
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

The saturation algorithm for symbolic state-space
exploration?

Gianfranco Ciardo1, Robert Marmorstein2, Radu Siminiceanu3

1 Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA; e-mail:
ciardo@cs.ucr.edu

2 College of William and Mary, Department of Computer Science, P.O. Box 8795, Williamsburg, VA 23187-8795, USA; e-mail:
rmmarm@cs.wm.edu

3 National Institute of Aerospace, 144 Research Drive, Hampton, VA 23666, USA; e-mail: radu@nianet.org

Received: date / Revised version: date

Abstract. We present various algorithms for generat-
ing the state space of an asynchronous system, based on
the use of multi-way decision diagrams to encode sets
and Kronecker operators on boolean matrices to encode
the next-state function. The Kronecker encoding allows
us to recognize and exploit the “locality of effect” that
events might have on state variables. In turn, locality
information suggests better iteration strategies aimed
at minimizing peak memory consumption. In particu-
lar, we focus on the saturation strategy, which is com-
pletely different from traditional breadth-first symbolic
approaches, and extend its applicability to models where
the possible values of the state variables are not known
a priori. The resulting algorithm merges “on-the-fly” ex-
plicit state-space generation of each submodel with sym-
bolic state-space generation of the overall model.

Each algorithm we present is implemented in our tool
SmArT. This allows us to run fair and detailed compar-
isons between them, on a suite of representative models.
Saturation, in particular, is shown to be many orders of
magnitude more efficient in terms of memory and time
with respect to traditional methods.

Key words: globally-asynchronous locally-synchronous
systems – symbolic state-space generation – decision di-
agrams – Kronecker algebra – fixed-point iterations

1 Introduction

Safety-critical systems, such as flight guidance and early
warning systems, require a high degree of assurance of

? Work supported in part by the National Aeronautics and
Space Administration under grant NAG-1-02095 and by the Na-
tional Science Foundation under grants CCR-0219745 and ACI-
0203971.

design correctness. For these systems, failure can mean
huge costs in productivity or even human life. Prevalent
techniques for verifying safety and other properties rely
heavily on extensive testing and debugging, which exam-
ine only a portion of the behaviors of the system. Since
flaws can hide in the unexamined portions of the sys-
tem, designers should instead employ exhaustive analy-
sis techniques. Even for less critical applications, invest-
ments into formal specification and verification can pay
off dramatically in increased reliability.

Most formal verification tools require that discrete-
state models be expressed in high-level formalisms such
as Petri nets [37], communicating sequential processes
[31], and process algebras [3]. The algorithms imple-
mented by these tools require knowledge of the reachable
states of a system. State-space generation is an essential
prerequisite to both model checking [22] algorithms and
simpler liveness and safety queries. For example, a mod-
eler might be interested in identifying deadlock states,
and proves or disproves the existence of such states via
an exhaustive search.

Traditional techniques for generating and storing the
state space fall into two categories. Explicit techniques
store each state individually, normally using some vari-
ant of breadth-first or depth-first search to discover the
reachable states. Symbolic techniques instead represent
states implicitly, using advanced data structures such as
binary decision diagrams (BDD) [6] to encode and ma-
nipulate entire sets of states at once.

Unfortunately, both techniques are limited by the
state explosion problem: as the complexity of a system
increases, the memory and time required to store the
combinatorially expanding state space can easily become
excessive. Researchers have addressed this problem in
several ways. Explicit techniques take advantage of par-
tial order reduction [25,32,46], or symmetries [21] in the
system to reduce the number of states that must be ex-
plored. These approaches explore and store only a “rep-

2 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

resentative” subset of the reachable states, but still pro-
vide the same capabilities as an exhaustive search.

Symbolic techniques have been successful in allowing
the storage of very large state spaces [8] and provid-
ing truly exhaustive explorations, but they are limited
by memory and time requirements as well. The major
bottleneck is widely recognized to be the peak size of
the BDDs, usually reached at some intermediate point
during the exploration. To overcome these limitations,
several directions of research have been proposed. The
idea of a disjunctively-partitioned transition relation is
natural for asynchronous systems [23,9], mostly because
it allows the expression of a large, global transition re-
lation as collection of smaller, local transition relations.

A great deal of effort has been put into finding flexi-
ble or adaptive strategies in applying the individual tran-
sitions, or clusters of transitions, to avoid the BDD ex-
plosion. The algorithms in [38,44] aim at reducing the
number of iterations needed to reach all states, by pro-
ducing a pipelining effect; using a static causality anal-
ysis, events can be ordered so that their firing increases
the chance of finding new states at each step. Other ap-
proaches attempt a partial symbolic traversal on certain
subsets of the newly reached states in the first stages
and delay the exploration on the other portion, only to
complete the full search in the end. The high density ap-
proach in [42] targets those subsets that have the most
compact symbolic representation to advance the search
in the early stages. The technique in [10] computes, in an
initial learning phase, the activity profiles of each BDD
node in the transition relation and uses this information
to prune the decision diagrams of the inactive nodes.
The guided search of [4] exploits user hints to simplify
the transition relation, but this requires a priori knowl-
edge of the system to predict the evolution of the BDD.

Another direction has focused on parallelizing sym-
bolic algorithms [29,47]. For example, distributed algo-
rithms for state-space generation are quite successful at
making use of the overall memory available in a net-
work of workstations, but much work is still needed to
cope with communication latency and to devise work
partitioning approaches that can provide nearly ideal
speedup.

In this work, we “return to the basics” by analyzing
some of the reasons current techniques suffer from mem-
ory and time limitations, and introduce new methods
that greatly improve on these problems. These methods,
including Kronecker encoding of the next-state function

and saturation-based iteration strategy have been pre-
sented in our previous work [13–15,36], but have never
been described in full. Here, we finally provide a detailed
analysis of their properties and implementation.

The rest of this paper is organized as follows. Sect.
2 gives an overview of traditional state-space genera-
tion algorithms using decision diagrams and introduces
our terminology. Sect. 3-4 describe our techniques and
provide detailed pseudocode for them. Sect. 5 exam-

ines some important details of their implementation in
our tool SmArT [12]. Sect. 6 presents data comparing
the memory and time requirements on a suite of mod-
els, for several alternative algorithms implemented in
SmArT, ranging from symbolic breath-first generation
to our advanced saturation algorithm, and for the tool
NuSMV. Finally, Sect. 7 summarizes the contributions
of this work and discusses areas of future research.

2 State-space generation and decision diagrams

A discrete-state model is a triple (Ŝ, s,N), where

– Ŝ is the set of potential states of the model, specify-
ing the “type” of the states. We indicate states with
lowercase boldface letters, e.g., i.

– s ∈ Ŝ is the initial state of the model. A set of ini-
tial states is often assumed in formal verification ap-
proaches; our method handles this case just as easily.

– N : Ŝ → 2
bS is the next-state function specifying the

states reachable from each state in a single step.

As we target asynchronous systems, we partition N into
a union of next-state functions [9]: N (i) =

⋃
α∈E Nα(i),

where E is a finite set of events, Nα is the next-state
function associated with event α, i.e., Nα(i) is the set of
states the system can enter when α occurs, or fires, in
state i. An event α is said to be disabled in i if Nα(i) = ∅;
otherwise, it is enabled.

