
iOS

How to develop apps for iPhones and iPads

Development Environment

Development Environment

• Platforms
– iOS
– WatchOS
– TvOS

• Tools
– Xcode 10.1 (emulator)

• Language
– Swift 4
– Swift Playgrounds

iOS

Swift 4

Swift

• Swift features several programming constructs from
other languages including ObjectiveC and Smalltalk

• Swift is a multi-paradigm programming environment
• Swift allows type inference e.g. loose typing
• Swift programming statements do not require line

ending characters (semicolons)

Our first application

print("Hello, world!")

Playground

Variables and constants
//Variables
var name: String = "Jane Doe"
var year: Int = 2014
var isFast: Bool = true

//Data type detection
var name = "Jane Doe"
var year = 2014
var isFast = true

//Constants
let name: String = "Jane Doe"
let year: Int = 2014
let isFast: Bool = true

Type Safety and Type Inference

• Swift is type safe
– Encourages you to be clear about types
– It performs type checks during compilation

• You don’t have to specify the types explicitly
– The type is inferred at compilation time depending on the

assignments that are made
– Fewer declarations than with C and Objective-C
– It’s a good idea to initialize variables when we declare them

Tuples

let http404Error = (404, "Not Found")
let (statusCode, statusMessage) = http404Error

print("The status code is \(statusCode)")
print("The status message is \(statusMessage)")

let (justTheStatusCode, _) = http404Error
print("The status code is \(justTheStatusCode)")

print("The status code is \(http404Error.0)")
print("The status message is \(http404Error.1)")

let http200Status = (statusCode: 200, description: "OK")

print("The status code is \(http200Status.statusCode)")
print("The status message is \(http200Status.description)")

Optionals

• Use optionals where a value may be absent
– There is a value and it equals to x or there is no value (nil)

let posNum = "123"
let convNum: Int? = Int(posNum)

if convNum != nil {
print("convNum has an integer value of \(convNum!).")

}

// Without ! it would print “convNum has an integer value of Optional(123)”.

let possibleString: String? = "An optional string."
let forcedString: String = possibleString!

let assumedString: String! = "An implicitly unwrapped optional string."
let implicitString: String = assumedString

Operators

• Nil Coalescing Operator
– (a ?? b) is equivalent to a != nil ? a! : b
– if the optional a contains a value we take the unwrapped

value, if not we take a default b

• Closed Range Operator
– (a…b) defines a range that goes from a to b (included)

• Half-Open Range Operator
– (a..<b) defines a range that goes from a to b (excluded)

Strings

• Strings are represented by type String

– String mutability depends on let/var
– Support for String interpolation

• Swift’s type String is a value type
– A String value is copied when it is passed to a function or

method, or when it is assigned to a constant or variable
– A new copy of the existing String value is created, and the new

copy is passed or assigned, not the original version

for character in "Dog!" {
print(character)

}

Collections

Arrays

var shoppingList: [String] = ["Eggs", "Milk"]
// or var ShoppingList = ["Eggs", "Milk"]

print("The shopping list contains \(shoppingList.count) items.")

if shoppingList.isEmpty {
print("The shopping list is empty")

} else {
print("The shopping list is not empty")

}

shoppingList += ["Baking Powder"]
// shoppingList now contains 3 items
shoppingList += ["Chocolate Spread", "Cheese", "Butter"]
// shoppingList now contains 6 items

shoppingList.insert("Maple Syrup", at: 0)
// shoppingList now contains 7 items
// "Maple Syrup" is now the first item in the list

shoppingList[4...6] = ["Bananas", "Apples"]
// shoppingList now contains 6 items

var firstItem = shoppingList[0]

var someInts = [Int]()
print("someInts is of type [Int] with \(someInts.count) items.")

Ways to iterate over arrays

for item in shoppingList {
print(item)

}

for (index, value) in shoppingList.enumerated() {
print("Item \(index + 1): \(value)")

}

Sets

var favoriteGenres: Set<String> = ["Rock", "Classical", "Hip hop"]
// favoriteGenres has been initialized with three initial items

print("I have \(favoriteGenres.count) favorite music genres.")
// Prints "I have 3 favorite music genres."

favoriteGenres.insert("Jazz")
// favoriteGenres now contains 4 items

if let removedGenre = favoriteGenres.remove("Rock") {
print("\(removedGenre)? I'm over it.")

} else {
print("I never much cared for that.")

}
// Prints "Rock? I'm over it."

if favoriteGenres.contains("Funk") {
print("I get up on the good foot.")

} else {
print("It's too funky in here.")

}
// Prints "It's too funky in here."

for genre in favoriteGenres {
print("\(genre)")

}

Set operations

let oddDigits: Set = [1, 3, 5, 7, 9]
let evenDigits: Set = [0, 2, 4, 6, 8]
let singleDigitPrimeNumbers: Set = [2, 3, 5, 7]

oddDigits.union(evenDigits).sorted()
// [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
oddDigits.intersection(evenDigits).sorted()
// []
oddDigits.subtracting(singleDigitPrimeNumbers).sorted()
// [1, 9]
oddDigits.symmetricDifference(singleDigitPrimeNumbers).sorted()
// [1, 2, 9]

Dictionaries
var airports: [String: String] = ["YYZ": "Toronto", "DUB": "Dublin"]

print("The airports dictionary contains \(airports.count) items.")

if airports.isEmpty {
print("The airports dictionary is empty.")

