engaged in local

computation (Comp2) and the other is trying to acquire the bus (Comp4) it does

not matter which computer is in which state because the observable behaviour

of the system will be the same in either case.

5.3 Probabilistic Process Algebras

Various extensions of PA have been proposed in the literature. We briey

present here probabilistic process algebras [30, 32, 45], a class of languages in

which nondeterministic choice has been replaced by probabilistic choice to cap-

ture uncertainty about the behaviour of the modelled system. A new opera-

tor, let us use the notation �, has been introduced for specifying the proba-

bilistic choice between two or more alternatives. For example, the expression

P = a�p b represents a process that can perform action a with probability p or

action b with probability 1� p. The semantics is given in terms of probabilistic

labelled transition systems in which the transition labels can be action types,

probabilities, or both.

In [45] a classi�cation of some probabilistic models is presented, distinguish-

ing reactive, generative and strati�ed models. In a reactive system the probabil-

ities of the transitions of an agent may depend on the environment in which the

agent is placed: the choice of the action to be performed next is driven by what

is o�ered externally. Once the environment has provided one action, the choice

becomes internal and probabilistic. In each state in the transition diagram the



16 CHAPTER 5. STOCHASTIC PROCESS ALGEBRAS

t

tt

ttt

t

tt
t

t

tt
t

tt





bb��
����
@
@

����
@
@

JJ

�
�
�

�
�
�

(stratified)

p1 + p2 + p3 = 1p1 + p2 = 1

(generative)(reactive)

a[p1] a[p1 ]b[1]

a[p2 ]

b[p3 ]

a

b c

p2 1� p2

a[p2 ]

p1 1� p1

Figure 5.7: Di�erent semantic models for probabilistic processes.

e

u u

e e

u

e e e

""""
bbbb

�� @@ �� @@
a a

p1 p3
p2

b c
a

Figure 5.8: Alternating semantic model.

sum of the probabilities of outgoing transitions for each action type must be

one (see the left part of Figure 5.7).

In a generative system the transition probabilities are independent of the

environment and for each state the sum of the probabilities of the outgoing

transitions must be (globally) one (see Figure 5.7 in the middle). If only a subset

of actions are o�ered from the environment, new probabilities are computed by

renormalisation.

Strati�ed models are a generalisation of generative models in which prob-

abilistic and action transitions are kept separate. First a probabilistic choice

is solved and then one action is performed. Notice that it is not possible to

have nondeterministic transitions because after each probabilistic choice is per-

formed, at most one action is enabled. The right part of Figure 5.7 shows an

example of transition diagram for a strati�ed model.

In [20] a di�erent approach is taken and a language that combines nondeter-

minism and probability is discussed. A probabilistic choice operator is proposed

such that the designer can abstract away from the details of how choices are

made but still provides information on the outcome of the choice itself. Proba-

bilistic choice is independent from the environment: it is used for specifying an

internal behaviour which cannot be inuenced by synchronisation. The seman-

tics is given in terms of labelled transition systems with di�erent types of states,

probabilistic and nondeterministic. Figure 5.8 shows an example of transition

diagram: since there is a strict alternation between probabilistic states (white

circles) and nondeterministic states (black dots) this semantic model has been

called the alternating model.

Of course a key feature of these process algebras is again the equivalence

relations that can be used to compare and analyse models which have been

constructed. A probabilistic form of bisimulation has been proposed which aims

to capture a notion of indistinguishability when it is assumed that the observer
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can witness the probability that an action occurs [32]. For this purpose, a

probability measure, � is de�ned over the transitions of a labelled transition

system, � : P �Act�P �! [0; 1] (P is the set of process terms). If we consider

all the transitions into a set of process terms, via a given action, this can be

extended to a probability measure � : P � Act� 2P �! [0; 1], such that

�(P
a
�! S) =

X

P 02S

�(P
a
�! P 0):

The bisimulation for CCS is an equivalence relation and thus it generates equiv-

alence classes over the set of all process terms P. Exploiting this idea, a prob-

abilistic bisimulation is de�ned to be an equivalence relation such that, for any

two agents within an equivalence class, for any action a 2 Act and any equiva-

lence class S, the probability measure � of each of the agents performing an a

action and resulting in an agent within S, is the same.

De�nition 5.2 A probabilistic bisimulation R, is an equivalence relation

over P such that whenever (P;Q) 2 R then for all a 2 Act [ � , and for all

S 2 P=R

�(P
a
�! S) = �(Q

a
�! S)

The de�nition of the probabilitymeasure �, and consequently also �, depends

on whether the process algebra is reactive or generative. Larsen and Skou, [32]

de�ne �(P
a
�! P 0) for a reactive system, as the probability, given that P

performs and action a, that P 0 is the derivative. In contrast, for a generative

system, Jou and Smolka [47], de�ne �(P
a
�! P 0) to be the probability that the

transition
a
�! P 0 is the one that P performs.

Probabilistic bisimulation is a strong relation, in the sense that the silent

action, � , is treated in the same manner as any other action. Weak probabilistic

bisimulation can be de�ned similarly to weak bisimulation for CCS [3].

5.4 Timed Process Algebras

The languages we have discussed so far (untimed and probabilistic) cannot ex-

press time delays between events: action executions take zero time and only rel-

ative ordering is represented via the traces of the processes. Over the years, vari-

ous proposals for introducing time into process algebras have been made. These

attempts follow two main lines: time can be either deterministic or stochas-

tic. In the deterministic approach the possibility of �nding a calculus for real

time communicating systems in the style of CCS or CSP has been investigated

[38, 2, 34, 53, 54, 36, 39]. The original motivation in the stochastic approach

was that of combining system design and performance evaluation, starting from

the �rst steps of the design [25].

The remaining part of this section is devoted to a brief description of some

deterministic time extensions to CCS while languages which follow the stochastic

approach will be described in more details in a following section.
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Usually in deterministically timed PA some speci�c constructs are added to

an untimed language and/or it is assumed that actions may be delayed. An

explicit notion of time is de�ned by introducing a temporal domain T that can

be either discrete (for example IN) or dense (for example IR+). Systems are

collections of cooperating components that may modify their states either by

executing some actions or by letting time progress.

Probably the �rst timing extension to process algebra is Synchronous CCS [34].

In this language a discrete time domain is assumed and agents proceed in

lockstep|i.e. at every instant each agent performs a single action. The ex-

pression P = a:P 0, which in CCS represents an agent P which becomes P 0 after

executing action a, has the following meaning in Synchronous CCS: \the agent

P , existing at time t, executes action a and then becomes P 0
at time t+ 1."

In Temporal CCS [36] a discrete temporal domain is assumed and some

operators are added to those of standard CCS. For instance, (t):P represents

the process that will evolve into P after exactly t units of time (bounded idling),

�:P represents the process that behaves as the process P , but is willing to wait

any amount of time before actually proceeding (unbounded idling).

The language is given an operational semantics with two di�erent types of

transitions: action transitions, similar to those of standard CCS, which describe

the functional aspects of the processes and time transitions which describe their

temporal aspects. The underlying model is a transition system whose labels are

either atomic actions or elements of an appropriate time domain.