The reachable state space S ⊆ Ŝ is the smallest set
containing s and closed with respect to N :

S = {s} ∪ N (s) ∪N (N (s)) ∪ · · · = N ∗(s),

where “∗” denotes the reflexive and transitive closure,
and N applies also to sets of states, N (X)=

⋃
s∈X N (s).

Another way to define S is as the smallest fixed point of
the equation

S = {s} ∪ N (S).

Since N is the union of several functions Nα, we can
build S by applying these functions in an arbitrary order,
as long as we consider each event α often enough [24].

2.1 Explicit state-space generation

In traditional explicit state-space generation approaches,
states are discovered one by one, see for example Fig. 1.
Often, states are explored in breadth-first order, this is
achieved by treating U as a queue of states. Statement 8
is performed as many times as there are state-to-state
transitions between reachable states, thus an efficient
search data structure, such as a hash table or a search
tree, must be used to organize the states in S.

Each state may require many bytes for its storage,
so it is efficient to index states with a function ψ : Ŝ →
N ∪ {null} such that ψ(i) = i ∈ {0, ..., |S|−1} if i ∈ S

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 3

ExplicitSsGen(s : state, N : stateset→2stateset) : stateset

Compute S ⊆ bS starting from s by repeatedly applying N .

1 declare S,U :stateset , ψ:stateset→N∪{null}, i,j:state;

2 S ← {s}; • known states

3 U ← {s}; • unexplored known states

4 ψ(s)← 0; • 0 is the index of the first state

5 while U 6= ∅ do • still states to explore

6 choose a state i in U and remove it from U ;

7 for each j ∈ N (i) do

8 if j 6∈ S then • if j is a new state...

9 ψ(j)← |S|; • ...assign the next index to it,...

10 S ← S ∪ {j}; • ...add it to S, and...

11 U ← U ∪ {j}; • ...remember to explore it later

12 return S;

Fig. 1. Explicit state space exploration

and ψ(i) = null if i 6∈ S. A natural definition for ψ is to
assign increasing indices to new states in the order they
are found, starting from ψ(s) = 0, as shown in Fig. 1.

Of course, any explicit method requires memory and
time at least proportional to the number of reachable
states, so it is feasible only when S contains at most
108 or perhaps 109 states, given today’s workstation ca-
pabilities. Nevertheless, we briefly presented the explicit
algorithm because it is employed by the symbolic algo-
rithms we discuss.

2.2 Structured high-level models

A common characteristic of the high-level models we
consider is that they can be partitioned, or structured,
into interacting submodels. For a model composed of K
submodels, a global system state i can be written as a
K-tuple (iK , . . . , i1), where ik is the local state of sub-
model k, for K ≥ k≥ 1. Thus, the potential state space
Ŝ is given by the cross-product SK × · · · × S1 of K local

state spaces, where Sk contains (at least) all the possible
local states for submodel k. For example, the places of a
Petri net can be partitioned into K subsets, so that the
marking can be written as a vector of the K correspond-
ing submarkings.

Partitioning a model into submodels enables us to
use techniques targeted at exploiting system structure,
in particular symbolic encodings based on decision dia-
grams. Returning to the issue of indexing, just as we map
each reachable global state i to a natural number i in the
explicit approach, we map local states as well. Assuming
for now that each local state space Sk is known a priori,
i.e., can be built considering the kth submodel in isola-
tion, we define K mappings ψk : Sk → {0, 1, . . . , nk−1},
where nk is the size of the local state space Sk. Then,
a global structured state (iK , . . . , i1) can be mapped to
a vector (iK , . . . , i1) of indices. This was observed and
exploited in [16], where we showed that, for an appro-
priate decomposition of the model into submodels, it is
possible to store S explicitly using a “multi-level” data

structure that requires only O(log n1) bits per state, in-
stead of O(

∑
K≥k≥1 log nk). In the following, to stress

the difference between states and their indices, we will
consistently use lowercase non-bold letters for the lat-
ter. However, to keep notation simple, we use Sk to
mean either the set of local states or of their indices,
{ψk(ik) : ik ∈ Sk} = {0, 1, . . . , nk−1}, since there is a
bijection between the two.

2.3 Decision diagrams

In the last decade, symbolic approaches have been used
extensively to manipulate and store very large sets of
states [8]. The key enabling technology is the use of de-

cision diagrams, most often reduced ordered binary deci-

sion diagrams (RO)BDDs [6]. An N -variable BDD en-
codes a function f : {0, 1}N → {0, 1}. We can use dlog nke
boolean variables xk,1, . . . , xk,dlog nke to encode the kth

local state index ik, forK≥k≥1. Then,N =
∑

K≥k≥1dlog nke
and the BDD can be used to store a set of states X ⊆
SK×· · ·×S1 by encoding its indicator function fX , where

fX (xK,1, . . . , xK,dlog nKe, . . . , x1,1, . . . , x1,dlog n1e) = 1

⇔ (iK , . . . , i1) ∈ X

and the integer value of (xk,1, . . . , xk,dlog nke), interpreted
as a binary string, is ψk(ik), for K≥k≥1.

Instead of giving more details on (RO)BDDs, we now
turn to the version of decision diagrams employed by our
approach, quasi-reduced multi-way decision diagrams.
Multi-way decision diagrams (MDDs) [33] were intro-
duced as a more natural way to encode the types of sets
we are discussing, since they allow discrete variables to
take values over arbitrary finite sets instead of requiring
boolean variables. The quasi-reduced version of MDDs
we now define is a natural combination of the multi-
way extension with the quasi-reduced canonical format
introduced for BDDs in [34].

Formally, a K-variable quasi-reduced ordered multi-
way decision diagram, or MDD for short, is a directed
acyclic edge-labeled multi-graph where:

– Nodes are organized into K+1 levels. We write 〈k|p〉
to denote a node at level k, where p is a unique index
for that level.

– Level K contains a single non-terminal node 〈K|r〉,
the root, whereas levels K−1 through 1 contain one
or more non-terminal nodes.

– Level 0 contains two terminal nodes, 〈0|0〉 and 〈0|1〉.
– A non-terminal node 〈k|p〉 has nk arcs pointing to

nodes at level k−1. If the ith arc, for i ∈ Sk, is to
node 〈k−1|q〉, we write 〈k|p〉[i] = q. Duplicate nodes
are not allowed but, unlike reduced ordered MDDs,
redundant nodes where all arcs point to the same
node are allowed (both versions are canonical).

We can extend our arc notation to paths. The index
of the node at level l − 1 reached from a node 〈k|p〉

4 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

�����
�
�
�
�
�
�	

��
�
�
�
�
��

�����
�
��

�����

!

"#

0 1 2 3

0 1 2 0 1 2

0 1 0 1 0 1

0 1 20 1 2 0 1 2

0 1 2

0 1

$%&'(((
)
'('(

)
''((

)
'''(

)
'*'(

)
*(((

)
*('(

)
*'((

)
*''(

)
**'(

)
+('(

)
+''(

)
+*((

)
+*('

)
+*(*

)
+*'(

)
+*''

)
+*'*,

0 1

0

0

0

1

1

5

4

2

4

7

8

Fig. 2. A 4-variable MDD and the states S it encodes

through a sequence (ik, . . . , il) ∈ Sk × · · · × Sl, for K ≥
k > l ≥ 1, is recursively defined as

〈k|p〉[ik, ik−1, . . . , il] = 〈k−1|〈k|p〉[ik]〉[ik−1, . . . , il].

