\setminus

Process Algebra

Sources:

- R. Cleaveland and O. Sokolsky. Equivalence and preorder checking for finite-state systems. In J.A. Bergstra, A. Ponse and S.A. Smolka, editors, Handbook of Process Algebra, pages391–424. Elsevier, Amsterdam, 2001.
- R. Milner. ^A Calculus of Communicating Systems, volume ⁹² in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1980.
- R. Milner *Communication and Concurrency*. Prentice Hall, New York, 1989.

 \bigwedge

 \setminus

Process Algebras

- ... an approach to specifying and verifying concurrent systems
	- Emphasis on modeling open systems, i.e. ones that can be embedded in other systems
	- \bullet Theories built around notion of interaction between systems and environments
	- Behavioral equivalences, refinement orderings used to relate systems, specifications
	- Compositionality of modeling, verification ^a key feature

 \bigwedge

 \setminus

Mathematically...

... process algebras contain:

- ^A specification language containing operators for assembling subsystems into systems;
- \bullet A formal operational semantics of the language defining the *atomic* interactions a system may engage in with its environment;
- A notion of *behavioral refinement* for determining when one system "implements" another.

Traditionally, refinement relations are *equivalence relations*, although *preorders* also possible.

 \bigwedge

 \bigwedge

 \setminus

CCS: A Calculus of Communicating Systems

We'll study the process-algebraic approach by looking at ^a specific process algebra, CCS.

- Devised by Robin Milner (a Turing Award winner!) in the late 1970's/early 1980's.
- Features binary handshaking as basic means of interaction.
- Processes built up from set of *atomic actions* using process constructors.

 \bigwedge

 \setminus

Actions in CCS

... are either inputs/outputs on ports or internal. Formally:

Let Λ be a(n infinite) set of *labels* (i.e. port names) not containing the reserved symbol $\tau.$

Then an action in CCS is either:

- $\bullet\,$ an input on port $\lambda\in\Lambda\colon\lambda$
- $\bullet\,$ an output on port $\lambda\in\Lambda\colon\lambda$
- an internal action: τ

 \bigwedge

Notation for Actions

Λ set of labels and set of input actions $\Lambda = \set{\lambda | \lambda \in \Lambda} \quad \text{set of output actions}$ $\Lambda \cup \overline{\Lambda}$ set of external actions $Act = \Lambda \cup \Lambda \cup \{\tau\}$ set of all actions

Convention

 \setminus

- $\overline{a} = a$ if $a \in \Lambda \cup \Lambda$.
- $\overline{\tau}$ is undefined.

 \bigwedge

$\bigg($ \setminus What's the Idea with CCS Actions?CCS systems communicate with their environments (and each other) by synchronizing on ports. • If one partner can input and the other can output on the same port, then ^a synchronization may occur and both evolve. $\bullet\,$ Inputs and outputs are blocking; only action a system can perform autonomously is $\tau.$ • Thus the external actions ^a system can perform can be thought of as its interface. NoteNo values exchanged in basic CCS; "output" means "emit ^a signal".

 \bigwedge

$\bigg($ \setminus \bigwedge $\overline{}$ The Syntax of CCS (cont.)A CCS expression E is *closed* if every process name has been "declared". Declarations have form: $C\overset{\Delta}{=}E.$ Example ^A declaration for process name A: $A \stackrel{\Delta}{=} a.b.A$ Once this declaration has been made, expressions such as $A, \hspace{0.1em} A|A$ become closed. $P \equiv$ set of CCS processes \equiv set of closed CCS expressions.

 \setminus

Here's the CCS Sender \triangleq send.out.ackin.Sender Medium \triangleq \equiv out.in.Medium $+$ ackout.ackin.Medium Receiver \triangleq in.rec.ackout.Receiver Sys \triangleq $\texttt{s} \hspace{2mm} \stackrel{\Delta}{=} \hspace{2mm} \text{(Sender} \hspace{2mm} \mid \text{Medium} \hspace{2mm} \mid \text{Receiver}) \backslash \{ \text{in, out, ackin, ackout} \}$

 \bigwedge

 \setminus

What Do CCS Descriptions Mean?

So far we've seen the syntax of CCS: $a.,+,|, \setminus L,[f],C$

The next step: define the *behavior* of CCS expressions by giving the language an *operational* semantics.

- The semantics will define the execution steps of CCS systems.
- It will also be the basis for behavioral equivalences we will study.

 \bigwedge

 \bullet

 \bullet

 \setminus

The Operational Semantics of CCS is intended to capture ^a notion of "button-pushing". • Systems are boxes with buttons labeled by visible actions. Two kinds of buttons: **–** Input actions: usual kind of button that user presses. **–** Output actions: button is concealed by ^a little door. In different states, systems enable different buttons. **–** If button is an input, user may press it, and system changes state.

– If button is an output, user may move little door to one side; then system "pushes out" button and changes state.

 \bigwedge

 \setminus

 \setminus

CCS Operators and Button-Pressing II

- $E|F\colon$ Composite box responding to all button presses $E,$ F can. In addition, outputs of E have doors swung to one side and "lined up" with inputs of F on same port, and vice versa (so boxes can "press each other's buttons")
- $E\backslash L$: Box obtained by "taping over" buttons whose ports are in $L.$
- $E[f]$ **:** Box obtained by relabeling buttons according to f .