} else {
print("The airports dictionary is not empty.")

}

airports["LHR"] = "London"
airports["LHR"] = "London Heathrow"
airports["LHR"] = nil //removing an existing value!

if let oldValue = airports.updateValue("Dublin Airport", forKey: "DUB") {
print("The old value for DUB was \(oldValue).")

}

Ways to iterate over a Dictionary

for (airportCode, airportName) in airports {
print("\(airportCode): \(airportName)")

}

for airportCode in airports.keys {
print("Airport code: \(airportCode)")

}

for airportName in airports.values {
print("Airport name: \(airportName)")

}

For-in
for index in 1...5 {

print("\(index) times 5 is \(index * 5)")
}

let base = 3
let power = 10
var answer = 1
for _ in 1...power {

answer *= base
}
print("\(base) to the power of \(power) is \(answer)")

let numberOfLegs = ["spider": 8, "ant": 6, "cat": 4]
for (animalName, legCount) in numberOfLegs {

print("\(animalName)s have \(legCount) legs")
}

While loops

while condition {
statements

}

repeat {
statements

} while condition

Switch
let someCharacter: Character = "e"
switch someCharacter {
case "a", "e", "i", "o", "u":

print("\(someCharacter) is a vowel")
case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m",
"n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z":

print("\(someCharacter) is a consonant")
default:

print("\(someCharacter) is not a vowel or a consonant")
}

… with intervals

let count = 3000000000000
let countedThings = "stars in the Milky Way"
var naturalCount = ""
switch count {
case 0:

naturalCount = "no"
case 1...3:

naturalCount = "a few"
case 4...9:

naturalCount = "several"
case 10...99:

naturalCount = "tens of"
case 100...999:

naturalCount = "hundreds of"
case 1000...999999:

naturalCount = "thousands of"
default:

naturalCount = "millions and millions of"
}
print("There are \(naturalCount) \(countedThings).")

… and with tuples
let somePoint = (1, 1)
switch somePoint {
case (0, 0):

print("(0, 0) is at the origin")
case (_, 0):

print("(\(somePoint.0), 0) is on the x-axis")
case (0, _):

print("(0, \(somePoint.1)) is on the y-axis")
case (-2...2, -2...2):

print("(\(somePoint.0), \(somePoint.1)) is inside the box")
default:

print("(\(somePoint.0), \(somePoint.1)) is outside of the box")
}

let anotherPoint = (2, 0)
switch anotherPoint {
case (let x, 0):

print("on the x-axis with an x value of \(x)")
case (0, let y):

print("on the y-axis with a y value of \(y)")
case let (x, y):

print("somewhere else at (\(x), \(y))")
}

Functions (I)
func sayHello(personName: String) -> String {

return "Hello again, " + personName + "!"
}

print(sayHello(personName: "Anna"))

func halfOpenRangeLength(start: Int, end: Int) -> Int {
return end - start

}

print(halfOpenRangeLength(start: 4, end: 9))

func sayHelloWorld() -> String {
return "hello, world"

}

print(sayHelloWorld())

func sayGoodbye(personName: String) {
print("Goodbye, \(personName)!")

}

sayGoodbye(personName: "Anna")

Functions (II)
func minMax(array: [Int]) -> (min: Int, max: Int) {

var currentMin = array[0]
var currentMax = array[0]
for value in array[1..<array.count] {

if value < currentMin {
currentMin = value

} else if value > currentMax {
currentMax = value

}
}
return (currentMin, currentMax)

}

let bounds = minMax(array: [8, -6, 2, 109, 3, 71])
print("min is \(bounds.min) and max is \(bounds.max)")
// Prints "min is -6 and max is 109"

Functions (III)
func minMax(array: [Int]) -> (min: Int, max: Int)? {

if array.isEmpty { return nil }
var currentMin = array[0]
var currentMax = array[0]
for value in array[1..<array.count] {

if value < currentMin {
currentMin = value

} else if value > currentMax {
currentMax = value

}
}
return (currentMin, currentMax)

}

if let bounds = minMax(array: [8, -6, 2, 109, 3, 71]) {
print("min is \(bounds.min) and max is \(bounds.max)")

}

Argument labels
func sayHello(person: String, anotherPerson: String) -> String {

return "Hello \(person) and \(anotherPerson)!"
}

print(sayHello(person: "Bill", anotherPerson: "Ted"))

func sayHello(to person: String, and anotherPerson: String) -> String {
return "Hello \(person) and \(anotherPerson)!"

}

print(sayHello(to: "Bill", and: "Ted"))

func sayHello(_ person: String, _ anotherPerson: String) -> String {
return "Hello \(person) and \(anotherPerson)!"