In addition to delay operators which postpone the execution of an action by

a given (or an unbounded) amount of time, other operators have been added

to some timed PA to augment their modelling expressivity. For example, a

timeout operator has been introduced. It uses two arguments P (the body) and

Q (the exception) and a parameter t, and behaves as P if an initial action of P

is performed within time t, otherwise it behaves as Q.

Yi's Timed CCS [54] is an extension of CCS which uses a set of idling actions

de�ned as

�T = f�(t) j t 2 T � f0gg

Processes can evolve by executing CCS-like transitions or they can idle for a

certain amount of time: P
�(t)
�! Q means that \P will idle for t units of time

and then will behave like Q." The semantic rules of the language are those

of CCS plus new ones that specify the idling behaviour of agents. A notion

of strong bisimulation has been introduced to determine whether two agents

are considered equivalent. This equivalence depends on the capability of the

observer: an observer who cannot measure time will never tell the di�erence

between two agents that execute their actions one in one second and the other

in one year. This is a typical observer in CCS, but in Yi's Timed CCS a

more powerful observer, who can also record the time delay between events, is

required. In this context in fact, two agents are considered equivalent if they

witness the same sequences of actions and the same sequences of delays. Notice

that the duration of an activity is not associated with the action that represents

it (which is executed in zero time) but it is modelled by a delay that precedes
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the action itself.

In Chen's Timed CCS [8], another timed extension of CCS, action pre�x

captures timing constraints which may apply to the action. The process a(t)e
0

e :P

can perform the action a between the times e and e0 (inclusive); e and e0 are

called the lower bound and upper bound of action a respectively. For example an

action a which can delay inde�nitely is represented by a(t)>0 . Any occurrences

of the time variable t which appear in the process P refer to the happening time

of a. When the action is performed, say at time u, the variable t becomes bound

to the value u. As well as a structured operational semantics, Chen gives a true

concurrent semantics to his language in terms of timed synchronisation trees.

Some important properties which inuence description capabilities have been

de�ned for timed process algebras. Among them we mention time determinism

and action urgency. The �rst property states that the progress of time should be

deterministic: if a process P evolves into P 0 after a time t, and the same process

evolves into P 00 after the same amount of time, then P 0 and P 00 must be the same

process. Action urgency states that a process may block the progress of time

and enforce the execution of an action before some delay (in some languages

only the invisible action is urgent).

Another deterministic extension of PA has been proposed in [19]. In this

language there is no distinction between the delay associated with an action

and the action itself. The basic assumption is that actions are time-consuming

and any action has an associated duration denoted by a natural number. Each

sequential subsystem is equipped with a local clock that records the units of

elapsed time due to the execution of actions which are local to the subsystem.

When two subsystems interact through synchronisation they have to perform

the same action at the same time. For this reason a sort of \busy waiting" is

necessary when one subsystem is able to execute a synchronising action while

the other is not. A notion of performance equivalence equates systems that

perform the same actions with the same amount of time is discussed. Moreover

the necessity of replacing deterministic time durations with time probabilistic

distribution functions is recognised as a way to provide an uniform integration

of the theories of process algebras and performance evaluation.

5.5 Stochastic Process Algebras

Recently the bene�t of associating probabilistically distributed delays with the

actions of a process algebra has been recognised, and introduced into several

algebraic languages. Modelling the timing behaviour of systems by random

variables rather than deterministic times allows the randomness of the real world

to be captured. This is fundamental to performance evaluation. Incorporating

this idea into a process algebra which facilitates compositional reasoning based

on well-de�ned notions of equivalence, merges two previous distinct approaches

to system representation. The result is a constructive methodology for the

speci�cation and evaluation of complex systems.

These new algebraic formalismsare known collectively as stochastic orMarko-
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vian process algebras. Most of them adhere to Markovian assumptions, i.e. only

random variables with a negative exponential distribution are used, but a few al-

low generally distributed random variables. However we will not consider these

more general stochastic process algebras in this book, and will only discuss the

Markovian process algebras. There are variations between the Markovian pro-

cess algebras which have appeared in the literature but here we will concentrate

on their common features. Therefore we will base our discussion on a generic

language which we will simply call SPA.

SPA is based on an untimed process algebra in which the basic action has

been extended with an exponentially distributed delay. Models in the language

can be used to generate an underlying Markov process (see Chapter 9 which

can then be used to derive performance measures for the modelled system.

5.5.1 Syntax and informal semantics

The basic process algebra of SPA is derived from CCS and CSP. In fact it is

the language presented in Section 5.2.3. In this language systems are modelled

as interactions of components that can perform a set of actions. Each action

is given an associated random duration and is now termed an activity. An

activity a is described by a pair (�; r) where � is the type of the activity and

r 2 IR+ is the parameter of the negative exponential distribution governing its

duration. Whenever a component P can perform an activity an instance of the

given probability distribution is sampled. The resulting number speci�es how

long the component will take to complete the action.

The syntax of SPA, our abstract language, is de�ned as follows:

P ::= Nil j (�; r):P j P + Q j P jjSQ j P=L j A

The functional meaning of each operator is the same as in CCS and CSP (see

Section 5.2), but we now also need to consider the durations of the activities.

� Nil As before, Nil represents the component which is not capable of per-

forming any activities: a deadlocked component. In some timed process

algebras such a component also cannot witness the passing of time and

so results in the whole model being deadlocked. This is not the case in

SPA|although this component cannot progress other components may

be able to.

� Pre�x This gives a component a designated �rst activity, i.e. the com-

ponent (�; r):P performs the activity which has type � and a duration

which is negative exponentially distributed with parameter r (mean 1=r)

and then evolves as P .

� Choice As in the untimed case, the component P + Q represents a sys-

tem which may behave either as component P or as Q. P +Q enables all

the current activities of P and Q and a race condition governs the reso-

lution of the choice. This means that we may think of all the activities
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attempting to proceed but only the \fastest" succeeding. Thus the �rst

activity to complete identi�es one of the components which is selected as

the component that continues to evolve; the other component is discarded.

The outcome of the race will be random but dependent of the rates of the

associated random variables. Thus the non-deterministic choice of CCS

and CSP becomes probabilistic in SPA.

Whenever an activity completes the model evolves, now taking on the

behaviour of the resulting component. Any other activity which was si-

multaneously enabled may remember the time for which it was enabled

and start from that point whenever it is next enabled. Alternatively it

may abandon its spent lifetime and start another lifetime whenever it is

next enabled. Under the exponential assumption there is no di�erence

between these two possibilities.

� Parallel Composition The component P jjSQ represents a system in

which components P and Q work together to perform activities in the set

S. The set S is called the synchronising or cooperation set. Both compo-

nents proceed independently with any activities whose types do not occur

in the set S. However, activities with action types in the set S are as-

sumed to require the simultaneous involvement of both components. The

resulting activity will have the same action type as the two contributing

activities and a rate reecting their rates. As we will discuss later, several

possibilities exist for de�ning this resultant rate.