 \bigwedge

 \setminus

Capturing Button-Pressing Mathematically

The semantics of CCS is defined mathematically as a *ternary* relation \longrightarrow \subseteq ${\cal P} \times Act \times {\cal P}.$

- $\blacklozenge\langle P, a, Q\rangle \in \longrightarrow$ means " P enables a , then behaves like Q after a performed."
- Notation: we write $P \stackrel{a}{\longrightarrow} Q$ in lieu of $\langle P, a, Q \rangle \in \longrightarrow$.

 \bigwedge

 \setminus

Notes on Rules

- 1. Each rule has ^a name for ease of reference.
- 2. Act rule has no premises and hence can be viewed as an axiom.
- 3. Rules for $+,\vert$ make precise the "button-pressing" intuitions for these operators.
- 4. Result of synchronization (Com $_3$) is always $\tau.$
- 5. In Rel, recall $f:\Lambda\to\Lambda$. $\hat{f}: Act\to Act$ is given by:

$$
\hat{f}(a) = \begin{cases}\n a & \text{if } a \in \Lambda \\
\overline{f(b)} & \text{if } a = \overline{b} \text{ and } b \in \Lambda \\
\tau & \text{if } a = \tau\n\end{cases}
$$

 \odot 2015 Rance Cleaveland. All rights reserved.

 \bigwedge

 \setminus

$\sqrt{2\pi}$ \bigwedge SOS and Transitions for CCS SystemsQuestion \vert In what sense do the SOS rules "define" \longrightarrow ? The answer: • The SOS rules define an inference system, where statements inferred have form " $P \stackrel{a}{\longrightarrow} Q$ ". • A transition $P \stackrel{a}{\longrightarrow} Q$ can be inferred if one can construct a proof using the rules. • So the relation \longrightarrow contains exactly those process-action-process triples that can be inferred
from the write from the rules.

 \setminus

$$
\fbox{Example: Infer } \big((a.P+b.0)\,|\,\overline{a}.Q\big)\backslash\{a\} \stackrel{b}{\longrightarrow} (0\,|\,\overline{a}.Q)\backslash\{a\}
$$

$$
\frac{b.0 \xrightarrow{b} 0}{a.P + b.0 \xrightarrow{b} 0} \text{Sum}_{2}
$$
\n
$$
\frac{a.P + b.0 \xrightarrow{b} 0}{(a.P + b.0) | \overline{a}.Q \xrightarrow{b} 0 | \overline{a}.Q} \text{Com}_{1}
$$
\n
$$
\frac{(a.P + b.0) | \overline{a}.Q \rightarrow 0 | \overline{a}.Q}{((a.P + b.0) | \overline{a}.Q) \setminus \{a\}} \xrightarrow{b} (0 | \overline{a}.Q) \setminus \{a\}
$$
\nRes

 \bigwedge

 \setminus

Notes

- 1. Proofs built in *forward-chaining* manner: use inference rules to infer new conclusions from existing ones.
- 2. Such forward-chaining proofs always "begin" with an application of Act rule.
- 3. Side condition in Res rule must hold for rule to be applied; so

 $((a.P + b.0)|\overline{a}.Q)\backslash\{a\} \stackrel{a}{\longrightarrow} (P|\overline{a}.Q)\backslash\{a\}$

cannot be proved!

 \bigwedge

 \setminus

 \setminus

CCS and LTSs

CCS may be viewed as ^a (infinite-state) LTS with no initial state.

- States are closed terms.
- \bullet Transitions given by \longrightarrow , i.e. by operational semantics.

Any finite-state LTS can be encoded in CCS.

- Associate a process name S to each LTS state s .
- In declaration of S , sum together terms of form $a.T$ for each transition $s \stackrel{a}{\longrightarrow} t$ in LTS.
- Process name for start state is then CCS encoding of LTS.

 \bigwedge

 \setminus

Note

Encoding of LTS's requires only the *dynamic* operators (and declarations)!

So how are static operators used? To encode *architectural information*.

 \bigwedge

 \setminus

What Architectures Contain

- *Boxes* with *ports*
- Wires connecting ports on different boxes
- Subarchitectures embedded inside boxes

 \bigwedge

 \setminus

Basic Ideas Underlying Encoding

- Associate ^a name to each box, and ^a name to each "wire".
- Boxes in same architecture run in parallel.
- Use renaming to "connect" ^a port to ^a wire if wire name is different from port name.
- Use restriction when embedding an architecture inside ^a box.

 \bigwedge

 \setminus

Notes

- 1. Notation for relabeling: $P[a/b, c/d]$ means "substitute a for $b, \, c$ for $d,$ leave all other labels unchanged."
- 2. Relabeling used to do "wiring".
- 3. Restriction used to "localize" wires, ports.
- 4. Only static operators (and process names) needed!
- 5. This scheme works if wire names are distinct from all ports that they are not connected to.

 \bigwedge

 \setminus

The CCS Verification Framework

Sys: CCS expressions

Spec: CCS expressions

sat: Behavioral equivalence \equiv

Intuition $\textsf{If }I\equiv S$ then implementation I behaves the same as spec $S.$

 \bigwedge

 \setminus

• But is this what we want in ^a theory based on "interaction"?