The substates encoded by, or “below”, 〈k|p〉 are then

B(〈k|p〉) = {β ∈ Sk × · · · × S1 : 〈k|p〉[β] = 1}

and those reaching, or “above”, 〈k|p〉 are

A(〈k|p〉) = {α ∈ SK × · · · × Sk+1 : 〈K|r〉[α] = p}.

For any node 〈k|p〉 on a path from the root 〈K|r〉 to
〈0|1〉, the set of (global) states A(〈k|p〉) × B(〈k|p〉) is a
subset of the set of (global) states encoded by the MDD,
which we can write as B(〈K|r〉) or A(〈0|1〉).

We reserve the indices 0 and 1 at each level k to en-
code the sets ∅ and Sk×· · ·×S1, respectively. Such nodes
do not need to be explicitly stored; this saves not only a
small amount of memory, but also substantial execution
time in the recursive manipulation algorithms. Fig. 2
shows a four-variable MDD and the set S it encodes
(the node indices are in boldface and have been chosen
arbitrarily, except for those with value 0 and 1). To see
whether state (1,2,1,0) is encoded by this MDD, begin
with the root node 〈4|5〉 and follow the path: 〈4|5〉[1] = 4,
〈3|4〉[2] = 7, 〈2|7〉[1] = 4, and 〈1|4〉[0] = 1: since we
reach the terminal node 1, the state is indeed encoded,
i.e., (1,2,1,0) ∈ B(〈4|5〉). On the other hand, we can de-
termine in a single operation that no state of the form
(0, i3, i2, i1) is encoded by the MDD, since 〈4|5〉[0] = 0
and, by convention, node 〈3|0〉 is known to encode the
empty set.

To illustrate how using quasi-reduced MDDs simpli-
fies the manipulation algorithms, and how our conven-
tion on the meaning of the indices 0 and 1 improves effi-
ciency, we show the pseudocode for performing a union
operation on two MDDs, in Fig. 3. We use the types
level , index , and local for MDD levels, MDD node indices
within a level, and local state indices, respectively (in our
implementation, these are simply integers in appropriate
ranges). NewNode(k) allocates a new MDD node 〈k|x〉
at level k, sets all its arcs 〈k|x〉[i], for i ∈ Sk, to 0, and
returns its index x. SetArc(k, p, i, y) sets 〈k|p〉[i] to y; in
addition, if the node 〈k − 1|x〉 previously pointed to by
〈k|p〉[i] does not have other incoming arcs, it is deleted.
CheckIn(k, p) searches the level-k unique table for a node

Union(k : level , p : index , q : index) : index
Return an index u such that B(〈k|u〉) = B(〈k|p〉)∪B(〈k|q〉).

1 declare u : index , i : local ;
2 if p = q •B(〈k|p〉) ∪ B(〈k|p〉) = B(〈k|p〉)
3 return p;

4 else if p = 1 or q = 1 • exploit special meaning of 〈k|1〉
5 return 1;

6 else if p = 0 • exploit special meaning of 〈k|0〉
7 return q;

8 else if q = 0 • exploit special meaning of 〈k|0〉
9 return p;

10 else if k = 0 • terminal case, p and q are booleans

11 return p ∨ q;
12 if Cached(UNION , k, p, q, u) • don’t redo work

13 return u;

14 u← NewNode(k); • create a new node at level k

15 for i = 0 to nk − 1
16 SetArc(k, u, i,Union(k − 1, 〈k|p〉[i], 〈k|q〉[i]));
17 u← CheckIn(k, u); • insert 〈k|u〉 in unique table

18 PutInCache(UNION , k, p, q, u); • remember result

19 return u;

Fig. 3. MDD union

〈k|q〉 with the same nk arc values (the hash key for the
table) as p; if it finds such a node, it deletes the duplicate
node 〈k|p〉 and returns q, otherwise it inserts 〈k|p〉 in the
table and returns p. Cached(UNION , k, p, q, u) searches
the hash key “UNION , p, q” in the level-k operation

cache, where UNION is an integer code from an enumer-
ated type, like FIRE later on; if it finds the key, it sets u
to the associated cached value and returns true, other-
wise it returns false. PutInCache(UNION , k, p, q, u) as-
sociates the value u to the key “UNION , k, p, q” in the
level-k operation cache. In our implementation, we use
dynamically-sized hash tables organized by levels for the
caches, and dynamically-sized arrays to store nodes, so
that 〈k|p〉 can be efficiently retrieved as the pth entry
of the kth array (this index-based addressing of nodes
is very efficient for quasi-reduced MDDs, as opposed to
the more frequently used pointer-based addressing for
fully-reduced MDDs).

2.4 MDDs for storing next-state functions

The next-state function N of the model can also be en-
coded using a decision diagram; since we need to repre-
sent transitions between states instead of single states,
we need twice as many variables as the decision diagram
encoding the state space.

In the case of MDDs, this means encoding the indica-
tor function of the transition relation with a 2K-variable
MDD. Rather than numbering the variables from 2K
down to 1, we distinguish them as “from” and “to” vari-
ables: we use the letters “i” and “j” for “from” and “to”
local state or indices, unprimed and primed integers for
“from” and “to” levels, and a double-bracket notation to

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 5

distinguish these nodes from those of K-variable MDDs
encoding sets of states. Thus, 〈〈5′|p〉〉 is a “to” node asso-
ciated with the 5th submodel, and 〈〈5′|p〉〉[j5] = q means
that the arc labeled with local state index j5 from this
node points to 〈〈4|q〉〉, a “from” node associated with the
4th submodel.

If the MDD encoding N is rooted at 〈〈K|t〉〉, we have

(iK, jK, ..., i1, j1)∈B(〈〈K|t〉〉) ⇔ (jK, ..., j1) ∈ N (iK, ..., i1).

In principle, any permutation of the 2K variables
could be used, but we have assumed that the variables
are interleaved, that is, the “from” and “to” variables
for a given level are next to each other1. There are at
least two good reasons for this. First, it is widely ac-
knowledged that interleaving is often the most efficient
order in terms of nodes required to store the next-state
function (of course, interleaving “defines” an order of the
2K variables only once the order of the K submodels,
or the K variables of the MDDs storing sets of states,
is fixed). Second, the symbolic state-space generation al-
gorithms we consider next can be easily expressed using
recursion if interleaving is used. Indeed, a very impor-
tant third reason related to the above is presented in
Sect. 3, where we argue that traditional symbolic ap-
proaches to represent N fail to exploit the large number
of identity transformations (i.e., ik = i′k) present in the
class of systems we address.

We conclude this section by recalling that, especially
for asynchronous systems, it is often advantageous to
store the next-state function as a disjunction [9]. If the
events E are implied by the high-level model, as is clearly
the case for Petri nets, where each transition α in the
net corresponds to exactly one event in E , we simply
need to store each Nα as a separate 2K-variable MDD
(of course, an MDD forest should be used, so that these
MDDs can share common nodes [41]).