� Hiding As before, the component P=L behaves as P except that any

activities of types within the set L are hidden, meaning that their type

is not visible outside the component upon completion. Instead they ap-

pear as the unknown type � and can be regarded as internal delays by

the component. The timing characteristics of the hidden activities are

una�ected.

� Constant Just as described for CCS, constants are components whose

meaning is given by equations such as A
def

= P . Here the constant A

is given the behaviour of the component P . Constants can be used to

describe in�nite behaviours, via mutually recursive de�ning equations.

Sometimes a component will leave the rate of an activity unspeci�ed (this is

denoted >, 0, or 1, depending on the language|here we will use >). In this

case we say that the component is passive with respect to that action type. Such

a passive action must be shared with another component via synchronisation.

In a �nal or complete model every passive action must be synchronised with at

least one component active with respect to the action type and this component

will determine the rate at which the shared activity occurs.

Analogously to GSPN, some of the stochastic process algebra languages also

admit immediate actions which are completed in zero time with priority over

timed actions (see Chapter 3). The implications of the inclusion of immediate

actions are briey discussed in Section 5.5.5.
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5.5.2 Operational semantics

The deduction rules of the language operators, shown in Figure 5.9, outline the

activities that a component can witness. Time is not represented explicitly, but

it is assumed that timed activities take some time to complete and consequently

the corresponding transitions represent some advance of time.

The rule for the pre�x operator can be read as follows: in the component

(�; r):P an activity of type � is enabled and the component behaves like P after

its execution. The delay associated with the activity is exponentially distributed

with rate r.

The other rules are straightforward and are presented without comment

except for the rules concerning parallel composition. The �rst and the second

rules represent the independent evolution of the two components while they

are executing activities not in the cooperation set S. The third rule represents

the cooperation between the two components to achieve a common task. In

general, both components of the parallel composition will need to complete

some work, as reected by their own version of the activity, for the common

activity to be completed. The rate R of the common activity is given by a

function �(r1; r2; P;Q) which reects the rates of the individual activities. The

di�erent languages adopt di�erent formulae for the de�nition of the new rate,

all satisfying some algebraic requirements that are necessary in order to ensure

that the equivalence notions which are de�ned are also congruences.

In PEPA [27] we have the following expression

�(r1; r2; P;Q) =
r1

r�(P )

r2

r�(Q)
min(r�(P ); r�(Q))

where r�(P ) is the apparent rate of action type � in the P component and it is

the rate at which an action type � appears to an external observer.

For any component P we can regard its total capacity for carrying out ac-

tivities of a given type as the sum of the rates of the activities of that type

which are enabled by P . This will be the apparent rate of the action type in

P . We assume that when two components carry out � in cooperation their

total capacity to complete the activity of that type is limited to the capacity of

the slower component, i.e. the apparent rate of the synchronising activity is the

minimum of the apparent rate of � in the two contributing components. Since

each component may enable several � activities we assume that each indepen-

dently chooses which activity instance takes part in the cooperation. Thus the

rate of the synchronising activity is adjusted to reect these probabilities, i.e.

it is the product of the probability that each contributing activity is selected

by its enabling component and of the apparent rate of the action type in the

cooperation.

In MTIPP [22] the synchronisation between two or more processes leads to

the observation of an action with a rate equal to the product of the rates of

the individual processes i.e. �(r1; r2; P;Q) = r1 � r2. We can distinguish two

di�erent situations: both actions are active or one action is active and the other

is passive. In the �rst case (pairs of active actions) di�erent meanings can be
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Pre�x

(�; r):P
(�;r)

���! P

Choice

P
(�;r)

���! P 0

P + Q
(�;r)

���! P 0

Q
(�;r)

���! Q0

P +Q
(�;r)

���! Q0

Parallel Composition

P
(�;r)

���! P 0

P jjS Q
(�;r)

���! P 0jjS Q

(� =2 S)
Q

(�;r)

���! Q0

P jjS Q
(�;r)

���! P jjS Q0

(� =2 S)

P
(�;r1)

���! P 0 Q
(�;r2)

���! Q0

P jjS Q
(�;R)

���! P 0jjS Q0

(� 2 S) where R = �(r1; r2; P;Q)

Hiding

P
(�;r)

���! P 0

P=H
(�;r)

���! P 0=H

(� =2 H)
P

(�;r)

���! P 0

P=H
(�;r)

���! P 0=H

(� 2 H)

Constant

P
(�;r)

���! P 0

A
(�;r)

���! P 0

(A = P )

Figure 5.9: Operational semantics of SPA.
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associated with the rates which can be interpreted as rates or as scaling factors.

Let us consider two synchronising components representing a Processor and a

Task executing an action � with rates r1 and r2 respectively. The rate r1 may

be interpreted as a measure of the processor speed while the rate r2 may be

interpreted as a scaling factor representing the dimension of the task, i.e. the

number of work units composing it. By convention, a standard task has an

associated rate equal to 1, values of r2 > 1 represent \small" tasks and values

of r2 < 1 represent \big" tasks. Thus the resulting rate of the shared activity

captures the amount of work to be done.

The synchronisation between passive and active agents is in general inter-

preted as a service provided by one agent and required by the other. In this case

the rate of the passive action is equal to one (which is the neutral element with

respect to the product) and therefore it is the active action that determines the

global rate during the synchronisation.

In EMPA [5] synchronisation between processes requires that at most one

active action is involved, while all the other actions must be passive. In this

language passive actions have a rate equal to zero and the global rate of the

synchronisation is given by the maximum of the individual rates. In this way

the rate of the global action resulting from the synchronisation is determined

by the rate of the active action only.

Notice that this choice has implications for compositionality since once an

interaction involves one active participant only passive agents may be added

later to the system.

In MPA [7] each activity is represented by a pair (�; r) where �, as usual, is

the action type but r does not represent a rate; instead it describes the number

of invocations of the action �. Normally an action is invoked only once by an

agent, but r can also have other values, including real numbers. Moreover, it is

assumed that each action � has associated a �xed exponential distribution with

rate �� and that the invisible action � has a rate �� equal to one.

Each operation (action) needs a basic time to be performed. If an agent is

faster, the parameter r associated with the action is greater than one, if it is

slower, the parameter r is smaller than one. Thus, in a certain sense, r can be

related to the speed of the agent.

Since each action has a �xed rate the interaction of two � actions results in

an action with the same rate ��. However, the number of invocations of action

� equals the product of the number of invocations of both involved activities.

In this way, each invocation in one agent is combined with all the invocations

in the other agent.

Transition diagram/Derivation graph We have seen in the previous sec-

tions that PA terms can be mapped onto transition diagrams whose arcs are

labelled with action names, probabilities, and elements of an appropriate time

domain.

In SPA actions are time consuming and we can derive a transition diagram

whose arcs are labelled with pairs consisting of the action type and the corre-
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sponding rate. However, we must take some care. Consider a simple agent P

which will repeatedly carry out the action (�; r). For a classical process algebra

(and for qualitative analysis) we need only consider which actions are possible in

an agent. Thus the agent P +P has the same behaviour as the agent P | both

are capable of an action � and subsequently behave as P | so these agents are

considered equivalent (see the equational law in Section 5.2). In SPA multiple

instances of an action become apparent because the duration of an action of

that type will appear to be the minimumof the corresponding random variables

(race policy). In the case of exponentially distributed durations this means that

the global rate of an action will be the sum of the rates. Thus P + P appears

to carry out the �rst � action at twice the rate of the agent P . Consequently P

and P +P cannot be regarded as equivalent. As a consequence in the semantics

of the language the number of instances of a transition between states, together

with their rates, has to be recognised.