 \setminus

On the (In)Equivalence of P and Q : Another View

- $\bullet\,$ Consider now a "test" or "probe" process $T=\overline{a}.b.\overline{w}.0$ $(\overline{w}% _{1}^{\ast}\circ \overline{w})$ indicates "success") ...
- $\bullet \,$... and consider $(P|T)\backslash L$ and $(Q|T)\backslash L$ where $L = \{a,b,c\}.$
- In the former, the test invariably "succeeds" while in the latter the interaction between Q and T may come to a halt before success can be reported.
- $\bullet\,$ This is because of the nondeterminism in $Q.$ What to do?

 \bigwedge

 \setminus

Strong Bisimulation

A *bisimulation* is a kind of invariant holding between a pair of dynamic systems, and the technique is to prove two systems equivalent by establishing such an invariant, much asone can prove correctness of ^a single sequential program by finding an invariant property.

[Milner89]

 $\overline{}$

 \bigwedge

 \setminus

Definition of a Strong Bisimulation

A binary relation $S \subseteq \mathcal{P} \times \mathcal{P}$ is a *strong bisimulation* if $(P,Q) \in S$ implies, for all a in $Act,$

- 1. Whenever $P \stackrel{a}{\longrightarrow} P'$ then, for some $Q',$ $Q \stackrel{a}{\longrightarrow} Q'$ and $(P', Q') \in S.$
- 2. Whenever $Q \stackrel{a}{\longrightarrow} Q'$ then, for some $P', P \stackrel{a}{\longrightarrow} P'$ and $(P', Q') \in S.$

It helps to draw ^a diagram!

 \bigwedge

 \setminus

Strong Equivalence

Two agents P and Q are *strongly equivalent* or *strongly bisimilar*, written $P \sim Q$, if $(P,Q) \in S$ for some strong bisimulation $S.$ This may be equivalently expressed as follows:

> ∼ $\sim \quad = \quad \bigcup \, \left\{S \, \mid \, S \text{ is a strong bisimulation}\right\}$

This definition immediately suggests a *proof technique* for \sim : exhibit a strong bisimulation that relates P and Q .

 \bigwedge

 \setminus

A Larger Example: A Counting Semaphore

$$
Sem_n(0) \stackrel{\Delta}{=} get. Sem_n(1)
$$

\n
$$
Sem_n(k) \stackrel{\Delta}{=} get. Sem_n(k+1) + put. Sem_n(k-1) \quad (0 \le k \le n)
$$

\n
$$
Sem_n(n) \stackrel{\Delta}{=} put. Sem_n(n-1)
$$

$$
Sem \stackrel{\Delta}{=} get. Sem'
$$

$$
Sem' \stackrel{\Delta}{=} put. Sem
$$

$$
S = \{ (Sem2(0), Sem|Sem),
$$

\n
$$
(Sem2(1), Sem|Sem'),
$$

\n
$$
(Sem2(1), Sem'|Sem),
$$

\n
$$
(Sem2(2), Sem'|Sem') \}
$$

 \bigwedge

 \setminus

Proving $P \sim Q$

Idea \mid Build strong bisimulation $\mathcal{S} \subseteq \mathcal{P} \times \mathcal{P}$ containing $\langle P, Q \rangle$!

Why does this work? Definition of [∼]:

 $P\sim Q$ iff there exists strong bisimulation ${\cal S}$ relating $P,Q.$

Example Prove that $a.b.0 \sim a.b.0 + a.b. (0+0)$.

 \bigwedge

 \setminus

Proving $P \not\sim Q$

Recall: $P\sim Q$ iff some strong bisimulation relates $P,Q.$

So, to prove $P\not\sim Q$, need to show that no bisimulation relates $P,Q.$ Proofs proceed by contradiction.

- $\bullet~$ Assume a strong bisimulation exists relating $P,Q.$
- Show that this leads to ^a contradiction.

 \bigwedge

 $\bigg($ \setminus \bigwedge $\overline{}$ Observational Equivalence Problem with \sim : too sensitive to τ (i.e. internal) transitions! E.g $a.\tau.b.0 \not\sim a.b.0$

 \setminus

Defining Observational Equivalence: Preliminaries

Need to introduce derived transition relation, \Longrightarrow , that "absorbs" internal computation.

•
$$
P \stackrel{\epsilon}{\Longrightarrow} Q \text{ iff } P \stackrel{\tau}{\underset{\geq 0}{\longrightarrow}} \cdots \stackrel{\tau}{\longrightarrow} Q.
$$

•
$$
P \stackrel{a}{\Longrightarrow} Q
$$
 iff for some $P', Q', P \stackrel{\epsilon}{\Longrightarrow} P' \stackrel{a}{\longrightarrow} Q' \stackrel{\epsilon}{\Longrightarrow} Q$.
i.e. $P \stackrel{a}{\Longrightarrow} Q$ if $P \stackrel{\tau}{\Longrightarrow} \cdots \stackrel{\tau}{\longrightarrow} \stackrel{a}{\longrightarrow} \underbrace{\stackrel{\tau}{\longrightarrow} \cdots \stackrel{\tau}{\longrightarrow} Q}_{\geq 0}$.

• \hat{a} , the *visible content of a*, is ϵ if $a = \tau$ and a otherwise.

 \Longrightarrow sometimes called the *weak transition relation*.

 \bigwedge

 \setminus

Defining Observational Equivalence

Definition $\big\vert$ A relation $\mathcal{S}\subseteq\mathcal{P}\times\mathcal{P}$ is a *(weak) bisimulation* if whenever $\langle P,Q\rangle\in\mathcal{S}$ then:

1.
$$
P \xrightarrow{a} P'
$$
 implies $Q \xrightarrow{\hat{a}} Q'$ some Q' such that $\langle P', Q' \rangle \in S$.