}

print(sayHello("Bill", "Ted"))

Trying to change the value of a function parameter from within the body of that function
results in a compile-time error

Default values and variadic parameters
func someFunction(parameterWithDefault: Int = 12) {

// function body goes here
}

someFunction(parameterWithDefault: 6) // parameterWithDefault is 6
someFunction() // parameterWithDefault is 12

func arithmeticMean(numbers: Double...) -> Double {
var total: Double = 0
for number in numbers {

total += number
}
return total / Double(numbers.count)

}
print(arithmeticMean(numbers: 1, 2, 3, 4, 5))
// returns 3.0, which is the arithmetic mean of these five numbers
print(arithmeticMean(numbers: 3, 8.25, 18.75))
// returns 10.0, which is the arithmetic mean of these three numbers

In-out parameters

• Variable parameters, as described above, can only be changed within the function
itself
– Some limitations

func swapTwoInts(_ a: inout Int, _ b: inout Int) {
let temporaryA = a
a = b
b = temporaryA

}

var someInt = 3
var anotherInt = 107
swapTwoInts(&someInt, &anotherInt)
print("someInt is now \(someInt), and anotherInt is now \(anotherInt)")

Function Types (I)

• Every function has a specific function type, made up of the parameter types and the return type of
the function

func addTwoInts(_ a: Int, _ b: Int) -> Int {
return a + b

}
func multiplyTwoInts(_ a: Int, _ b: Int) -> Int {

return a * b
}

var mathFunction: (Int, Int) -> Int = addTwoInts

print("Result: \(mathFunction(2, 3))")
// Prints "Result: 5"

mathFunction = multiplyTwoInts
print("Result: \(mathFunction(2, 3))")
// Prints "Result: 6"

let anotherMathFunction = addTwoInts
// anotherMathFunction is inferred to be of type (Int, Int) -> Int

func printMathResult(_ mathFunction: (Int, Int) -> Int, _ a: Int, _ b: Int) {
print("Result: \(mathFunction(a, b))")

}
printMathResult(addTwoInts, 3, 5)
// Prints "Result: 8"

func stepForward(_ input: Int) -> Int {
return input + 1

}
func stepBackward(_ input: Int) -> Int {

return input - 1
}

func chooseStepFunction(backward: Bool) -> (Int) -> Int {
return backward ? stepBackward : stepForward

}

var currentValue = 3
let moveNearerToZero = chooseStepFunction(backward: currentValue > 0)
// moveNearerToZero now refers to the stepBackward() function

print("Counting to zero:")
// Counting to zero:
while currentValue != 0 {

print("\(currentValue)... ")
currentValue = moveNearerToZero(currentValue)

}
print("zero!")

Nested Functions

• All of the functions so far have been examples of global
functions, defined at a global scope

• Nested functions are functions inside the bodies of
other functions
– They are hidden from the outside world by default, but can

still be called and used by their enclosing function
– An enclosing function can also return one of its nested

functions to allow the nested function to be used in another
scope

Example

func chooseStepFunction(backward: Bool) -> (Int) -> Int {
func stepForward(input: Int) -> Int { return input + 1 }
func stepBackward(input: Int) -> Int { return input - 1 }
return backward ? stepBackward : stepForward

}
var currentValue = -4
let moveNearerToZero = chooseStepFunction(backward: currentValue > 0)
// moveNearerToZero now refers to the nested stepForward() function
while currentValue != 0 {

print("\(currentValue)... ")
currentValue = moveNearerToZero(currentValue)

}
print("zero!")

Closures

• Closures are self-contained blocks of functionality that can
be passed around and used in your code
– Closures in Swift are similar to blocks in C and to lambdas in

other programming languages
• Closures take one of three forms
– Global functions are closures that have a name and do not

capture any values
– Nested functions are closures that have a name and can capture

values from their enclosing function
– Closure expressions are unnamed closures written in a

lightweight syntax that can capture values from their surrounding
context

Closure expressions

• Nested functions are a convenient means of naming and
defining self-contained blocks of code as part of a larger
function

• Closure expression syntax

let names = ["Chris", "Alex", "Ewa", "Barry", "Daniella"]

func backward(_ s1: String, _ s2: String) -> Bool {
return s1 > s2

}
var reversedNames = names.sorted(by: backward)
// reversedNames is equal to ["Ewa", "Daniella", "Chris", "Barry", "Alex"]

var reversedNames = names.sorted(by: {(s1: String, s2: String) -> Bool in
return s1 > s2})

Closures

• Inferring Type from Context

• Implicit Returns
– Single-expression closures can implicitly return the result of their single expression

• Shorthand Argument Names

• Operator Functions
– Swift’s String type defines its string-specific implementation of the greater-than

operator

• Trailing Closures

reversedNames = names.sorted(by: {s1, s2 in return s1 > s2})

reversedNames = names.sorted(by: {s1, s2 in s1 > s2})

reversedNames = names.sorted(by: {$0 > $1})

reversedNames = names.sorted(by: >)

reversedNames = names.sorted() {$0 > $1}
reversedNames = names.sorted {$0 > $1}

Trailing closures

func someFunctionThatTakesAClosure(closure: () -> Void) {
// function body goes here

}

// Here's how you call this function without using a trailing closure:

someFunctionThatTakesAClosure(closure: {
// closure's body goes here

})