The underlying Markov process There is a clear correspondence between

the labelled transition system of an SPA model and a continuous time Markov

process. The Markov process underlying any �nite SPA component can be

obtained directly from the transition diagram: a state of the Markov process is

associated with each node of the diagram and the transitions between states are

de�ned by the arcs of the diagram. Since all activity durations are exponentially

distributed, the total transition rate between two states will be the sum of the

activity rates labelling arcs connecting the corresponding nodes in the transition

diagram.

5.5.3 The PLC multicomputer example in SPA

Our PLC example can be speci�ed with SPA by extending the previous un-

timed speci�cation associating a rate with each action. We obtain the following

description:

Comp1 = (start cycle; r1):Comp2
Comp2 = (local comp; r2):Comp3
Comp3 = (end cycle; r3):Comp1 + (req ext data; r4):Comp4
Comp4 = (acq bus; r5):Comp5
Comp5 = (read ext data; r6):Comp2

Bus1 = (acq bus;>):Bus2
Bus2 = (read ext data;>):Bus1

PLC = (Comp1jjfstart cyclegComp1)jjfacq bus;read ext datagBus

The rates of the actions acq bus and read ext data are left unspeci�ed in Bus1,

meaning that this component is passive with respect to them.
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5.5.4 Equivalence relations in SPA

Equivalence relations have been used in untimed, probabilistic and timed PA

to compare components and to replace a component by another which exhibits

an equivalent behaviour, but has a simpler representation. This technique still

applies in SPA where di�erent notions of equivalence that cover the functional

aspects, the temporal aspects and both of them, have been de�ned.

As previously, we need to specify the capabilities of the observer. Can the

observer record the rate of each activity? Can he record the relative frequency

with which alternative activities occur in a given component? Usually it is

assumed that the observer has no memory of the past history of the components

and bases his comparison only on the current behaviour.

The de�nition of equivalences for SPA should conservatively extend the no-

tion of bisimilarity introduced in Section 5.2, since this has proved to be funda-

mental for PA. The di�culty is that now we have to consider not only qualities

but also quantities, i.e. the rates associated with the action types. In contrast,

bisimilarity only considers a (logical) quality: either there is a move between

two states or it is impossible.

A fundamental equivalence notion for SPA, called strong equivalence [26]

or Markovian bisimulation [22], considers both qualities and quantities and it

has been introduced to ensure indistinguishability under experimentation. We

briey introduce this equivalence here and the reader is invited to see Chapter

16 for further details.

Some de�nitions are necessary. If P can, by some action, evolve to become

Q then Q is said to be a derivative of P . The transition rate between two

components P and Q is denoted by q(P;Q) and is the sum of the activity rates

labelling arcs connecting node P to node Q in the transition diagram. The

conditional transition rate from P to Q via an action type � is denoted by

q(P;Q; �). This is the sum of the activity rates labelling arcs connecting the

corresponding nodes in the transition diagram which are also labelled by the

action type �. The conditional transition rate is thus the rate at which a system

behaving as component P evolves to behaving as component Q as the result of

completing an activity of type �.

If we consider a set of possible derivatives S, the total conditional transition

rate from P to S, denoted q[P; S; �], is equal to the sum of the conditional

transition rates from P to components Qi belonging to S:

q[P; S; �] =
X

Qi2S

q(P;Qi; �)

The concept of total conditional transition rate is the basis for the de�nition

of strong equivalence since two components are considered strongly equivalent

if for any action type �, the total conditional transition rates from those com-

ponents to any equivalence class, via activities of this type, are the same.

De�nition 5.3 A binary relation R over components is a strong equivalence

if whenever (P;Q) 2 R then for all � and for all equivalence classes S induced
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by R,

q[P; S; �] = q[Q;S; �]

In this de�nition the total conditional transition rate is used analogously to

the probability measure � in De�nition 5.2 and [32].

We illustrate the notion of strong equivalence by considering again the

PLC example already discussed in Sections 5.2.3 and 5.5.3. Let us take the

term Comp1jjfstart cyclegComp1 consisting of two computers synchronising on

start cycle, without considering any interaction with the global bus. It is pos-

sible to show that Comp1jjfstart cyclegComp1 is strongly equivalent to the term

written below:

Compeq = (start cycle; r1):Compeq1
Comp

eq
1 = (local comp; 2r2):Comp

eq
2

Comp
eq
2 = (end cycle; r3):Comp

eq
3 + (local comp; r2):Comp

eq
4

+(req ext data; r4):Comp
eq
5

Comp
eq
3 = (local comp; r2):Comp

eq
6

Comp
eq
4 = (end cycle; 2r3):Comp

eq
6 + (req ext data; 2r4):Comp

eq
7

Comp
eq
5 = (local comp; r2):Comp

eq
7 + (acq bus; r5):Comp

eq
8

Comp
eq
6 = (end cycle; r3):Compeq + (req ext data; r4):Comp

eq
9

Comp
eq
7 = (end cycle; r3):Comp

eq
9 + (req ext data; r4):Comp

eq
10

+(acq bus; r5):Comp
eq
11

Comp
eq
8 = (read ext data; r6):Comp

eq
3 + (local comp; r2):Comp

eq
11

Comp
eq
9 = (acq bus; r5):Comp

eq
12

Comp
eq
10 = (acq bus; r5):Comp

eq
13

Comp
eq
11 = (read ext data; r6):Comp

eq
6 + (end cycle; r3):Comp

eq
12

+(req ext data; r4):Comp
eq
13

Comp
eq
12 = (read ext data; r6):Compeq

Compeq13 = (read ext data; r6):Compeq9 + (acq bus; r5):Compeq14
Comp

eq
14 = (read ext data; r6):Comp

eq
12

Essentially we have taken advantage of the symmetry between the two com-

puters which was discussed in Section 5.2.6, and formed a single component

which preserves their combined behaviour from the point of view of an external

observer. The transition diagrams underlying Comp1jjfstart cyclegComp1 and

Compeq have 25 states and 51 transitions, and 15 states and 26 transitions,

respectively. Portions of the corresponding transition diagrams are shown in

Figures 5.10 and 5.11 where for readability we have omitted the states names

and we have associated the rates only with some arcs labels.

These two terms are strongly equivalent but the second has a smaller state

space. Now we can take advantage of the fact that strong equivalence is a

congruence and we can substitute Compeq for Comp1jjfstart cyclegComp1 in a

more complex system. For example we can transform

PLC0 = (Comp1jjfstart cyclegComp1jjfstart cyclegComp1jjfstart cyclegComp1)

jjfacq bus;read ext datagBus1
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into

PLCeq = (Compeq jjfstart cyclegCompeq)jjfacq bus;read ext datagBus1

being sure that they have an equivalent behaviour. The advantage is that the

transition diagram of PLCeq has 180 states and 557 transitions while in the

case of PLC0 we obtain 512 states and 1857 transitions

This notion of equivalence can be used to compare and replace components

by simpler ones but it also has interesting stochastic properties which can be

exploited for model aggregation and for the e�cient analysis of SPA models.