2.
$$
Q \xrightarrow{a} Q'
$$
 implies $P \xrightarrow{\hat{a}} P'$ some P' such that $\langle P', Q' \rangle \in S$.

Definition $\big\vert P\approx Q$ iff there exists a bisimulation $\mathcal S$ with $\langle P,Q\rangle\in \mathcal S.$

 \bigwedge

 \setminus

Proving/Disproving \approx

Definitions of strong/weak bisimulations, \sim/\approx are very similar.

Consequence: proof techniques for $\approx, \not\approx$ similar to those for $\sim, \not\sim$.

- $\bullet\,$ To show $P\approx Q$, build a weak bisimulation containing $\langle P,Q\rangle.$
- $\bullet\,$ To show $P\not\approx Q$, use a proof by contradiction.

 \bigwedge

 \setminus

Example: $a.\tau.b.0 \approx a.b.0$

 \bigwedge

 \setminus

Example: $a.0 + \tau.b.0 \not\approx a.0 + b.0$

 \bigwedge

 \setminus

A Weak Bisimulation for the Larger Example

 \bigwedge

 \setminus

Assessing Observational Equivalence

Positives

- $\bullet\,$ Recursive character eliminates problems of $=_L$ (traditional language equivalence).
- \bullet Relative insensitivity to τ -transitions remedies deficiency of \sim .
- $\bullet\,$ It inherits elegant proof techniques from \sim .

Alas, there is ^a fly in the ointment:

 \approx is not a *congruence* for CCS.

 \bigwedge

 \setminus

Huh?

Intuition An equivalence relation is ^a congruence for ^a language if you can substitute "equals for equals".

Why do we care about congruences? They support *compositional reasoning* (reasoning about a system by reasoning about its parts).

 \bigwedge

 \setminus

\sim Is a Congruence for CCS

Definition <code>n_] A CCS</code> context $C[]$ is a CCS term with a "hole" $[]$ (e.g. $a.[], a.b.0|c.[],$ etc.) If $C[]$ is a context and p is a term, then $C[p]$ is the term formed by replacing $[]$ by p in $C[]$.

Theorem (Congruence-hood of \sim for CCS) | Let $C[]$ be a CCS context. Then for any P, Q , if $P \sim Q$ then $C[P] \sim C[Q].$

Proof proceeds "operator-wise": show that for any P,Q , if $P\sim Q$ and $a.P\sim a.Q$, $P + R \sim Q + R$, etc.

 \bigwedge

 \bigwedge

 $\overline{}$

Congruence-hood and Compositional Reasoning

Recall:

 \setminus

$$
Sem_n(0) \stackrel{\Delta}{=} get. Sem_n(1)
$$

\n
$$
Sem_n(k) \stackrel{\Delta}{=} get. Sem_n(k+1) + put. Sem_n(k-1) \quad (0 \le k \le n)
$$

\n
$$
Sem_n(n) \stackrel{\Delta}{=} put. Sem_n(n-1)
$$

 $Sem \quad \triangleq \quad get.Sem'$ $Sem' \triangleq putSem$

- $\bullet\,$ We showed $Sem_2(0) \sim Sem\,|\, Sem$ by constructing a bisimulation.
- We can use this fact and congruence-hood ("substitutivity") of [∼] to prove $Sem_2(0)|\, Sem_2(0) \sim Sem|\, Sem|\,Sem|\, Sem$

 \setminus

What To Do?

- \bullet Problem with \approx stems from initial internal computation.
- \bullet Perhaps we can just hack the definition of \approx to fix this.

Definition $\left| P \approx^C Q \right.$ if for all $a \in Act$:

- 1. $P \stackrel{a}{\longrightarrow} P'$ implies $Q \stackrel{a}{\Longrightarrow} Q'$ and $P' \approx Q'$ some $Q'.$
- 2. $Q \stackrel{a}{\longrightarrow} Q'$ implies $P \stackrel{a}{\Longrightarrow} P'$ and $P' \approx Q'$ some P' .

 \bigwedge

 \setminus

Justifying \approx^C

It turns out that \approx^C is the *largest* congruence contained in \approx . That is:

- Whenever $P \approx^C Q$ then $P \approx Q$ (equivalently: $\approx^C \subseteq \approx$).
- $\bullet\,$ For any other congruence \approx^{D} ⊆ \approx , \approx^{D} ⊆ $\approx^{C}.$

So \approx^C is the "most permissive" congruence consistent with \approx .

 \bigwedge

 \setminus

Practical Ramifications of \approx, \approx^C

- 1. Since problem with \approx stems solely from $+$, some researchers suggest that $+$ is really the issue.
- 2. On the other hand, in most scenarios compositional reasoning only exploited in context of static operators of CCS; i.e. one does not substitute inside $+$.
- 3. So people still use \approx in many cases.

 \bigwedge

 \setminus

Equivalence and Property Preservation

Temporal logic: Focus is on establishing individual properties of systems

Process algebra: Focus is on establishing equivalences between systems

The two points of view turn out to be related: \sim and \approx have *logical characterizations*.