// Here's how you call this function with a trailing closure instead:

someFunctionThatTakesAClosure() {
// trailing closure's body goes here

}

Capturing Values
func makeIncrementer(forIncrement amount: Int) -> () -> Int {

var runningTotal = 0
func incrementer() -> Int {

runningTotal += amount
return runningTotal

}
return incrementer

}

let incrementByTen = makeIncrementer(forIncrement: 10)

incrementByTen()
// returns a value of 10
incrementByTen()
// returns a value of 20
incrementByTen()
// returns a value of 30

let incrementBySeven = makeIncrementer(forIncrement: 7)
incrementBySeven()
// returns a value of 7

incrementByTen()
// returns a value of 40

Classes and Structures

• Classes and structures can
– Define properties to store values
– Define methods to provide functionality
– Define subscripts to provide access to their values using subscript syntax
– Define initializers to set up their initial state
– Be extended to expand their functionality beyond a default implementation
– Conform to protocols to provide standard functionality of a certain kind

• Classes have additional capabilities that structures do not:
– Inheritance enables one class to inherit the characteristics of another
– Type casting enables you to check and interpret the type of a class instance at

runtime
– Deinitializers enable an instance of a class to free up any resources it has assigned
– Reference counting allows more than one reference to a class instance

Conditions for using structures

• They are used to encapsulate a few relatively simple data values
• Encapsulated values will be copied rather than referenced when

you assign or pass around an instance of that structure
• Any properties stored by the structure are themselves value types,

which would also be expected to be copied rather than referenced
• A structure does not need to inherit properties or behavior from

another existing type

• Many basic data types such as String, Array, and Dictionary are
implemented as structures in Swift
– This means that they are copied when assigned

First example

• This creates a new instance of the class or structure, with properties initialized to their default
values

struct Resolution {
var width = 0
var height = 0

}

class VideoMode {
var resolution = Resolution()
var interlaced = false
var frameRate = 0.0
var name: String?

}

let someResolution = Resolution()
let someVideoMode = VideoMode()

print("The width of someResolution is \(someResolution.width)")
print("The width of someVideoMode is \(someVideoMode.resolution.width)")

someVideoMode.resolution.width = 1280
print("The width of someVideoMode is now \(someVideoMode.resolution.width)")

Structures

• All structures have an automatically-generated memberwise
initializer

• Structures are value types
– Any structure instance is always copied when it is passed around

the code

let vga = Resolution(width: 640, height: 480)

let hd = Resolution(width: 1920, height: 1080)
var cinema = hd //this is a copy: cinema and hd are two different instances

cinema.width = 2048
print("cinema is now \(cinema.width) pixels wide")
// prints "cinema is now 2048 pixels wide"
print("hd is still \(hd.width) pixels wide")
// prints "hd is still 1920 pixels wide"

Classes

• Classes are reference types
– they are not copied, but a reference to the same instance is made

• Identical to (===), not identical to (!==), and equal (==)

let tenEighty = VideoMode()
tenEighty.resolution = hd
tenEighty.interlaced = true
tenEighty.name = "1080i"
tenEighty.frameRate = 25.0

let alsoTenEighty = tenEighty
alsoTenEighty.frameRate = 30.0

print("The frameRate property of tenEighty is now \(tenEighty.frameRate)")
// prints "The frameRate property of tenEighty is now 30.0"

if tenEighty === alsoTenEighty {
print("tenEighty and alsoTenEighty refer to the same VideoMode instance.")

}

Stored properties

• If you create an instance of a structure, assign that instance to a constant
and change it, there is an error:

• A lazy stored property is a property whose initial value is not calculated
until the first time it is used

struct FixedLengthRange {
var firstValue: Int
let length: Int

}
var rangeOfThreeItems = FixedLengthRange(firstValue: 0, length: 3)
// the range represents integer values 0, 1, and 2
rangeOfThreeItems.firstValue = 6
// the range now represents integer values 6, 7, and 8

let rangeOfFourItems = FixedLengthRange(firstValue: 0, length: 4)
// this range represents integer values 0, 1, 2, and 3
rangeOfFourItems.firstValue = 6
// this will report an error, even though firstValue is a variable property

class DataManager {
lazy var importer = DataImporter()
var data = [String]()

}

Computed properties
struct Point {

var x = 0.0, y = 0.0
}
struct Size {

var width = 0.0, height = 0.0
}
struct Rect {

var origin = Point()
var size = Size()
var center: Point {

get {
let centerX = origin.x + (size.width / 2)
let centerY = origin.y + (size.height / 2)
return Point(x: centerX, y: centerY)

}
set(newCenter) {

origin.x = newCenter.x - (size.width / 2)
origin.y = newCenter.y - (size.height / 2)

}
}

}
var square = Rect(origin: Point(x: 0.0, y: 0.0),

size: Size(width: 10.0, height: 10.0))
let initialSquareCenter = square.center
square.center = Point(x: 15.0, y: 15.0)
print("square.origin is now at (\(square.origin.x), \(square.origin.y))")
// prints "square.origin is now at (10.0, 10.0)"

Read-only computed properties

• A computed property with a getter but no setter is known
as a read-only computed property
– We can remove the get keyword and its braces

struct Cuboid {
var width = 0.0, height = 0.0, depth = 0.0
var volume: Double {

return width * height * depth
}

}
let fourByFiveByTwo = Cuboid(width: 4.0, height: 5.0, depth: 2.0)
print("the volume of fourByFiveByTwo is \(fourByFiveByTwo.volume)")
// prints "the volume of fourByFiveByTwo is 40.0"