2.5 Breadth-first symbolic state-space generation

The simplest and most widely used symbolic state-space
generation algorithm is shown in the top of Fig. 4. An
alternative algorithm shown in the bottom of the same
figure is conceptually simpler and closer to the defini-
tion of the state space S as a fixed-point. Both versions
will halt after exactly as many steps as the maximum
distance of any state from the initial state s. The main
computational difference is the cost of applying the next-
state function; the traditional algorithm applies N only

to the unexplored states U which, at iteration d, consists
of all states at distance exactly d from s, while the al-
ternative algorithm applies N to all known states, that
is, all states at distance at most d from s.

1 We assume that level k is above level k
′, since we store the

forward next-state function N . However, symbolic model-checking
[8] also makes use of the backward or previous-state function N−1

and, in this case, we would have level k
′ above level k.

While it would be wasteful to apply the next-state
function to the same state more than once in an explicit
setting, the cost of applying N to a set of states encoded
as an MDD in a symbolic setting depends on the number

of nodes in the MDD, not on the number of states en-

coded by the MDD, so it is not clear that the traditional
algorithm is better, nor why the alternative version ap-
pears to have been neglected in the literature. Indeed,
Sect. 6 reports experimental evidence suggesting that
the set U of states having exactly distance d is often not
a “nice” set to encode as an MDD (furthermore, the tra-
ditional version of the breadth-first generation algorithm
incurs the additional cost of the set-difference operation
required to compute the “truly new states” X \S). How-
ever, our main motivation for discussing AllBfSsGen is
that it introduces a different way of applying the next-
state function, i.e., one that does not distinguish between
new and old states. This is one of the characteristics of
the algorithms we introduce in Sect. 3.

A second variation of symbolic breadth-first state-
space generation, which introduces the idea of chaining

[43], is shown in the top of Fig. 5. Its key advantage lies
in that the states in Nα(U), i.e., the (possibly) new states
reachable in one firing of event α from the currently un-
explored states U , are added to U right away, instead of
only after having explored each event in isolation from
the same original U . In other words, if j(1) ∈ Nα(1)(i),
j(2) ∈ Nα(2)(j(1)), . . . , j(d) ∈ Nα(d)(j(d−1)), and if the for-
loop considers the events in the order α(1), α(2), . . . , α(d),
ChSsGen finds all the states in this path in a single itera-
tion, while both BfSsGen and AllBfSsGen would require
d iterations. Note that statement 6 in ChSsGen, just like
statement 6 in AllBfSsGen, applies the next-state func-
tion to the same states more than once; however, it does
so only to states in the set U being built; the difference
between explored and unexplored states is still kept in
the outer while-loop. An algorithm merging the ideas in
AllBfSsGen and ChSsGen is shown at the bottom of Fig.
5: we believe that it is the most straightforward state-
space generation algorithm when N is disjunctively par-
titioned into events, and the results of Sect. 6 show that
its performance is competitive with respect to that of
BfSsGen, AllBfSsGen, and ChSsGen.

ChSsGen and AllChSsGen are fundamentally differ-
ent from BfSsGen and AllBfSsGen in one way: they do

not find states in strict breadth-first order. This is a sec-
ond characteristic of the algorithms we introduce in Sect.
3, where we also discuss the importance of the order in
which events are considered2.

2.6 Running example

As a running example, consider Fig. 6, showing a sim-
plified producer-consumer system represented as a Petri

2 The paper that introduces chaining [43] uses a topological sort

on the gates of the circuit, modeled as Petri net transitions.

6 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

BfSsGen(s : state, N : stateset→2stateset) : stateset

Compute S ⊆ bS starting from s by repeatedly applying N in

breadth-first fashion. All sets are stored using MDDs.

1 declare S,U ,X : stateset ;
2 S ← {s}; • known states

3 U ← {s}; • unexplored known states

4 while U 6= ∅ do • there are still unexplored states

5 X ← N (U); • possibly new states

6 U ← X \ S; • truly new states

7 S ← S ∪ U ;

8 return S;

AllBfSsGen(s : state, N : stateset→2stateset) : stateset

1 declare S,O : stateset ;
2 S ← {s}; • known states

3 O ← ∅; • old states

4 while O 6= S do • test for the fixed point

5 O ← S; • save old state space

6 S ← O ∪N (O); • apply N to entire state space

7 return S;

Fig. 4. Two symbolic breadth-first generation algorithms

ChSsGen(s : state,Na∈E : stateset→2stateset) : stateset

Compute S ⊆ bS starting from s by incrementally applying

each Nα. All sets are stored using MDDs.

1 declare S,U : stateset ;
2 S ← {s}; • known states

3 U ← {s}; • unexplored known states

4 while U 6= ∅ do • there are still unexplored states

5 for each α ∈ E do

6 U ← U ∪Nα(U); • add to possibly new states

7 U ← U \ S; • truly new states

8 S ← S ∪ U ;

9 return S;

AllChSsGen(s:state,Na∈E :stateset→2stateset): stateset

1 declare S,O : stateset ;
2 S ← {s}; • known states

3 O ← ∅; • old states

4 while O 6= S do • test for the fixed point

5 O ← S; • save old state space

6 for each α ∈ E do

7 S ← S ∪Nα(S); • apply Nα to entire state space

8 return S;

Fig. 5. Symbolic breadth-first generation with chaining

net with one producer in place p anc one consumer in
place s. The model has eight reachable (global) states:

S = {(p1q0r0s1t0), (p1q0r0s0t1), (p0q1r1s1t0), (p0q1r1s0t1),

(p1q0r1s1t0), (p1q0r1s0t1), (p0q1r0s1t0), (p0q1r0s0t1)}.

We decompose the model into the three submodels in
Fig. 6, each corresponding to exactly one non-terminal
level of the MDD. The reachable local states of the ex-
ample are shown in Fig. 7. Submodel 1 has two local
states, submodel 2 has four, and submodel 3 has two.

Figure 8 illustrates the MDD encodings of the sets of
states S and U generated at each iteration of algorithm

p

q

s

r

t

a

b

c

d

Submodel 3

Submodel 2

Submodel 1

Fig. 6. A producer-consumer model and its submodels

q

r
a

b

c

p

a

b

p

a

b
Submodel 3

q

r
a

b

c

q

r
a

b

c

Submodel 2

s

t

c

d

s

t

c

d

Submodel 1

0: 1:

0: 1:

2: 3:

q

r
a

b

c

0: 1:

Fig. 7. The local states of each submodel

BfSsGen. The MDD encoding the initial state s is shown
in frame (a).

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 7

(a) Initial Configuration:

0

0

0

���

(e) Iteration 4:

0

0

1

32 1

1

1

0 1

��

0

(b) Iteration 1:

0

0

0

1

1

��

(f) Iteration 5:

0

0

0

1

32 1

0

2

10 1

��

(c) Iteration 2:

0

0

0

1

1

0

2

1

3

1

	

(g) Exploration Complete:

0

0

1

32 1

0 1

�

(d) Iteration 3:

0

0

0

1

32 1

0

0

1

3

1

�

Fig. 8. Breadth-first generation of the state space

3 A new approach

The encoding of sets of states using MDDs instead of
BDDs has no immediate advantage in itself, since the
two data structures are very similar, except for the num-
ber of levels. However, the advantages of MDDs become
apparent when we consider our encoding of the next-
state function and how this encoding is exploited in
fixed-point computations, which we discuss next.