 \bigwedge

 \setminus

Hennessy-Milner Logic (HML)

... a logic for writing simple *modal* formulas

… proven by Hennessy and Milner to *characterize* \sim : two processes are \sim iff they satisfy the same HML formulas.

So if P $\nsim Q$, there exists a formula satisfied by one and not the other.

 \bigwedge

 \setminus

Semantics of HML ...

- ... given as a relation $\models\subseteq\mathcal{P}\times\Phi.$
- $\bullet\,$ We write $P \models \phi$ rather than $\langle P, \phi \rangle \in \models$.
- $\bullet\;P \models \phi$: " P makes ϕ true."

 \bigwedge

 \setminus

What About \approx ?

The results for HML and \sim can be ported to \approx once we notice the following.

Fact $\left.\bullet\right|\,\,\approx$ is the largest relation such that the following hold for all $a\in Act.$ 1. $P \stackrel{\hat{a}}{=}$ $\stackrel{\hat{a}}{\Longrightarrow}P'$ implies $Q\stackrel{\hat{a}}{\Longrightarrow}$ $\stackrel{a}{\Longrightarrow} Q'$ some Q' such that $P' \approx Q'.$ 2. $Q \stackrel{\hat{a}}{=}$ $\stackrel{\hat{a}}{\Longrightarrow} Q'$ implies $P=$ $\Longrightarrow P'$ some P' such that $P'\approx Q'.$

 \bigwedge

 \setminus

How Does this Help?

Can now define "weak HML" (WHML) just like HML except with a weak modality, $\langle\langle a\rangle\rangle!$!

$$
P \models \langle \langle a \rangle \rangle \phi \text{ if } P \stackrel{\hat{a}}{\Longrightarrow} P' \text{ and } P' \models \phi \text{ some } P'.
$$

Derived operator: $[[a]]\phi \equiv \neg\langle\langle a\rangle\rangle\neg\phi$

Can define $=_{WHML}$ analogously with $=_{HML}$.

Then $P \approx Q$ iff $P=_{WHML} Q!$

 \bigwedge

 \setminus

Axiomatizing $\sim/$ \approx

In other verification frameworks, we showed how to prove correctness of systems *vis à vis* specifications.

In CCS we'll show how to give *equational* proofs of equivalences.

 \bigwedge

 \setminus

Equational Proof Systems ...

... proof systems for establishing equalities!

Recall components of ^a symbolic logic:

- Syntax
- Semantics
- Proof system (= axioms + inference rules) for establishing *judgments*

In equational proof systems, judgments have form $P=Q$, where $P,\,Q$ are *terms* in the syntax.

Equational proof systems consist of *logical* axioms and inference rules and *non-logical* axioms.

Such proof allow development of proofs like this.

$$
5 + (3 \cdot 8) + 11 = 5 + 24 + 11
$$
 (Mult)
= 29 + 11 (Add)
= 40 (Add)

 \bigwedge

 \setminus

Non-logical Axioms in Equational Proof Systems

... depend on *semantics* of judgments.

For CCS, we will study two different semantics.

Strong equivalence: $P = Q$ is true iff $P \sim Q$.

Observational congruence: $P=Q$ is true iff $P\approx^C Q$.

 \bigwedge

 \setminus

Equational Axiomatization of \sim for Basic CCS

To develop proof system for \sim and CCS, we'll first look at *Basic CCS*:

- $\bullet\,$ No $|, \setminus L, [f].$
- No process constants.

So only operators are $0,a.,\text{+}.$

 \bigwedge

 \setminus

(Non-logical) Axioms for \sim and Basic CCS

$$
P + Q = Q + P \tag{A1}
$$

$$
P + (Q + R) = (P + Q) + R
$$
 (A2)

$$
P + 0 = P \tag{A3}
$$

$$
P + P = P \tag{A4}
$$

 \setminus

Sample Proof

$$
a.(b.0 + (c.0 + b.0)) + 0 = a.(b.0 + (c.0 + b.0))
$$
 (A3)

$$
= a.(b.0 + (b.0 + c.0)) \quad (A1)
$$

$$
= a.((b.0 + b.0) + c.0) \quad (A2)
$$

$$
= a.(b.0 + c.0) \t (A4)
$$

 \bigwedge

 \setminus

Soundness and Completeness

Fact $\big\vert$ Axioms A1–A4 are *sound* for \sim and Basic CCS. (That is, if one proves $P=Q$ using
———————————————————— A1–A4 then $P \sim Q$.)

Why? Can build bisimations; e.g. for any $P\mathrm{:}% \left(\mathcal{A}\right)$ $\{\langle P+P,P\rangle\}\cup\sim$ is a bisimulation.

Fact Axioms A1–A4 are complete for [∼] and Basic CCS. (That is, ^P [∼] ^Q then you can prove $P=Q$ using A1–A4.)

Why? If $P \stackrel{a}{\longrightarrow} Q$ then can prove $P = a.Q + R$ for some R .

 \bigwedge

 \setminus

Axiomatizing [∼] for Basic Parallel CCS

The next fragment of CCS: Basic Parallel CCS.

- Extends Basic CCS by including | operator.
- $\bullet \,$ Still no $\setminus L,[f]$ or process constants.

<u>Note |</u> Axioms A1–A4 are sound for Basic Parallel CCS (why?); so what we need to do is add axioms for handling $\vert.$

 \bigwedge

 \setminus

The Expansion Law (cont.)