Property Observers

• They observe and respond
to changes in property
values
– They are called every time

the property’s setter is
called

– cannot be added to lazy
properties

• One can implement
– willSet - called just before

the value is stored
– didSet - called immediately

after the new value is stored

class StepCounter {
var tSteps: Int = 0 {
willSet(nSteps) {
print("About to set tSteps to \(nSteps)")

}
didSet {
if tSteps > oldValue {
print("Added \(tSteps - oldValue) steps")

}
}

}
}
let stepCounter = StepCounter()
stepCounter.tSteps = 200
// About to set tSteps to 200
// Added 200 steps
stepCounter.tSteps = 360
// About to set tSteps to 360
// Added 160 steps
stepCounter.tSteps = 896
// About to set tSteps to 896
// Added 536 steps

Type Properties (static)

• They belong to the type and not to a specific instance!
• For computed type properties for class types, we can use the class

keyword instead to allow subclasses to override the superclass’s
implementation

struct SomeStructure {
static var storedTypeProperty = "Some value."
static var computedTypeProperty: Int {

return 1
}

}

class SomeClass {
static var storedTypeProperty = "Some value."
static var computedTypeProperty: Int {

return 27
}
class var overrideableComputedTypeProperty: Int {

return 107
}

}

Methods

• Methods are functions that
are associated with a
particular type
– Classes, structures, and

enumerations can all define
methods

– Support for instance methods
and type methods

class Counter {
var count = 0
func increment() {

count += 1
}
func incrementBy(_ amount: Int) {

self.count += amount
}
func reset() {

count = 0
}

}

let counter = Counter()
counter.increment()
counter.incrementBy(5)
counter.reset()

Modifying Value Types from
Within Instance Methods

• Structures and enumerations are value types
• By default, the properties of a value type cannot be modified from

within its instance methods
– Unless the method is identified as mutating
– The method assigns a completely new instance to its implicit self

property

struct Point {
var x = 0.0, y = 0.0
mutating func moveByX(x deltaX: Double, y deltaY: Double) {

x += deltaX
y += deltaY

}
}
var somePoint = Point(x: 1.0, y: 1.0)
somePoint.moveByX(x: 2.0, y: 3.0)
print("The point is now at (\(somePoint.x), \(somePoint.y))")
// prints "The point is now at (3.0, 4.0)"

Type Methods

• We indicate type methods for classes by writing keyword
class before func

• We indicate type methods for structures by writing
keyword static func

• Self becomes a reference to the type itself, and not to a
particular instance

• Calls to these methods are made directly to the type
and not to an instance

Subscripts

• Subscripts are shortcuts for
accessing the member elements
of a collection, list or sequence
– Access through indexes and not

specific getters and setters
– Multiple subscripts for a type can

coexist, and the correct subscript is
chosen based on the type of index
value passed

– subscripts can have multiple
dimensions (not just a single index
parameter)

• They can be used to query an
instance
– introduced by keyword subscript

subscript(index: Int) -> Int {
get {

// return an appropriate value
}
set(newValue) {

// perform a setting action here
}

}

struct TimesTable {
let multiplier: Int
subscript(index: Int) -> Int {

return multiplier * index
}

}
let threeTTable = TimesTable(multiplier: 3)
print("six x three is \(threeTTable[6])")
// prints "six x three is 18"

Examplestruct Matrix {
let rows: Int, columns: Int
var grid: [Double]
init(rows: Int, columns: Int) {

self.rows = rows
self.columns = columns
grid = Array(repeating: 0.0, count: rows * columns)

}
func indexIsValid(row: Int, column: Int) -> Bool {

return row >= 0 && row < rows && column >= 0 && column < columns
}
subscript(row: Int, column: Int) -> Double {

get {
assert(indexIsValid(row: row, column: column), "Index out of range")
return grid[(row * columns) + column]

}
set {

assert(indexIsValid(row: row, column: column), "Index out of range")
grid[(row * columns) + column] = newValue

}
}

}

var matrix = Matrix(rows: 2, columns: 2)

matrix[0, 1] = 1.5
matrix[1, 0] = 3.2

Inheritance

• Swift classes do NOT inherit from a universal base class
– Every class that does not inherit from another class becomes a

base class
class Vehicle {

var currentSpeed = 0.0
var description: String {

return "traveling at \(currentSpeed) miles per hour"
}
func makeNoise() {

// do nothing - an arbitrary vehicle doesn't necessarily make a noise
}

}

class Bicycle: Vehicle {
var hasBasket = false

}

class Tandem: Bicycle {
var currentNumberOfPassengers = 0

}

Overriding

• Overriding
– The method should be introduced by keyword override
– can be prevented using keyword final

• Accessing the superclass is done using keyword super
– An overridden method named someMethod can call the superclass

version of someMethod by calling super.someMethod() within the
overriding method implementation

– An overridden property called someProperty can access the
superclass version of someProperty as super.someProperty within the
overriding getter or setter implementation