3.1 Kronecker encoding of the next-state function

We adopt a representation of N inspired by work on
Markov chains, where the infinitesimal generator ma-
trix of a large continuous-time Markov chain is encoded
through a Kronecker algebra expression [2] on a set of
small matrices [7,40]. In our setting, this corresponds to
a two-dimensional decomposition of N : by events and by
submodels. This is possible when the decomposition of
the model into submodels is Kronecker consistent, that

is, when we can find K · |E| functions Nk,α : Sk → 2Sk ,
describing the (local) effect of a particular event α on
a particular subsystem k. Formally, this means that, for
each event α ∈ E and (global) state (iK , . . . , i1) ∈ Ŝ,

Nα(iK , . . . , i1) = NK,α(iK) × . . .×N1,α(i1).

Thus, it must be possible to express the effect of firing
an event α in a global state as the cross product of the
local effects of α on each submodel.

The local next-state functions Nk,α can be encoded
as incidence matrices Nk,α∈{0, 1}nk×nk , where

Nk,α[ik, jk] = 1 ⇔ jk ∈ Nk,α(ik).

Thus, event α is locally enabled in local state i ∈ Sk of
the kth submodel, Nk,α(i) 6= ∅, iff not all entries of the
ith row in Nk,α are zero, Nk,α[i, ·] 6= 0.

The overall next-state function N is then encoded
as the incidence matrix given by the (boolean) sum of
Kronecker products

N =
∑

α∈E

⊗

K≥k≥1

Nk,α

The Nk,α matrices are extremely sparse (for Petri nets,
each row contains at most one nonzero entry), and are
indexed using the same mapping ψk used to index Sk.

For some formalisms, such as ordinary Petri nets,
the Kronecker consistency requirement is always satis-
fied, regardless of how the model is partitioned into sub-
models. In other formalisms, not all decompositions will
be Kronecker consistent; however, we can always find a
consistent decomposition by refining the events or coars-
ening the partition into submodels. Consider for example
Fig. 9, where a model consists of two boolean variables
x1 and x2 and the partition assigns each variable to a
different submodel. If an event α swaps the values of
x1 and x2 but is enabled only when x1 6= x2, the par-
tition is not Kronecker consistent. If it were, N2,α and
N1,α would have to satisfy 1 ∈ N2,α(0) and 1 ∈ N1,α(0).
However, Kronecker consistency would also imply that
(1, 1) ∈ N2,α(0)×N1,α(0) = Nα(0, 0), while a transition
from state (0, 0) to state (1, 1) should not be allowed.

To achieve Kronecker consistency, we can then either
split event α into α′ and α′′, which allows us to treat the
two enabling states, (0, 1) and (1, 0), separately, or merge
the two levels into a single level with four possible local
states.

3.2 An identity crisis

Event α is said to be independent of level k if Nk,α = I,
the identity matrix, that is, if its occurrence is not af-
fected by, nor it affects, the local state of the kth sub-
model. As we will see, our approach neither stores nor
processes these identity matrices; this results in large
savings especially when dealing with asynchronous sys-
tems, where most of the Nk,α matrices are identities.

8 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

0
1

0 1
1

1

0
1

0 1
1

1

0
1

0 1
1

0
1

0 1

1

0
1

0 1

1

0
1

0 1
1

00
01

00 01

1

110
11

10 11

sp
lit

 ev
en

t

m
erge levels

N2,α’ N2,α"

N1,α"N1,α’

N1,α

N1,α

N2,α

Fig. 9. Satisfying Kronecker-consistency requirements

On the other hand, a decision diagram representation
of N does not efficiently encode or exploit these identi-
ties. The variables (levels) not affected by an event α
are still represented in the decision diagram by “identity
patterns”. These are wasteful both in terms of memory,
as they require four nodes per variable along each corre-
sponding path in the diagram, and in terms of time, as
these additional nodes are processed during the image
computation, just like any other node. The compactness
of a BDD representation is characterized by the degree
of merging of duplicate nodes and the number of redun-
dant nodes that are eliminated and replaced with arcs
skipping levels. However, when representing N with a
BDD, an arc that skips levels k and k′ (the “from” and
“to’ variables corresponding to the kth submodel, respec-
tively) means that, after an event fires, the kth compo-
nent can be either 0 or 1, regardless of whether it was
0 or 1 before the firing. The more natural behavior is
instead the one where a 0 remains a 0 and a 1 remains
a 1, the default in our Kronecker encoding.

Fig. 10 shows Kronecker, monolithic MDD, and par-
titioned MDD representations of the next state function
for our running example. For the Kronecker represen-
tation, the total number of nonzero entries is nine and
five out of twelve Kronecker matrices are identities. This
is not a remarkable ratio because the model is small.
For many asynchronous systems, however, the number
of events grows linearly in K but most, if not all, events
are described by a constant number (i.e., independent of
K) of non-identity matrices; thus, while the Kronecker
description potentially requires O(K2) matrices, O(K)
matrices suffice in practice, a huge improvement. On the
other hand, the monolithic MDD encoding of N , requires
19 nodes, while the partitioned MDD encoding requires

As Kronecker matrices:

a b c d

3 0:1 1:0 I I

2 0:1 1:2,3:0 1:3,2:0 I

1 I I 0:1 1:0

As a monolithic MDD: �
��
�
��

��
0

0 1

�
33 0 2 1 2 0

0 1 0 1

0 1

0 1 30 1 2 3

1 001

1

As a disjunctions of MDDs:

Na: Nb:	

�
�

�

��

0

1

0

1

�
0 1

0 1

�
��
�
��

��

1

0

1 3

2 0

�
0 1

0 1

Nc: Nd:�
��
�
�

!"

0 1

0

3 0

0 #
1

1

1 2

$
%&
'
()

*+

0 1

0

0 1 2 3

1 2

,
0

1

0 3

1

Fig. 10. Kronecker vs. MDD encoding of N

8 nodes each for Na, Nb, and Nc, and 10 nodes for Nd

(in total, only 8 + 8 + 8 + 10 − 3 = 8 + 31 nodes are
required, since the three nodes at levels 1 and 1′ for Na

and Nb can be shared).

One reason for the large number of nodes in the MDD
encoding is the explicit representation of identity trans-
formations, corresponding to patterns where a “from”
node 〈k|p〉 with nk distinct children 〈k′|q(i)〉, such that
〈k′|q(0)〉[0] = · · · = 〈k′|q(nk−1)〉[nk − 1], shown with
bold lines in the figure. In the partitioned MDD case,
these patterns are clearly visible because all other arcs
〈k′|q(i)〉[j], for j 6= i, have value 0. In the monolithic
MDD case, some of these patterns are harder to rec-
ognize because the level-k′ nodes may have additional

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 9

nonzero arcs, as is the case for the identity pattern at
levels 2 and 2′ in our figure, while other identity pat-
terns are destroyed when performing the union of the
next-state functions for multiple events, as is the case
for the identity patterns at levels 3 and 3′ of Nc and Nd.
However, these transformations are still encoded in the
MDD, and they can occupy a non-negligible amount of
memory.