These features will be discussed in Chapter 16.

5.5.5 Immediate actions

Some SPA languages allow the use of immediate actions which are executed in

zero time with priority over timed actions. Immediate actions have been intro-

duced in EMPA [5] taking inspiration from the work on GSPN. Exponentially

timed actions have an associated rate � 2 IR+ while immediate actions have

a rate >l;w where l 2 IN+ is the priority level and w 2 IR+ is the associated

weight. Di�erent types of choices can be expressed within this language. When

the choice involves exponentially timed actions only, the race policy determines

which action will be performed. In the case of a state enabling both timed and

immediate actions, the immediate actions with the highest priority level are

the only actions actually executable, the choice being performed on the basis of

their associated weights.

A di�erent approach has been followed in [23] where the basic MTIPP lan-

guage has been enriched with immediate actions which are represented by their

names only. These actions can be external or internal (denoted � ) referring to

whether the environment can inuence their execution.

Again, a crucial aspect of the language is the choice operator since the be-

haviour of a term like P +Q depends on the nature of the choice alternatives. If

the choice involves Markovian actions only, as in Figure 5.12 (left), the race pol-

icy is used to determine the future behaviour of the term. If the choice involves

immediate actions only, the decision is taken on the basis of what is o�ered from

the environment; when the environment o�ers several of the actions enabled in

P and Q, the choice becomes nondeterministic (see middle of Figure 5.12, under

the hypothesis that both a and b are o�ered).

Finally, if immediate and Markovian actions appear in a choice, immediate

actions might happen instantaneously if they are not blocked from the envi-

ronment. In particular, since internal actions cannot be prevented, they always

happen with priority over timed actions as shown in the right part of Figure 5.12.

Notice that in this language the hiding operator plays a special role since it

can be used to give priority to immediate external actions. In the expression P =

(�; r):P1+ b:P2 the action b is executed instantaneously only if the environment

also o�ers the same action instantaneously; otherwise, the environment governs

when action b may happen. The environment may also determine that action
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Figure 5.12: Di�erent types of choice: race, nondeterminism, priority.

� occurs �rst. However, by hiding action b, we can be sure that it cannot be

blocked and therefore will always (invisibly) prevent the occurrence of action �.

In other words, a priority has been associated with action b by means of hiding.

Reduction of the Nondeterminism In Section 3.2 we discussed how the

de�nition of a TPN starts from a nondeterministic, untimed PN model. The

inclusion of time is done in such a way that the amount of nondeterminism is

reduced, eventually ensuring that the behaviour of the system is speci�ed pre-

cisely enough to derive performance measures. In the PN setting, di�erent ways

to attack the problem of reducing nondeterminism have been identi�ed. Two

of them re-appear in the context of SPA. The incorporation of exponentially

distributed delays into an untimed process algebra leads to a stochastic reduc-

tion of nondeterminism in the sense of Section 3.2.2. Due to the race condition,

nondeterminism is replaced by assigning a probability to each alternative.

In the presence of immediate actions the situation is di�erent: nondetermin-

ism between timed transitions is reduced stochastically, while nondeterminism

between immediate transitions is not. This implies that the amount of non-

determinism can make the speci�cation too imprecise to allow the derivation

of performance measures. To enhance the precision of such speci�cations one

relies on a variant of nondeterminism reduction in the style of Section 3.2.1.

A reduction is performed by postulating some external inuence. As an ex-

ample, consider the middle example in Figure refchoice. The term a:P1 + b:P2

describes a nondeterministic choice, when (and only when) both action a and

action b may happen. By postulating an additional external inuence we may

resolve this choice. For instance, a synchronisation on action b with the inactive

process Nil prevents the occurrence of the b branch of the choice. In this way,

the amount of nondeterminism is reduced.

Deterministic reduction in the style of Section 3.2.3 has also received some

attention in the more general context of models with nondeterminism and prob-

abilities [51]. For this purpose the notion of a scheduler is introduced. A

scheduler is a function that for any state determines the next transition to be

executed, taking into account the history of the system. If the scheduler has

the possibility to \roll dice", this form of deterministic reduction turns into a

stochastic reduction.
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5.6 Comparison with Petri nets

As we have seen throughout this chapter GSPN and SPA have undergone similar

developments. In both cases the original de�nitions did not include any temporal

information, and they were used only for the qualitative analysis of concurrent

systems. The stochastically timed extensions allowed the study of the systems'

quantitative properties too, since the two formalisms now formed high-level

description languages for Markov processes. In both cases also, as well as the

stochastically timed actions there have been subsequent developments to include

immediate actions.

In this section we consider similarities and di�erences between the two for-

malisms. We start with the de�nition of a mapping between them which pro-

vides a formal means of investigating the relationship between them. We show

how to map the basic operators of our SPA language into GSPN models. In

the remainder of the section we compare the formalisms in terms of model

construction, qualitative and quantitative analysis. Our comparison is largely

informal as we focus on the facilities that are o�ered to the modeller, rather

than theoretical de�nitions of modelling power etc.

Many comparisons of untimed Petri nets and process algebras have appeared

in the literature, concentrating on their di�erent representations of causality and

concurrency. Our motivation is di�erent: our intention is to help the reader

develop a better understanding of the formalisms, individually and in relation

to each other.

5.6.1 Mapping SPA operators into GSPN models

We have already seen in Section 5.5.2 that operational rules are associated with

each algebraic operator of SPA, to provide a structured operational semantics.

Now we take a di�erent approach to semantics and we associate a net model

with each algebraic operator. We follow the compositional approach already

proposed in [18, 48] for untimed models, and in [4, 46] for timed models.

This compositional approach to (net) model construction requires that the

net of a complex language expression is obtained starting from the subnets of the

composite subterms. For each operator op in the language, we will describe the

operation opN that has to be performed at the net level to reproduce its e�ect.

These operations are based on the well-known net operations of transition and

place superposition.

We consider labelledGSPN de�ned as 7-tuplesN = hP; T;Pre;Post;w;m0; li
where P; T;Pre;Post;w;m0 are the same of the previous chapters and l is the

labelling function l : T ! Act that maps transition names into action names,

whose meaning will be immediately clear in the translation examples below. We

are not introducing a formal de�nition here, but rather explaining everything in

terms of simple examples; the reader is invited to consult [46] for further details.

The most straightforward mapping is that of the Nil operator which can be

translated into a single marked place, not connected to any transition.
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Figure 5.13: GSPN mapping of SPA operators.

The (timed) basic element in our SPA is the activity (�; r) composed of two

pieces of information: the action type � and the rate r. Its translation is shown

in Figure 5.13(a): p1 and p2 are the input (initial) and the output (�nal) places

of the basic element and the timed transition t models action �. In the case of

immediate actions we have the same net structure, but the transition t is now

immediate, as shown in Figure 5.13(b).