– An overridden subscript for someIndex can access the superclass
version of the same subscript as super[someIndex] from within the
overriding subscript implementation

Examples
class Train: Vehicle {

override func makeNoise() {
print("Choo Choo")

}
}

class Car: Vehicle {
var gear = 1
override var description: String {

return super.description + " in gear \(gear)"
}

}

Initialization

• Initialization involves setting an initial value for each stored property on
the instance and performing any other setup or initialization that is
required before the new instance is ready for use
– Swift initializers do not return a value

• Instances of class types can also implement a deinitializer, which
performs any custom cleanup just before an instance of that class is
deallocated

struct Fahrenheit {
var temperature: Double
init() {

temperature = 32.0
}

}
var f = Fahrenheit()
print("The default temperature is \(f.temperature)° Fahrenheit")
// prints "The default temperature is 32.0° Fahrenheit"

Inizialization

• Optional properties are automatically set to nil during initialization
• Constant properties can be modified at any point during initialization

– As long as they are set to a definite value by the time initialization finishes
• Default initializers are provided when no other initializers are provided

by the programmer
– Only for base classes
– The default initializer simply creates a new instance with all of its properties

set to their default values
• Structures automatically receive memberwise initializers, if they do not

provide their own
– Initial values for the properties of the new instance can be passed to the

memberwise initializer by name

Example

struct Celsius {
var temperatureInCelsius: Double
init(fromFahrenheit fahrenheit: Double) {

temperatureInCelsius = (fahrenheit - 32.0) / 1.8
}
init(fromKelvin kelvin: Double) {

temperatureInCelsius = kelvin - 273.15
}

}
let boilingPointOfWater = Celsius(fromFahrenheit: 212.0)
// boilingPointOfWater.temperatureInCelsius is 100.0
let freezingPointOfWater = Celsius(fromKelvin: 273.15)
// freezingPointOfWater.temperatureInCelsius is 0.0

Initializer Delegation

• Initializers can call other initializers
– To avoid duplicate code

• The rules are different for value types and class types
– Value types (structures) do not allow inheritance

• They can only delegate to initializers that they provide themselves
• If we define a custom initializer for a value type, we will no longer have access to

the default
– Classes must ensure that all the stored properties they inherit are

assigned a suitable value
• This is achieved through designated initializers and convenience initializers

• Swift subclasses do not inherit their superclass initializers by
default

Initializers

• A designated, primary, initializer fully initializes all
properties introduced by that class and calls an appropriate
superclass initializer to continue the initialization process up
the superclass chain
– Every class must have at least one designated initializer, and

often it is only one
• Convenience initializers are secondary, supporting

initializers for a class
– Create convenience initializers whenever a shortcut to a common

initialization pattern will save time or make initialization of the
class clearer in intent

Rules for Delegation Calls

• Rule 1: A designated initializer must call a designated
initializer from its immediate superclass

• Rule 2: A convenience initializer must call another
initializer from the same class

• Rule 3: A convenience initializer must ultimately call a
designated initializer

Designated initializers must always
delegate up

Convenience initializers must always
delegate across

Two-phase Initialization

• Each stored property is assigned an initial value by the
class that introduced it

• Each class is given the opportunity to customize its stored
properties further before the new instance is considered
ready for use

• This is to prevent property values
– from being accessed before they are initialized
– from being set to a different value by another initializer

unexpectedly

Compiler performs 4 safety checks

• A designated initializer must ensure that all of the properties introduced by its
class are initialized before it delegates up to a superclass initializer

• A designated initializer must delegate up to a superclass initializer before
assigning a value to an inherited property
– If it doesn’t, the new value the designated initializer assigns will be overwritten by the

superclass as part of its own initialization
• A convenience initializer must delegate to another initializer before assigning a

value to any property (including properties defined by the same class)
– If it doesn’t, the new value the convenience initializer assigns will be overwritten by its

own class’s designated initializer
• An initializer cannot call any instance methods, read the values of any instance

properties, or refer to self as a value until after the first phase of initialization is
complete

Example
class Vehicle {

var numberOfWheels = 0
var description: String {

return "\(numberOfWheels) wheel(s)"
}

}

let vehicle = Vehicle()
print("Vehicle: \(vehicle.description)")
// Vehicle: 0 wheel(s)

class Bicycle: Vehicle {
override init() {

super.init()
numberOfWheels = 2

}
}

let bicycle = Bicycle()
print("Bicycle: \(bicycle.description)")
// Bicycle: 2 wheel(s)

Automatic Initializer Inheritance

• If we provide default values for any new properties
introduced in a subclass
– Rule 1: If the subclass doesn’t define any designated

initializers, it automatically inherits all of its superclass
designated initializers

– Rule 2 If the subclass provides an implementation of all of
its superclass designated initializers, then it automatically
inherits all of the superclass convenience initializers

• These rules apply even if your subclass adds further
convenience initializers

Example
class Food {

var name: String
init(name: String) {

self.name = name
}
convenience init() {

self.init(name: "[Unnamed]")
}

}

let namedMeat = Food(name: "Bacon")
// namedMeat's name is "Bacon"

let mysteryMeat = Food()
// mysteryMeat's name is "[Unnamed]"

class RecipeIngredient: Food {
var quantity: Int
init(name: String, quantity: Int) {

self.quantity = quantity
super.init(name: name)