3.3 Event locality

In large globally-asynchronous locally-synchronous sys-
tems, most events are independent of most levels. Thus,
in addition to efficiently representing N , the Kronecker
encoding is also able to clearly evidence event locality

[13,36], that is, identify which events affect which levels.
Let Top(α) and Bot(α) denote the highest and lowest

levels on which α depends, that is:

Top(α)=max{k :Nk,α 6=I}, Bot(α)=min{k :Nk,α 6=I}.

If events that are independent of all levels (hence do not
affect the model’s behavior) are ignored, these maximum
and minimum levels exist, that is:

∀α ∈ E , K ≥ Top(α) ≥ Bot(α) ≥ 1.

We can then partition E into K classes,

Ek = {α ∈ E : Top(α) = k}, for K ≥ k ≥ 1

where some Ek might be empty.
In [13], we showed how to use this locality informa-

tion to avoid unnecessary work. When firing an event α,
we do not start at the root of the MDD, since we know
that all state components from K down to Top(α) + 1
are not going to change anyway. Rather, we “jump-in-
the-middle” of the MDD by directly accessing each node
at level k = Top(α) and we fire α in it and, recursively,
on its descendants, up to nodes at level l = Bot(α) (of
course, this requires that MDD nodes be organized and
stored in such a way that provides easy access by level).
Conceptually, for each node 〈k|p〉, we can compute a
node 〈k|f〉 encoding the effect of firing α in it:

B(〈k|f〉) = Nk,α×···×Nl,α×Nl−1,α×···×N1,α︸ ︷︷ ︸
identity functions

(B(〈k|p〉)).

Then, we can substitute node 〈k|p〉 with a node 〈k|u〉,
where u is the value returned by the call Union(k, p, f),
that is,

B(〈k|u〉) = B(〈k|p〉) ∪ B(〈k|f〉).

This is correct because, if i ∈ S and j ∈ Nα(i), we can
conclude that j ∈ S and, in particular, because, if i ∈
A(〈k|p〉) × B(〈k|p〉), then j ∈ A(〈k|p〉) × B(〈k|f〉) and
substituting 〈k|p〉 with 〈k|u〉 will indeed add any such
state j.

The efficiency of jump-in-the-middle is due to two
factors. First, we avoid work in nodes at levels from K

to k + 1. Second, any algorithm that fires α starting
from the MDD root would reach 〈k|p〉 and attempt to
fire α in it as many times as the number of incoming
arcs pointing to 〈k|p〉 from level k+ 1 (of course, all but
the first time the effect of this firing is retrieved from
the operation cache, but the cost of these cache lookups
is not negligible). With jump-in-the-middle, instead, we
only need to consider 〈k|p〉 once.

One complication with this approach, however, is
that substituting 〈k|p〉 with 〈k|u〉 requires us to redi-

rect all incoming arcs so that they point to 〈k|u〉 instead
of 〈k|p〉. Thus, in [13], we pair jump-in-the-middle with
another improvement, in-place updates of MDD nodes,
which not only avoids the explicit computation of node
〈k|f〉, but also greatly reduces the need to redirect arcs
from nodes at level k + 1.

3.4 In-place updates

The idea of substituting 〈k|p〉 with 〈k|u〉 we just dis-
cussed can be further improved by realizing that, instead
of computing the result of firing α in 〈k|p〉 as a separate
node 〈k|f〉 and then computing the union node 〈k|u〉,
we can incrementally modify the arcs of node 〈k|p〉, so
that, when we are done, they point to the same nodes
that the arcs of node 〈k|u〉 would point, had we built it
explicitly.

This is described in Fig. 11, which provides the pseu-
docode for functions Fire and RecFire. Function Fire is
called to fire event α in nodes 〈k|p〉, with k = Top(α),
and it updates its arcs 〈k|p〉[j] in place. The recursive
function RecFire is called to fire α on nodes 〈l|q〉, with
Top(α) > l ≥ Bot(α), but it does not modify these
nodes. Instead, it creates a node 〈l|s〉 that encodes the
local effect of firing α on node 〈l|q〉 and its descendants.
The calls Cached(FIRE ,l,α,q,s) and PutInCache(FIRE ,

l,α,q,s) are exactly analogous to those used in Union, ex-
cept that, when the keyword is FIRE , the search key is
now an event, α and a node index, q, instead of the two
nodes required for a union. It should be noted that only
the firing of an event α on nodes at levels below Top(α)
are cached. This is because, by updating node 〈k|p〉 in
place, we keep changing (increasing) the set of states it
encodes, thus the cached value for the effect of firing α
in 〈k|p〉 becomes obsolete after every update. Note that,
in a traditional approach without in-place updates, we
need instead to cache this information merely only to
deal with the situation when 〈k|p〉 has multiple incom-
ing arcs; each in-place update in our case is equivalent to
creating a new node (or a sequence of new nodes, if Fire

uses pipelining) in the traditional approach, and thus
there would be no cached value for such nodes, unless
they are duplicates of existing nodes.

By using in-place updates, Fire achieves a chaining
effect: if two local states i and i′ “locally enable” event
α, i.e., Nk,α[i, ·] 6= 0 and Nk,α[i′, ·] 6= 0, if Nk,α[i, i′] = 1,

10 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

and if i is picked before i′ in statement 4, the effect of fir-
ing α in 〈k|p〉[i] has already been incorporated in the up-
dated node 〈k|p〉 that is, in the node pointed by 〈k|p〉[j],
by the time j is picked. Thus, 〈k|p〉[j] will include the
effect of firing α, zero, one, or two times. This pipelin-

ing can be carried even further by adding the last two
statements in Fire, marked optional in the pseudocode:
if we add the new local states j back to the set L of lo-
cal states to explore (statement 12), the order in which
the elements in L are picked does not matter, and the
result is a “full” pipelining: event α is fired in the local
states of 〈k|p〉 as long as doing so discovers new states.
Therefore, the call Fire(α, k, p) updates 〈k|p〉 in-place so
that it encodes N ∗

α(B(〈k|p〉)), where, for notational con-
venience, we interpret the application of a global next-
state function to a set of substates in the obvious way:
Nα(B(〈k|p〉)) really means Nk,α × · · · × N1,α(B(〈k|p〉)).

In addition to creating and destroying fewer nodes,
in-place updates have the advantage that the node 〈k|p〉
being updated is seldom deleted, so that its incoming
arcs do not need to be redirected (in other words, if the
value of 〈k + 1|q〉[i] was p before a call Fire(α, k, p), the
value should remain p). Redirection is needed only when,
after having been modified in place, node 〈k|p〉 becomes
a duplicate of an existing node 〈k|d〉. In this case, 〈k|p〉
must be deleted and its incoming arcs must be redirected
to 〈k|d〉 (in other words, we must set 〈k + 1|q〉[i] to d).
In [13], we do so by using either upstream arcs or for-

warding arcs. In the former case, we actually maintain
pointers from each node 〈k|p〉 to any node 〈k + 1|q〉 hav-
ing pointers to it. In the latter case, we place an arc in
the node 〈k|p〉 to be deleted, pointing to its active dupli-
cate 〈k|d〉; 〈k|p〉 can then be actually deleted only once
all the references to it have been forwarded to 〈k|d〉.