(Exp) Let
$$
P \equiv \sum_{i \in I} a_i P_i
$$
, $Q \equiv \sum_{j \in J} b_j Q_j$. Then:
\n
$$
P|Q = \sum_{i \in I} a_i (P_i|Q) + \sum_{j \in J} b_j (P|Q_j) + \sum_{\langle i,j \rangle \in \{ \langle i,j \rangle \in I \times J | a_i = \overline{b_j} \} } \tau.(P_i|Q_j)
$$

 \bigwedge

 \setminus

 \setminus

Axiomatizing [∼] for Finite CCS

The next fragment of CCS: Finite CCS

- $\bullet~$ Extends Basic Parallel CCS with $\setminus L,[f].$
- No process constants.

A1–A4, Exp are sound; just need axioms for $\setminus L,[f].$

 \bigwedge

 \setminus

Axioms for $\setminus L,[f]$

$$
0 \setminus L = 0
$$
 (Res1)

$$
(a.P) \setminus L = \begin{cases} 0 & \text{if } a \in L \text{ or } \overline{a} \in L \\ a.(P \setminus L) & \text{otherwise} \end{cases}
$$
 (Res2)

$$
(P+Q)\backslash L = (P\backslash L) + (Q\backslash L) \tag{Res3}
$$

$$
0[f] = 0 \tag{Rel1}
$$

$$
(a.P)[f] = \hat{f}(a).(P[f]) \tag{Rel2}
$$

$$
(P+Q)[f] = (P[f]) + (Q[f])
$$
 (Rel3)

 \bigwedge

 \setminus

 \bullet A1–A4, Exp, Res1–Res3, Rel1–Rel3 are sound for \sim and Finite CCS.

(Why? Can build strong bisimulations!)

- \bullet A1–A4, Exp, Res1–Res3, Rel1–Rel3 are also *complete* for \sim and Finite CCS.
	- **–**– Can use Exp to eliminate top-level occurrences of $|$ inside $\setminus L,[f].$
	- **–**– Can then use Res1–Res3, Rel1–Rel3 to "drive" $\setminus L,$ $[f]$ inside $a.,$ $+$ and then remove them!

 \bigwedge

\sim 99

 \bigwedge

 $\overline{}$

Notes

 \setminus

- 1. All previous axioms are sound for \approx^C (why?).
- 2. Previous axioms permit any CCS term to be rewritten into one involving only $0,a.$ and $+$ (Basic CCS!).

To handle \approx^C , need to add axiom(s) for interplay between τ and the Basic CCS operators.

Is $\tau.P=P$ a good axiom?

 \setminus

Axiomatizing \approx^C : The τ Laws

$$
a.\tau.P = a.P \qquad (\tau 1)
$$

$$
P + \tau.P = \tau.P \qquad (\tau 2)
$$

$$
a.(P + \tau.Q) = a.(P + \tau.Q) + a.Q
$$
 (73)

 \bigwedge

 \setminus

Soundness and Completeness for \approx^C , Finite CCS

- $\bullet\,$ A1–A4, Exp, Res1–Res3, Rel1–Rel3, τ 1– τ 3 are sound for \approx^{C} and Finite CCS. (Why? Can build appropriate weak bisimulations.)
- $\bullet\,$ A1–A4, Exp, Res1–Res3, Rel1–Rel3, τ 1– τ 3 are also $\it{complete}$ for \approx^{C} and Finite CCS. (Why? It's magic...)

 \bigwedge

 \setminus

 \setminus

So What Do We Do?

- Inference rules for restricted classes of CCS can be defined.
- We will study one example: "Unique Fixpoint Induction"
- There are others, e.g. "Regular CCS"
- In practice, these often suffice.

 \bigwedge

 \setminus

\sim and Unique Fixpoint Induction

Needed \mid Rules for proving \sim between process constants, other process terms.
————————————————————

ExampleRecall:

$$
Sem_n(0) = get Sem_n(1)
$$

\n
$$
Sem_n(k) = getSem_n(k+1) + putSem_n(k-1) \quad (0 \le k \le n)
$$

\n
$$
Sem_n(n) = putSem_n(n-1)
$$

$$
Sem = get.Sem'
$$

$$
Sem' = put.Sem
$$

- $\bullet\,$ We know $Sem_2(0) \thicksim Sem\,|\,Sem$ (why?)
- $\bullet\,$ How can we prove $Sem_2(0) = Sem \,|\, Sem?$

 \bigwedge

 \setminus

Two Rules for $∼$ and Process Constants

$$
\frac{C \stackrel{\Delta}{=} P}{C = P}
$$
 (Unr)

$$
X = P
$$
 is an equation with a unique solution up to ~
\n
$$
Q = P[Q/X]
$$

\n
$$
R = P[R/X]
$$

\n
$$
Q = R
$$
 (UFI)

 \bigwedge

 \setminus

UFI?

- ... stands for Unique Fixpoint Induction
	- $\bullet~ X = P$ is an equation, with X a variable and P a process term involving $X.$

$$
\boxed{\mathsf{E.g.}}\ X = a.X + b.X
$$

- A solution to $X = P$ is a process term Q such that $Q \sim P[Q/X]$ ($P[Q/X]$ is P with instances of variable X replaced by Q).
- If $X = P$ has a unique solution up to \sim then any two solutions must be \sim !

Question What equations have unique solutions? \bigwedge

UFI and Systems of Equations

UFI can be generalized to *systems* of equations.