}
override convenience init(name: String) {

self.init(name: name, quantity: 1)
}

}

let oneMysteryItem = RecipeIngredient()
let oneBacon = RecipeIngredient(name: "Bacon")
let sixEggs = RecipeIngredient(name: "Eggs", quantity: 6)

Failable Initializers

• Initialization may fail because of invalid initialization parameter
values, absence of a required external resource, or other reasons
– We write a failable initializer by placing a question mark after the init

keyword (init?)
– We write return nil to indicate a point at which initialization failure can

be triggered
struct Animal {

let species: String
init?(species: String) {

if species.isEmpty { return nil }
self.species = species

}
}

let anonymousCreature = Animal(species: "")
// anonymousCreature is of type Animal?, not Animal

if anonymousCreature == nil {
print("The anonymous creature could not be initialized")

}

Required Initializers

• The required modifier before the definition of a class initializer
indicates that every subclass of the class must implement that
initializer
– The required modifier before every subclass implementation of a

required initializer indicates that the initializer requirement applies to
further subclasses in the chain
• We do not use the override modifier when overriding a required designated

initializer

class SomeClass {
required init() {

// initializer implementation goes here
}

}

class SomeSubclass: SomeClass {
required init() {

// subclass implementation of the required initializer goes here
}

}

Deinitialization

• Called immediately before a class instance is deallocated
– use the deinit keyword
– at most 1 deinitializer per class
– no params and written without parenthesis

• Deinitializers are called automatically
– Superclass deinitializers are inherited
– Superclass deinitializers are automatically called after

deinitialization of the subclass
• Swift automatically deallocates instances when they are no

longer needed
– achieved through Automatic Reference Counting (ARC)

Extensions

• Extensions add new functionality to an existing class, structure, or
enumeration type

• This includes the ability to extend types for which you do not have
access to the original source code
– Add computed instance properties and computed type properties
– Define instance methods and type methods
– Provide new initializers
– Define subscripts
– Define and use new nested types
– Make an existing type conform to a protocol

• Extensions can add new functionality to a type, but they cannot
override existing functionality

Example
extension Double {

var km: Double { return self * 1_000.0 }
var m: Double { return self }
var cm: Double { return self / 100.0 }
var mm: Double { return self / 1_000.0 }
var ft: Double { return self / 3.28084 }

}

let oneInch = 25.4.mm
print("One inch is \(oneInch) meters")
// prints "One inch is 0.0254 meters"

let threeFeet = 3.ft
print("Three feet is \(threeFeet) meters")
// prints "Three feet is 0.914399970739201 meters"

let aMarathon = 42.km + 195.m
print("A marathon is \(aMarathon) meters long")
// prints "A marathon is 42195.0 meters long"

Protocols

• A protocol defines a blueprint of methods, properties, and other
requirements that suit a particular task or piece of functionality
– Any type that satisfies the requirements of a protocol is said to conform to

that protocol
– The protocol can then be adopted by a class, structure, or enumeration to

provide an actual implementation of those requirements
• Protocols can be composed
protocol SomeProtocol {

// protocol definition goes here
}

struct SomeStructure: FirstProtocol, AnotherProtocol {
// structure definition goes here

}

class SomeClass: SomeSuperclass, FirstProtocol, AnotherProtocol {
// class definition goes here

}

Property Requirements

• A protocol can require any conforming type to provide an instance property or
type property with a particular name and type

• The protocol does NOT specify whether the property should be a stored property
or a computed property
– it only specifies the required property name and type
– The protocol also specifies whether each property must be gettable or gettable and

settable
– Property requirements are always declared as variable properties, prefixed with the

var keyword

protocol SomeProtocol {
var mustBeSettable: Int { get set }
var doesNotNeedToBeSettable: Int { get }

}

protocol AnotherProtocol {
static var someTypeProperty: Int { get set }

}

Example
protocol FullyNamed {

var fullName: String { get }
}

struct Person: FullyNamed {
var fullName: String

}
let john = Person(fullName: "John Appleseed")
// john.fullName is "John Appleseed"

class Starship: FullyNamed {
var prefix: String?
var name: String
init(name: String, prefix: String? = nil) {

self.name = name
self.prefix = prefix

}
var fullName: String {

return (prefix != nil ? prefix! + " " : "") + name
}

}
var ncc1701 = Starship(name: "Enterprise", prefix: "USS")
// ncc1701.fullName is "USS Enterprise"

Method Requirements
protocol SomeProtocol {

static func someTypeMethod()
}

protocol RandomNumberGenerator {
func random() -> Double

}

class LinearCongruentialGenerator: RandomNumberGenerator {
var lastRandom = 42.0
let m = 139968.0
let a = 3877.0
let c = 29573.0
func random() -> Double {

lastRandom = ((lastRandom * a + c).truncatingRemainder(dividingBy:m))
return lastRandom / m

}
}
let generator = LinearCongruentialGenerator()
print("Here's a random number: \(generator.random())")
// Prints "Here's a random number: 0.37464991998171"
print("And another one: \(generator.random())")
// Prints "And another one: 0.729023776863283"