3.5 Saturation

An important advantage of using decision diagrams to
encode N lies in the ability to obtain an entire set of
new states reachable from the current set through a sin-
gle symbolic step. This approach works well in practice
for the analysis of mostly synchronous systems. How-
ever, in many practical examples, the “state space ex-
plosion” phenomenon that hampers explicit techniques,
reshapes itself in the form of a new obstacle for symbolic
methods: “the BDD node explosion”. This usually man-
ifests midway through symbolic exploration, when the
number of nodes in the decision diagrams, especially for
levels in the middle section, grows extremely fast, before
contracting to the final configuration, which is usually
much more compact. The peak size of the decision di-
agram (measured in bytes or nodes) is frequently hun-
dreds or thousands of times larger than the final size,
placing enormous strain on the storage and computa-
tional resources.

A fundamental goal of any exploration strategy, then,
should be a small peak-to-final size ratio. Attempts have

Fire(α : event , k : level , p : index) : index
Fire α in 〈k|p〉, where k = Top(α), using in-place updates.

When pipelining is used, return x such that B(〈k|x〉) =
N ∗

k,α(B(〈k|p〉)).

1 declare f, u : index , i, j : local , L : set of local ;
2 L ← {ik ∈ Sk : 〈k|p〉[ik] 6= 0 ∧Nk,α[ik, ·] 6= 0};
3 while L 6= ∅ do

4 pick and remove i from L;

5 f ← RecFire(α, k−1, 〈k|p〉[i]);
6 if f 6= 0 then

7 foreach j s.t. Nk,α[i, j] = 1 do

8 u← Union(k−1, f, 〈k|p〉[j]);
9 if u 6=〈k|p〉[j] then

10 〈k|p〉[j]←u;

11 if Nk,α[j, ·] 6= 0 then • optional: for pipelining

12 L ← L ∪ {j}; • optional: for pipelining

13 p← CheckIn(k, p); • reinsert 〈k|p〉 in unique table

14 return p;

RecFire(α : event , l : level , q : index) : index
Recursively fire α in 〈l|q〉, where l < Top(α).

1 declare f, u, s : index , i, j : local , L : set of local ;
2 if l < Bot(α) then return q;

3 if Cached(FIRE , l, α, q, s) then return s;

4 s← NewNode(l);
5 L ← {il ∈ Sl : 〈l|q〉[il] 6= 0 ∧Nl,α[il, ·] 6= 0};
6 while L 6= ∅ do

7 pick and remove i from L;

8 f ← RecFire(α, l−1, 〈l|q〉[i]);
9 if f 6= 0 then

10 foreach j s.t. Nl,α[i, j] = 1 do

11 u← Union(l−1, f, 〈l|s〉[j]);
12 if u 6=〈l|s〉[j] then

13 〈l|s〉[j]← u;

14 s← CheckIn(l, s); • insert 〈l|s〉 in unique table

15 PutInCache(FIRE , l, α, q, s); • remember result

16 return s;

Fig. 11. Firing events with in-place-updates

been made in this direction, but most of them are still
tied to the idea of a breadth-first search through the
use of global iterations and have had limited success in
reducing peak memory requirements [10,42,44]. Our ap-
proach starts by identifying nodes that contribute to the
peak MDD size and are eventually eliminated, as op-
posed to nodes that are still (likely to be) present in the
final MDD. To this end, we define a restriction of the
next-state function to the set of events affecting level k
and below:

N≤k =
⋃

1≤l≤k

NEl
=

⋃

α:Top(α)≤k

Nα

Then, we define the following fundamental idea.

Definition 1. An MDD node 〈k|p〉 at level k is said to
be saturated if it represents a fixed point with respect
to the firing of any event that affects only levels k and
below: B(〈k|p〉) = N ∗

≤k(B(〈k|p〉)).

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 11

Theorem 1. A node can appear in the final MDD rep-
resentation of the state space S only if it is saturated.

Proof. By contradition, assume that the MDD encod-
ing of S, rooted at 〈K|r〉, contains a non–saturated node
〈k|p〉, i.e., B(〈k|p〉) is a strict subset of N ∗

≤k(B(〈k|p〉)).
This means that N≤k(B(〈k|p〉)) contains states not in
B(〈k|p〉), since, if N≤k(B(〈k|p〉)) ⊆ B(〈k|p〉), we would
have N t

≤k(B(〈k|p〉)) ⊆ B(〈k|p〉) for all t, thus it could
not be that B(〈k|p〉) ⊂ N ∗

≤k(B(〈k|p〉)). In other words,

there is an event α ∈ ∪k
l=1El such that its firing in a

state i ∈ A(〈k|p〉) × B(〈k|p〉) can lead to a state j =
(iK , ..., ik+1, jk, ..., j1) such that (jk, ..., j1) 6∈ B(〈k|p〉).
However, this is a contradiction, since j is reachable, be-
ing reached by firing α in i, a reachable state, but it is not
encoded by the MDD, since 〈K|r〉[iK , . . . , ik+1] = 〈k|p〉
and (jk, . . . , j1) 6∈ B(〈k|p〉). 2

Note that being saturated is a necessary, but not suf-
ficient, condition for a node to appear in the final MDD
encoding of S, and that it can be shown by contradiction
that any MDD node reachable from a saturated node
must be saturated as well. Also, since N≤K is simply N ,
we can conclude that

B(〈K|r〉) = N ∗(B(〈K|r〉)),

when the root 〈K|r〉 of the MDD is saturated. Further-
more, if s ∈ B(〈K|r〉), we have B(〈K|r〉) ⊇ N ∗(s). Thus,
if we initialize the root node 〈K|r〉 so that it encodes ex-
actly the initial state, B(〈K|r〉) = {s}, and if we saturate

〈K|r〉 without ever adding any unreachable state in Ŝ \S
to B(〈K|r〉), the final result will satisfy B(〈K|r〉) = S.

This is the idea behind our saturation algorithm [14].
We greedily transform unsaturated nodes into saturated
ones in a way that minimizes the number of unsaturated
nodes present in the MDD: when working on a node at
level k, only one MDD node per level is unsaturated, at
levelsK through k. We fire events node-wise and exhaus-
tively, instead of level-wise and just once per iteration,
and in a specific saturation order that guarantees that,
when saturating a node at level k, all nodes at levels
below k are already saturated. In other words, starting
from the MDD encoding the initial state, we first fire all
events in E1 exhaustively in the node at level 1. Then,
we saturate the node at level 2, by repeatedly firing all
events in E2. If this creates nodes at level 1, they are im-
mediately saturated, by firing all events in E1 on them.
Then, we saturate the node at level 3, by exhaustively
firing all events in E3. If this creates nodes at levels 2 or 1,
we saturate them immediately, using the corresponding
set of events, and so on. The algorithm halts when we
have saturated the root node at level K.

While we assume a single initial state s, thus a sin-
gle unsaturated node per level in the initial MDD, it is
trivial to extend the algorithm to the case where there is
a set of initial states encoded by an arbitrary MDD; in-
deed, this is what we implement in our tool SmArT [12].
Also in this case, the number of unsaturated nodes never

increases beyond the number present at the beginning.
Thus, except for those initially unsaturated nodes, only
saturated nodes contribute to the peak size of the MDD.
These saturated nodes are not guaranteed to be present
in the final MDD, since they might become disconnected
when arcs pointing to them are redirected to other satu-
rated nodes encoding even larger sets, but they have at
least a chance of being present in the final MDD, since
they satisfy the necessary condition: they are saturated.