Definition

1. A system of n equations has form:

 $X_{n-1} = P_{n-1}$ where \vec{X} built up from \vec{X} $\vec{X} = \langle X_0, \ldots, X_{n-1} \rangle$ are the unknowns and \vec{P} $=\langle P_0, \ldots, P_{n-1}\rangle$ are CCS terms

 X_0 = P_0

2. A solution to a system of n equations \vec{X} $\vec{Q}=\langle Q_0,\ldots,Q_{n-1}\rangle$ such that for ϵ $\vec{P} = \vec{P}$ is a vector of CCS terms $Q_i \sim P[Q_0/X_0, \ldots, Q_{n-1}/X_{n-1}].$ $=\langle Q_0, \ldots, Q_{n-1}\rangle$ such that for every equation $X_i = P_i,$

 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ Notions of uniqueness of solutions, guardedness can be extended to systems of equations. \bigwedge

 \setminus

Example: Prove $Sem_2(0) = Sem \, | \, Sem$

1. Consider the equation system $E\mathrm{:}$

$$
X_0 = get.X_1
$$

\n
$$
X_1 = get.X_2 + put.X_0
$$

\n
$$
X_2 = put.X_1
$$

- 2. Prove that $\langle Sem_2(0), Sem_2(1), Sem_2(2)\rangle$ is a solution to E
- 3. Prove that $\langle Sem \, | \, Sem, Sem' \, | \, Sem, Sem' \, | \, Sem'\, | \, Sem'\rangle$ is a solution to E

 \bigwedge

Unique Fixpoint Indunction for
$$
\approx^C
$$
:

\n

$X = P$ is an equation with a unique solution up to \approx^C	
$Q = P[Q/X]$	
$R = P[R/X]$	
Question	What equations have unique solutions?

Strong Sequential Guardedness

Definition n Svariable X is *strongly sequential* in P if every occurrence of X appears within at least one prefixing operator whose action is visible (i.e. not $\tau)$ and is not inside any parallel composition operator.

Examples

- 1. X is not strongly sequential in $\tau.X.$
- 2. X is strongly sequential in $a.X$ if $a\neq \tau$.
2. X is not strongly sequential in $a\,|X|\,\overline{a}\,\,X$
- 3. X is not strongly sequential in $a.X \mid \overline{a}.X$.
- 4. X is not strongly sequential in $a.X \,|\, b.X.$
- 5. X is strongly sequential in $a.X + b.X$ if $a, b \neq \tau$.

Theorem (Milner89)) \bigcup Let X is strongly sequential in $P.$ Then $X=P$ has a unique solution up to \approx^C .

Less restrictive conditions also possible:

Brook, NY, August 1992. Springer-Verlag, Heidelberg. E. Brinksma. On the uniqueness of fixpoints modulo observation congruence. In R. Cleaveland, editor, *CONCUR '92*, volume 630 of *Lecture Notes in Computer Science*, pages 47–61, Stony

 \bigwedge

 \setminus

A Review of Equivalence Classes

Given a set S and an equivalence relation $\mathcal{R} \subseteq S \times S,$ one can use $\mathcal R$ to partition S into equivalence classes.

Definition n Given S , equivalence relation $\mathcal{R},$ $S' \subseteq S$ is an equivalence class with respect to $\mathcal R$ if the following hold.

- For all $s, s' \in S'$, $s \mathcal{R} s'$.
- For all $s \in S$, if $s \mathcal{R} s'$ some $s' \in S'$ then $s \in S'.$

That is, S^{\prime} represents a maximal "clump" of equivalent elements in $S.$

Notation<u>In</u> If $s ∈ S$ then $[s]_{\mathcal{R}} \stackrel{\Delta}{=} \{ s' ∈ S \mid s \mathcal{R} s' \}$ is the equivalence class of s . \bigwedge

 \setminus

Notes about Equivalence Classes

Let S be a set, $\mathcal{R} \subseteq S \times S$ be an equivalence relation.

- 1. For any two equivalence classes S_1, S_2 , either $S_1 = S_2$ or $S_1 \cap S_2 = \emptyset$.
- 2. Every element $s \in S$ belongs to exactly one equivalence class, namely, $[s]_\mathcal{R}.$
- 3. $s_1 \mathcal{R} s_2$ iff s_1, s_2 belong to the same equivalence class.

 \bigwedge

 \setminus

So How Does This Help Us Compute $\sim/$ \approx ?

- $\mathcal{S}_{P,Q} \subseteq \mathcal{P}$, and since \sim/\approx are equivalences over \mathcal{P} , they are equivalences over $\mathcal{S}_{P,Q}$ also.
- If P,Q in same equivalence class of \sim/\approx over $\mathcal{S}_{P,Q},$ then they are equivalent; otherwise, they are not.
- So ... if we can compute equivalence classes of $\sim/$ \approx over $\mathcal{S}_{P,Q}$, we can determine whether or not $P,\,Q$ are strongly/observationally equivalent!

Thus, if we can compute the relevant equivalence classes, we can compute $\sim/$ \approx . To see how we do this we'll focus first on \sim .