Initializer Requirements
protocol SomeProtocol {

init()
}

class SomeClass: SomeProtocol {
required init() {

// initializer implementation goes here
}

}

class SomeSuperClass {
init() {

// initializer implementation goes here
}

}

class SomeSubClass: SomeSuperClass, SomeProtocol {
// "required" from SomeProtocol conformance; "override" from SomeSuperClass
required override init() {

// initializer implementation goes here
}

}

Protocols and Extensions
protocol TextRepresentable {

var textualDescription: String { get }
}

class Dice {
let sides: Int
let generator: RandomNumberGenerator
init(sides: Int, generator: RandomNumberGenerator) {

self.sides = sides
self.generator = generator

}
func roll() -> Int {

return Int(generator.random() * Double(sides)) + 1
}

}

extension Dice: TextRepresentable {
var textualDescription: String {

return "A \(sides)-sided dice"
}

}

var d6 = Dice(sides: 6, generator: LinearCongruentialGenerator())
print(d6.textualDescription)
// prints "A 6-sided dice"

Automatic Reference Counting (ARC)

• Swift tracks and manages memory usage
– In most cases, this means that memory management “just works” in Swift
– ARC automatically frees up the memory used by class instances when those

instances are no longer needed
– In a few cases ARC requires more information about the relationships

between parts of our code to make sure that instances don’t disappear while
they are still needed

• ARC tracks how many properties, constants, and variables are currently
referring to each class instance
– ARC will not deallocate an instance as long as at least one active reference to

that instance still exists
– The reference is called a “strong“ reference because it keeps a firm hold on

that instance, and does not allow it to be deallocated for as long as that
strong reference remains

class Person {
let name: String
init(name: String) {

self.name = name
print("\(name) is being initialized")

}
deinit {

print("\(name) is being deinitialized")
}

}

var reference1: Person?
var reference2: Person?
var reference3: Person?

reference1 = Person(name: "John Appleseed")
// prints "John Appleseed is being initialized"

reference2 = reference1
reference3 = reference1

reference1 = nil
reference2 = nil

reference3 = nil
// prints "John Appleseed is being deinitialized"

Strong Reference Cycles

• Is it possible to never reach a point that we have zero references?
– It can happen if two class instances hold a strong reference to each

other
– We resolve strong reference cycles by defining some of the

relationships between classes as weak references

Weak References

• Use a weak reference whenever it is valid for that reference to become nil at some
point during its lifetime
– It is appropriate for an apartment to be able to have “no tenant” at some point in its

lifetime
– Because weak references are allowed to have “no value”, every weak reference is an

optional type
– ARC automatically sets a weak reference to nil when the instance that it refers to is

deallocated

class Apartment {
let unit: String
init(unit: String) { self.unit = unit }
weak var tenant: Person?
deinit { print("Apartment \(unit) is being deinitialized") }

}

Unowned References

• Conversely, use an unowned reference when you know
that the reference will never be nil once it has been set
during initialization
– An unowned reference is assumed to always have a value
– It is always defined as a non-optional type
– We don’t need to unwrap the unowned reference each time it

is used

Access Control

• Swift’s access control model is based on the concept of modules and
source files
– A module is a single unit of code distribution—a framework or application

that is built and shipped as a single unit and that can be imported by another
module with Swift’s import keyword

– A source file is a single Swift source code file within a module (in effect, a
single file within an app or framework)

• Swift supports three access levels
– Public access enables entities to be used within any source file from their

defining module, and also in a source file from another module that imports
the defining module

– Internal access enables entities to be used within any source file from their
defining module, but not in any source file outside of that module

– Private access restricts the use of an entity to its own defining source file

Guiding Principals

• No entity can be defined in terms of another entity that has a lower (more restrictive)
access level
– For example, a function cannot have a higher access level than its parameter types and return

type, because the function could be used in situations where its constituent types are not
available to the surrounding code

• All entities in your code have a default access level of internal if you do not specify an
explicit access level yourself
– Define the access level for an entity by placing one of the public, internal, or private modifiers

before the entity
• Some rules

– The access level for a tuple type is the most restrictive access level of all types used in that
tuple

– The access level for a function type is calculated as the most restrictive access level of the
function’s parameter types and return type

– A subclass cannot have a higher access level than its superclass, but an override can make an
inherited class member more accessible than its superclass version

Grand Central Dispatch (GCD)

• A queue is a block of code that can be executed synchronously or
asynchronously, either on the main or on a background thread

• Once a queue is created, the operating system manages it
– Queues follow the FIFO pattern (First In, First Out)
– A queue can be either serial or concurrent

• A work item is a block of code that is either written along with the
queue creation, or it gets assigned to a queue and it can be used
more than once (reused)
– The execution of work items in a queue also follows the FIFO pattern
– This execution can be synchronous or asynchronous.

Example

import Dispatch

let main = DispatchQueue.main
let background = DispatchQueue.global()

func doSyncWork() {
background.sync { for _ in 1...3 { print("Light") } }
for _ in 1...3 { print("Heavy") } }

func doAsyncWork() {
background.async { for _ in 1...3 { print("Light") } }
for _ in 1...3 { print("Heavy") } }