Note the di�erence between transitions and actions: since in SPA di�erent

terms can perform actions of the same type, several transitions may represent

the same action type. However, by de�nition, transitions need to be distin-

guishable, i.e., they must have distinct names. Therefore, we use the labelling

function l to map transition names into action names1 so that it is possible that

l(ti) = l(tj) = � but ti 6= tj .

Consider the term P = (�; r):Q, constructed by the pre�x operator. Its

mapping into a net model is obtained by �rst translating the components (�; r)

and Q in isolation (see Figure 5.13(c)); then, to represent the \ � " operator, the

1In the following �gures we associate the action name l(t) with each transition t.
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�nal place of (�; r) is superposed on all the places which are initially marked

in the net modelling Q (see Figure 5.13(d)). Notice that the initial places of Q

(q1; q2; q3) are no longer marked.

The translation of the term P jjSQ requires superposition of transitions and

is again performed in two steps. First we map P and Q into GSPN models;

then we use an appropriate scheme to translate the jjS operator. We distinguish

two cases:

action types � 62 S: we consider the union of the nets representing P and Q2;

action types � 2 S: we superpose transitions with the same label � and com-

pute appropriate synchronisation rates.

The net depicted in Figure 5.13(f) shows the translation of the term

P = (�; r1):P1jjf�g(�; r2):Q1. Both processes execute an � activity that belongs

to the synchronising set; their parallel composition is obtained by superposing

the two � transitions. The value of the rate R depends from the choice of the

function �(r1; r2; P1; Q1) discussed in Section 5.5.2.

It is only possible to synchronise actions of the same type, i.e. timed with

timed, immediate with immediate. This means that at the net level we will

(correctly) superpose only transitions of the same type.

The translation of choice uses place superposition. As previously, for the

term P + Q we �rst translate the components P and Q, and then we translate

the operator \+" using the Cartesian product of their input places. For example,

consider R = P + Q where P = (�; r1):P1jj(�; r2):P2 and Q = (; r3):Q1.

The nets representing the two components, P and Q, and the one represent-

ing R are shown in Figure 5.14(a) and Figure 5.14(b). The initial places in the

composed net are obtained by considering the Cartesian product of the input

places of the nets of P and Q (see the places p1, p2 and q1 and the places p1�q1
and p2 � q1 in the �gure).

The translation of the term P=H is obtained by mapping the term P into

the corresponding GSPN model, and by relabelling all the transitions whose

associated labels belong to the set H to � .

In our SPA there is no explicit recursion operator and in�nite behaviours

are obtained using constants. For example, the expression P
def

= (�; r1):(�; r2):P

describes a component that can perform an in�nite number of � and � actions.

The translation of recursive terms like P can again be performed in two steps.

First, we translate P as shown in Figure 5.14(c); then we recognise that we have

to repeat the same behaviour. Instead of repeating the same net structure, we

can close the net obtaining a GSPN model in which the transitions labelled �

and � can �re in�nitely many times (Figure 5.14(d)). Here we have restricted

ourselves to a simple form of recursion in which the recursive term is composed

of a sequence of pre�xing operators. In [18] a more general translation for the

CCS recursion is discussed and several problems which arise when translating

recursive terms are presented; details can be found in the literature.

2When the set S is empty, we have the (pure) parallel composition of independent compo-
nents which is translated as the union of the starting nets (Figure 5.13(e)).
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Figure 5.14: GSPN mapping of SPA operators (continue).

We end this section by inviting the reader to observe that, by applying the

semantics rules just presented to the PLC model of Section 5.2.3, we obtain a

net which is isomorphic3 to that shown in Figure 2.9 of Section 2.3.1.

5.6.2 Comparison of model construction styles

In this section we examine the di�erent styles in which GSPN and SPA, as

high-level description languages for Markov processes, express the behaviour of

systems.

At a notational level the di�erence seems signi�cant since SPA is a textual

language and GSPN has a graphical notation. However, at the other extreme,

if we consider the class of Markov processes which can be expressed, it is clear

that any Markov process can be expressed as a degenerate form using either

formalism. In GSPN a place is associated with each state and appropriate tran-

sitions are inserted between the places to represent the transitions in the Markov

process. The place corresponding to the initial state is marked by a single to-

ken. Similarly for SPA: a component is associated with the initial state of the

Markov process, with a derivative for each subsequent state; activities capture

the transitions. Neither of these comparisons reect the modelling styles of the

languages, which is what we wish to compare: for example, in the degenerate

GSPN the notions of distributed state and local evolution are lost.

Five di�erent aspects of modelling style, which highlight the di�erences be-

tween the formalisms, are considered below.

3Ignoring timing information.
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State vs action orientation GSPNs have a very clear notion of state, the

distribution of tokens in the places of the net. We can regard a GSPN model

as an association of a state (the initial marking) with a graph structure, where

the graph structure speci�es how the state is modi�ed (state evolution). Note

that there are two distinct languages: one to de�ne the structure, and one to

record the state.

There is no explicit notion of state in the syntax of SPA. However, at the

semantic level, in the labelled transition system, a state is associated with each

syntactic term. Thus for an SPA model each derivative of the initial expression

representing the model is considered to be a state.

Observe that, in general, it is not possible to distinguish by notation between

the derivatives of a model (its states) and the complete model speci�cation|

they are all just language terms. The model de�nition will usually consist of a

set of equations: at least one for each component and at least one to specify the

interactions between the components. This last equation de�nes the structure

of the model, a structure which will be reected in all the derivatives, or states.

So in some senses this is analogous with the graph structure of the GSPN. But

note that it is also analogous to the initial marking since this equation speci�es

how many instances of each component are active in the model.

From a modelling point of view, GSPN is focussed on both states and ac-

tions, while SPA is focussed on actions. Given an arbitrary marking of a GSPN

model it is usually possible, by considering the number of tokens in a given

place, to immediately infer the state of the system, e.g. \bus is free." In con-

trast, the information that can be immediately extracted from an SPA model

during its evolution is in terms of the actions which the model (system) could

perform, e.g. \acq bus" action is enabled. This may implicitly tell us that the

bus is currently free. This distinction has consequences for the de�nition of

performance measures which will be discussed in Chapter 8.

To see how the generation of states in the two paradigms di�ers, consider a

simple system in which a job has a choice between two possible evolutions: it

may perform action � at rate r1 followed by action � at rate r3, or it may choose

to perform action � at rate r2 followed by action � at rate r3. A representation

of this system in the two formalisms is given in Figure 5.15, by SPA on the left

and GSPN4 on the right. The derivative set of the SPA model has two elements,

fP1 + P2; (�; r3):(P1+ P2)g, while the reachability set of the GSPN model has

three di�erent states, f(1; 0; 0); (0; 1; 0); (0; 0; 1)g:
In SPA, after action (�; r1) ((�; r2)) takes place, action (�; r3) is executed,

without making any distinction of whether � is executed as an action of the �rst

component (P1) or of the second one (P2). In the GSPN model instead the two

� actions are represented by the two distinct transitions t3 and t4 triggered by a

condition on two di�erent places. Thus there is a \history" of which component

executed the � action remembered by the model.