 \bigwedge

$\sqrt{2\pi}$ \bigwedge An Iterative Characterization of \sim | Notee │ Definition of \sim can be given for arbitrary LTSs (i.e. triples $\langle \mathcal{S}, Act, \longrightarrow \rangle$), not just CCS. Assume LTS $\langle \mathcal{S}, Act, \longrightarrow \rangle$ satisfies: \mathcal{S}, Act are finite. Then \sim \subseteq $\mathcal{S} \times \mathcal{S}$ is the same as $\bigcap_{i=0}^{\infty} \sim_{i}$, where: \bullet $P\sim_0 Q$ holds all $P,Q.$ \bullet $P\sim_{i+1} Q$ holds if for all $a\in Act$: 1. $P \stackrel{a}{\longrightarrow} P'$ implies $Q \stackrel{a}{\longrightarrow} Q'$ some Q' with $P' \sim_i Q'.$ 2. $Q \stackrel{a}{\longrightarrow} Q'$ implies $P \stackrel{a}{\longrightarrow} P'$ some P' with $P' \sim_i Q'.$

 \setminus

Splitting Over All Actions

Similarly, we can define $\texttt{all-split}$ that splits a partition with respect to a splitter and \textit{all} actions.

```
all-split (\Pi, S) =
R := \prod_{i}foreach a \in Act do
  R := split(R, a, S);return R;
```
Does order of actions matter? No....

 \bigwedge

 $\bigg($ \bigwedge Splitting ^a Partition With Respect to AnotherWe can now lift the notion of "splitting a partition" to a list of "splitters": just split with respect to all splitters! $\texttt{part-split}(\Pi_1, \Pi_2)$ = $R := \Pi_1;$ foreach $S \in \Pi_2$ do R := $all-split(R, S)$; return R; Then $\texttt{refine(R)}$ is just $\texttt{part-split}$ $(R,R)!$

 \setminus

Complexity Analysis

- all-split (Π, S) can be implemented in $O(\Sigma_{a \in Act} | (\stackrel{a}{\longrightarrow} S) |).$ (How?)
- So $\texttt{refine(R)}$ takes $O(|\longrightarrow|)$. (Why?)
- $\bullet\,$ Loop can iterate at most $|\mathcal{S}|$ times. (Why?)
- $\bullet\,$ So complexity is $O(|\mathcal{S}|\cdot|\longrightarrow|)!$

 \bigwedge

 \setminus

Optimizations

 $\bullet\,$ If S' is a yet-to-be-processed splitter in R that is itself split by another splitter S , then there is no need to split with respect to $S';$ just use the "children" of $S'.$

(Note: this does not affect complexity, but it simplifies implementation. Just maintain ^a list of splitters to be processed!)

 $\bullet\,$ By doing some extra work, $O(\log(|\mathcal{S}|)\cdot |\longrightarrow|)$ possible.

 \bigwedge

 \setminus

Computing $P\sim Q$

- 1. Compute $\mathcal{S}_{P,Q}$ = CCS expressions reachable from P , Q .
- 2. Compute equivalence classes of $\mathcal{S}_{P,Q}$ with respect to \sim .
- 3. Determine whether $P,\,Q$ belong to same equivalence class.

 \bigwedge

 \setminus

Computing $P \approx Q$

- $...$ combine *LTS transformation* with approach for computing \sim !
	- $\bullet \hspace{0.1cm} \langle \mathcal{S}_{P,Q}, Act, \longrightarrow \rangle$ forms an LTS.
- $\bullet \hspace{0.1cm}$ So does $\langle \mathcal{S}_{P,Q}, \widehat{Act},\Longrightarrow \rangle.$
- $\bullet\,$ We can transform $\langle \mathcal{S}_{P,Q},Act,\longrightarrow\rangle$ into $\langle \mathcal{S}_{P,Q},\widehat{Act},\Longrightarrow\rangle.$

(Here \widehat{Act} $= \{\,\widehat{a} \mid a \in Act\,\}.$ \bigwedge

 \setminus

Computing $P \approx Q$ (cont.)

So we can compute $P \approx Q$ as follows.

- 1. Compute $\mathcal{S}_{P,Q}$ = CCS expressions reachable from P , Q .
- 2. Build $\langle \mathcal{S}_{P,Q}, \widehat{Act}, \Longrightarrow \rangle$ from $\langle \mathcal{S}_{P,Q}, Act, \longrightarrow \rangle.$
- 3. Compute equivalence classes of $\langle \mathcal{S}_{P,Q}, \widehat{Act},\Longrightarrow \rangle$ with respect to \sim .
- 4. Determine whether $P,\,Q$ belong to same equivalence class.

 \setminus

Why Does This Work?

... because \approx is the largest relation such that whenever $P \approx Q$ then the following hold for all $a \in Act$.

1.
$$
P \stackrel{\hat{a}}{\Longrightarrow} P'
$$
 implies $Q \stackrel{\hat{a}}{\Longrightarrow} Q'$ some Q' such that $P' \approx Q'$.

2.
$$
Q \stackrel{\hat{a}}{\Longrightarrow} Q'
$$
 implies $P \stackrel{\hat{a}}{\Longrightarrow} P'$ some P' such that $P' \approx Q'$.

 \bigwedge

 $\sqrt{2\pi}$ \bigwedge There Are Other Process Algebras... 1. CSP: like CCS, but multiway rendezvous is basic notion of synchronization. 2. ACP: like CCS except that notion of synchronization is parameterized. 3. LOTOS: CCS/CSP-like ISO standard. 4. SCCS: synchronous systems. All, however, share emphasis on: operational semantics, equational reasoning.