This example shows how, in SPA, terms with a common future are considered

to represent the same state, whereas in GSPNs this is not necessarily so. We

4This GSPN model is obtained by applying the semantic rules introduced in Section 5.6.1.
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Q
def

= P1 + P2

P1
def

= (�; r1):(�; r3):Q

P2
def

= (�; r2):(�; r3):Q
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Figure 5.15: SPA and GSPN models of a simple system.

could have modelled the system with a GSPN where p2 and p3 (t3 and t4) are

fused in a single place (transition), but this does not appear a very \natural"

model for the given system, since the two possible evolutions of the job are

described separately. Notice that this folding would be possible only because

both transitions t3 and t4 have the same rate. Nevertheless, when the two �

actions (the two transitions t3 and t4) have di�erent rates, the two corresponding

states are kept separate in both formalisms.

Static vs dynamic model entities Process algebras distinguish between

dynamic and static combinators. Choice is dynamic since after a choice has

been made the syntactic form of the component will, in general, be di�erent:

e.g. P+Q �! P 0. Parallel composition is a static combinator since the syntactic

form of the component is the same after evolution regardless of whether a shared

or an individual activity was completed, e.g. P jjSQ �! P 0jjSQ.
In SPA, entities within the system are represented as components in the

model. If a model is to generate an ergodic Markov process it is necessary that

the parallel components of a model are static|they are not created or destroyed

as the model evolves. The initial term of an SPA model shows all the parallel

components which are going to exist during the life of the model, and therefore

an ergodic SPA model will have the same number of such terms throughout

its evolution. Choices may occur within such components and these represent

alternative modes of behaviour but not alternative structures.

In GSPN there is no notion of static components. However, a related concept

is that of P -semiows of the net (see Chapter 6). These are subsets of places

such that a weighted sum of tokens in those places is constant for all reachable

states. We observe that if an SPA term is built as the composition of N distinct

components, then the equivalent GSPN has at least N P -semiows where all

the places have weight equal to 1. We refer to Chapter 6 for the discussion

about P - and T -semiows.

In a GSPN model, entities within the system are associated with the tokens

of the Petri net. As the net evolves the number of tokens may vary, reecting

the dynamic behaviour of the system, according to the �ring rule. This models

the interactions between the entities in the system. For example, in the case of
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the GSPN model of the PLC example, certain tokens represent the computers

and others the buses. Tokens representing computers move from state to state

(e.g. performing a local computation, reading external data) through the �ring

of transitions; when a computer is using the bus this is represented as a single

token, although two entities are involved.

As another example, consider a simple parallel program containing a

parbegin/parend section. In the GSPN this can be simply modelled using a

fork & join structure as shown in the upper part of Figure 5.16. Representing

this system in SPA produces an alternative view of the system (see the lower

part of Figure 5.16). The GSPN representation has one process which becomes

split into three and then recombined to form a single process again. The static

nature of the SPA models forces a representation with three processes which are

initially and �nally constrained to act together, only free to act independently

during the middle phase of their execution.
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Pi0
def

= (start; r):Pi1

Pi1
def

= (�; ri):Pi2

Pi2
def

= (�; si):Pi3

Pi3
def

= (stop; s):Pi0

System
def

= ((P10jjfstart;stopgP20)jjfstart;stopgP30)

Figure 5.16: GSPN and SPA models of the fork & join structure.

Modelling abstraction One of the skills of an experienced modeller is choos-

ing an appropriate level of abstraction at which to construct a model. Although

this is largely a question of judgement it is aided by exibility in the way a

system may be presented in a paradigm.

For example, consider a system which is comprised of two identical instances

of an entity, which are independent. In SPA this would be modelled as the

component Q
def

= P jjP . The component P could have any behaviour but for

simplicity we assume that it repeatedly carries out activity (�; r) followed by

(�; s): P
def

= (�; r):(�; s):P .
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Figure 5.17: Alternative GSPN representations of two instances of the same

entity.

There are two possible GSPN models of this behaviour. In the �rst, the net

representing the behaviour of the entity is constructed, and repeated instances

of the component are represented by repeated instances of the same net (Fig-

ure 5.17(a)). Alternatively, the single net structure representing the entity may

be marked by two tokens in its initial place to represent the repeated structure

(Figure 5.17(b)), if we assume an in�nite server discipline for the transition t1.

In SPA repeated instances of the same entity are usually distinguished so

all possible interleavings of states are represented, i.e. we distinguish between

P 0jjP and P jjP 0. However, recent work [17, 24] has aimed to take advantage of

the fact that the identity of the component which has completed the activity

(�; r) is unimportant. This is analogous to the compact GSPN representation

of Figure 5.17(b) in which the marking (1; 1) models a such a situation.

Compositionality Compositionality is a central feature of model construc-

tion in SPA, resulting in models which are easy to understand and readily mod-

i�ed. The expression Q
def

= P jjP shows that the system is comprised of two

identical but independent components, without detailed information about the

behaviour of P . It follows that an SPA term may have a lot of embedded be-

haviour, de�ned in a separate expression. This leads to a hierarchical approach

to model construction. The resulting model has a structure which reects the

structure of the system itself. Moreover this structure may be exploited dur-

ing analysis. Model components can be developed by di�erent modellers and

libraries of re-usable components may be established.

In contrast, with GSPN the model is constructed as a at representation of

the system, all modelling primitives conveying the same amount of information.

In fact, both the notions of state and �ring can be viewed as compositional since

their are based on the knowledge of local information. Hence there is nothing

within the GSPN formalism which makes compositionality impossible. Indeed,

although Petri nets (timed or untimed) are not compositional in nature, there
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have been e�orts to add composition operators to the formalism: composition

is based on superposition of places and transitions (see Chapter 12), and more

recently it has been de�ned in the more structured approach of the Box Calcu-

lus [12], and in the case of Well Formed nets in [37]. Chapter 16 will discuss in

detail the notion of compositionality at the net level.

Operator abstraction We can consider two forms of operator abstraction in

performance modelling paradigms: functional and temporal abstraction. Func-

tional abstraction allows some behaviour of the system to be abstracted away

because it is more detailed than necessary for the current model. Temporal ab-

straction allows some of the timing information within a system to be abstracted

away as irrelevant in the current model.

Temporal abstraction is provided by immediate transitions or actions when

they are used to represent timed actions, the duration of which is negligible

compared with that of other actions within the model. It is assumed that these

events do not have a signi�cant impact on the performance of the system. Note

that, at a conceptual level, this is distinct from the use of immediate transitions

to represent logical actions, to which no time can be associated.

Functional abstraction in SPA is provided by the hiding operator. Activities

of type � are considered to be internal to the component in which they occur.

Thus hiding allows an interface to a model or component to be de�ned as we

have already discussed. This is particularly powerful when used in conjunction

with parallel composition as it may restrict the interactions of a component. We

invite the reader to see Chapter 16 for a discussion on functional abstraction in

the context of (compositional) SPN.

5.6.3 Qualitative and quantitative analysis

Since GSPN and SPA have both evolved from formal system description tech-

niques, models in either paradigm can be regarded as a functional representa-

tion of the system, as well as a performance representation. The choice, in both

GSPN and SPA, to use a distribution with in�nite support for the delays, allows

functional properties of the timed models to be proved with the same techniques

used for their untimed counterpart.

Graph-based analysis, also called state space analysis, may be used to answer

many questions about system behaviour when applied to the reachability or

derivation graph. For example, the presence of a dead state, i.e. a node with no

output arc, can be checked on the graph, as well as the reachability of a given

state M 0 starting from a state M can be checked by looking for a direct path

in the graph connecting the corresponding nodes.

State space analysis techniques are very powerful, since they allow the proof

of many properties of interest by inspection of the graph which contains all

possible evolutions of the model. In general, they are considered to be very

expensive because the space and time complexity of the graph construction

algorithm can exceed acceptable limits. However, in the case of GSPN and

SPA models, intended for performance evaluation, construction of this graph is
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essential in any case to generate the underlying Markov process. State space

analysis techniques as well as other analysis techniques are discussed in Chapter

6.

The solution techniques applied to compute quantitative results in GSPN

and SPA are identical, based on the numerical solution of the underlying Markov

process. Starting froma GSPN (SPA) model, the associated reachability (deriva-

tion) graph is obtained and then reduced to the corresponding continuous time

Markov process. This is then numerically solved to compute the steady state

probabilities.

Being a more mature formalism, there has been more work on e�cient al-

gorithms for �nding and solving this Markov process in the case of GSPN, and

there has been a certain e�ort towards \less expensive" solution methods. Some

of the e�cient algorithms for the construction and solution of the associated

Markov process have already been imported into SPA, and work is progressing

on others. Again, we invite the reader to see the next chapters for major details

about quantitative analysis techniques and e�cient solution methods.

5.7 Conclusions

In this chapter we have given an introduction to stochastic process algebra lan-

guages describing their development from classical process algebras. In many

ways their development has been similar to the development of stochastic Petri

net formalisms such as GSPN. In both cases in fact the starting point was an

untimed formalismwhich has been extended to also take into account probabilis-

tic and/or timing information. We have restricted ourselves to the discussion of

the main modelling features provided by SPA; (most of) the associated analysis

techniques presented later in this book can be applied to SPA too.

In Section 5.6 we informally compared SPA and GSPN and before ending

this chapter we briey summarise some modelling features observing both sim-

ilarities and important di�erences.

The model construction facilities of the two formalisms have contrasting

strengths and weaknesses. One of the strengths of Petri nets is that causality,

conict and concurrency are clearly depicted within a model and this is true for

GSPN models as well. GSPN o�er the modeller an explicit notion of state and

the graphical notation, which can give an intuitive understanding, and can also

be easier to grasp initially. Tool support for GSPN is much more sophisticated

largely due to the fact that this formalismhas been established for a longer time.

This has several consequences: clearly the user is given greater support when

using the tool, and the greater support will generally lead to higher con�dence

on the part of the user.

In contrast, in process algebra based formalisms causality is not exhibited

and there is no explicit notion of state. However, the structure within an SPA

model is very clearly represented since a compositional structure is apparent

in the model. Compositionality provides the possibility of reusability of model

components. Modelling is generally an expensive and time-consuming task:
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building a new model by composing previously developed components could

o�er substantial savings. Moreover, the structure makes the model easier to

understand, more manageable, and can be exploited for both qualitative and

quantitative analysis. Having equivalence relations which are developed and

considered to be an integral part of the language means that SPA models can

be reasoned about and, in some circumstances, automatically transformed into

simpler forms.

If the question is - what formalism should we use? - we answer that we

do not advocate the adoption of one and the discarding of the other. Instead,

we feel that some problem domains will be better suited to expression in one

formalism while other problem domains will be better expressed by the other.

Thus a modeller would be wise to be familiar with both techniques.

We hope that this introductory presentation gave an intuitive idea of what

SPA is, and we invite the reader to read the next chapters bearing in mind that

many of the analysis techniques that will be presented in the GSPN context

could be (although not always easily) adapted to the SPA domain.

5.8 Bibliographic remarks

Compared to untimed Petri nets, classical process algebras are a more recent

formalism since they �rst appeared in the literature at the end of eighties when

the algebraic languages, the Calculus of Communicating Systems (CCS) and

the Communicating Sequential Processes (CSP), were introduced. A general

introduction to process algebra and CCS may be found in Milner's book [35],

probably the best known book on this subject. A good reference for examples

and case studies is [14]; a practical introduction to formalmethods for specifying

concurrent system (based on CCS) may also be found in the recently published

book [13]. Concerning CSP, the interested reader may refer to Hoare's book [28].

After the introduction of classical process algebras several extensions, con-

cerning the addition of probabilities and/or timing information, appeared in the

literature as we have discussed throughout this chapter.

For timed process algebras, the survey paper by Nicollin and Sifakis [39]

provides an overview of the di�erent proposals. More details about the speci�c

languages may be found in the papers [38, 2, 34, 53, 54, 36] already cited in

Section 5.4. To the best of our knowledge there is no survey on probabilistic

process algebras, and we recommend the papers [32, 45] and [30] for more details

about these extensions. Concerning the stochastic extensions, we suggest di�er-

ent references, one for each language we have briey mentioned in Section 5.5,

i.e. [27] for PEPA, [22] for MTIPP, [5] for EMPA, and [7] for MPA.

The development of software tools to support the (S)PA analysis has allowed

the usability of the formalism for studying relatively complex systems to be

demonstrated. Information about the Concurrency Workbench, a software tool

for classical process algebras, may be found in [10]; in the case of SPA we recall

the papers [15, 21] which describe more recently developed tools.

The material presented in this chapter covers only some of the basic aspects
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of the (untimed and timed) algebraic formalism. For a complete overview of its

potential, extensions and applications the interested reader can either see the

list of papers cited in the bibliography (which is not exhaustive) or the papers

published in the proceedings of conferences and workshops on concurrency and

related topics in which sections on process algebras are organised. For example,

we highlight the International Conference on Concurrency Theory (CONCUR),

whose proceedings are published in the series Lecture Notes in Computer Sci-

ence. Recently, some sections devoted to (stochastic) process algebras have

also been organised within the Petri nets conferences (the comparison section

is based on the two papers [46, 11] which have been presented at the Petri Nets

and Performance Modelling Workshop). As with Petri nets, more abstract work

on process algebras also appears in various conferences devoted to theoretical

computer science, for example ICALP and LICS.

Starting in 1992, the Process Algebra and Performance Modelling work-

shop takes place every year with the aim of bringing together researchers and

practitioners interested in the development and application of process algebras

to performance modelling. The focus is on the interplay between functional

and performance analysis in a process algebra setting. Since its inception, the

workshop has taken place in Edinburgh, Erlangen, Torino, Twente and Verona.

The 1998 workshop, organised by the University of Verona, was a satellite of

CONCUR. The 1999 workshop will be held in Zaragoza in conjunction with the

International Workshop on Petri Nets and Performance Modelling (PNPM) and

the International Conference on Numerical Solution of Markov Chains (NSMC).
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