Pseudocode for the saturation algorithm is shown in
Fig. 12. Just as in traditional symbolic state-space gen-
eration algorithms, we use a unique table to detect dupli-
cate nodes, and operation caches, in particular a union

cache and a firing cache, to speed-up computation. In
our approach, however, only saturated nodes are checked
in the unique table or referenced in the caches. In par-
ticular, the Union function of Fig. 3 behaves correctly
without having to know whether the nodes it operates
upon are saturated or not. This is because the node en-
coding the union of two saturated nodes is saturated by
definition:

B(〈k|p〉) = N ∗
≤k(B(〈k|p〉)) ∧ B(〈k|q〉) = N ∗

≤k(B(〈k|q〉))

⇒ B(〈k|p〉) ∪ B(〈k|q〉) = N ∗
≤k(B(〈k|p〉) ∪ B(〈k|q〉)).

The saturation strategy has several important prop-
erties. It is very flexible in allowing a “chaotic” order of
firing events, as dictated by the dynamics of creating new
nodes. Moreover, all firings of events are very lightweight
operations, with localized and chained/pipelined effects,
as opposed to the monolithic heavyweight image compu-
tation of traditional breadth-first strategies. Storing and
managing only saturated nodes has additional benefits.
Many, if not most, of these nodes will still be present on
the final MDD, while the unsaturated nodes are guaran-

teed not to be part of it. These properties lead to enor-
mous time and memory savings, as illustrated in the
results section: saturation is up to five orders of mag-
nitude faster and up to three orders of magnitude less
memory when compared to other state-of-the-art tools,
such as NuSMV. The experimental studies for satura-
tion also show that, at times, saturation is optimal, in
the sense that the peak and final numbers of nodes differ
by a small constant.

4 Building local state spaces on-the-fly

Symbolic analysis of unbounded discrete-event systems
has been considered before. In most cases, the goal is the
study of systems with infinite but regular state spaces.
For example, the Queue BDDs of [26] allow one to model
systems with a finite number of boolean variables plus
one or more unbounded queues, as long as the contents of
the queue can be represented by a deterministic finite au-
tomaton. The MONA system [30] implements monadic

second-order logic and can be used to verify parametric

12 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

Generate(s : state, N : bS → 2
bS) : index

Build an MDD rooted at 〈K|r〉 encoding N ∗(s), return r.

1 declare r, p : index , k : level ;
2 p← 1;

3 for k = 1 to K do

4 r ← NewNode(k);
5 〈k|r〉[0]← p; • the index ψk(sk) of is 0
6 Saturate(k, r);
7 CheckIn(k, r);
8 p← r;

9 return r;

Saturate(k : level , p : index)
Update 〈k|p〉 in-place, to encode N ∗

≤k(B(〈k|p〉)).

1 declare e : event , chng : bool ;
2 chng ← true;

3 while chng do

4 chng ← false;

5 foreach e ∈ Ek do

6 chng ← chng ∨ SatFire(α, k, p);

SatFire(α : event , k : level , p : index) : bool
Update 〈k|p〉 in-place, to encode N ∗

≤k−1(N
∗
α(B(〈k|p〉))).

1 declare f ,u : index , i,j : local , L :set of local chng :bool ;
2 chng ← false;

3 L ← {ik ∈ Sk : 〈k|p〉[ik] 6= 0, Nk,α[ik, ·] 6= 0};
4 while L 6= ∅ do

5 pick and remove i from L;

6 f ← SatRecFire(α, k−1, 〈k|p〉[i]);
7 if f 6= 0 then

8 foreach j s.t. Nk,α[i, j] = 1 do

9 u← Union(k−1, f, 〈k|p〉[j]);
10 if u 6= 〈k|p〉[j] then

11 〈k|p〉[j]← u;

12 chng ← true;

13 if Nk,α[j, ·] 6= 0 then

14 L ← L ∪ {j};
15 return chng ;

SatRecFire(α : event , l : level , q : index) : index
Build an MDD rooted at 〈l|s〉 encoding N ∗

≤l(Nα(B(〈l|q〉))),
return s.

1 declare f ,u,s : index , i,j : local , L : set of local , chng :bool ;
2 if l < Bot(α) then return q;

3 if Cached(FIRE , l, α, q, s) then return s;

4 s← NewNode(l); chng ← false;

5 L ← {il ∈ Sl : 〈l|q〉[il] 6= 0, Nl,α[il, ·] 6= 0};
6 while L 6= ∅ do

7 pick and remove i from L;

8 f ← SatRecFire(α, l−1, 〈l|q〉[i]);
9 if f 6= 0 then

10 foreach j s.t. Nl,α[i, j] = 1 do

11 u← Union(l−1, f, 〈l|s〉[j]);
12 if u 6= 〈l|s〉[j] then

13 〈l|s〉[j]← u;

14 chng ← true;

15 if chng then Saturate(l, s);
16 CheckIn(l, s);
17 PutInCache(FIRE , l, α, q, s);
18 return s;

Fig. 12. Generate, Saturate, SatFire, and SatRecFire

systems without relying on a proof by induction. These
types of approach can be generally classified under the
umbrella of regular model checking [5].

Here, we target a different problem: the analysis of
bounded models with unknown bounds of the state vari-
ables. Traditional symbolic state-space generation as-
sumes that each local state space is known a priori. One
could argue that this is reasonable for BDD-based meth-
ods, since each boolean variable takes simply values in
{0, 1}; however, this simply require a similar assump-
tion, i.e, that we know how many boolean variables are
needed to represent some system variable, such as an
integer variable in a software module being modeled, or
the number of tokens in a Petri net place. In other words,
we need to know each Sk, and in particular its size nk, so
that we can set up either the correct number dlog nke of
boolean variables for it, if we use a BDD, or the correct
size nk of the nodes at level k, if we use an MDD.

The algorithm we describe in this section can be used
for symbolic state-space generation when all we know
(or need to assume) initially about Sk is that it has a
finite but unknown size. The main idea is to interleave
symbolic generation of the global state space with ex-
plicit, “on-the-fly” generation of the smallest local state
spaces (plus, possibly, a small rim of additional local
states that are discarded at the end). Starting only with
the knowledge of the initial state, the algorithm discov-
ers new local states at each level. As nk increases, the
size of the MDD nodes at level k increases as well (if we
used BDDs, the number of levels would have to increase
instead).

Typical applications of this algorithm are found in
modeling distributed software, one of the most challeng-
ing cases for symbolic methods. For this type of systems,
even though the state spaces are finite, the highly “ir-
regular” nature of the local spaces makes it difficult to
apply regular model checking methods.

For a given high-level formalism, we can attempt to
pregenerate the kth local state space Sk with an explicit
traversal of the local state-to-state transition graph of
the kth submodel, obtained by considering all the vari-
ables associated with that submodel and all the events
affecting those variables. Unfortunately, this may cre-
ate spurious local states. For example, if the two places
of the Petri net in Fig. 13(a) are partitioned into two
subsets, the corresponding subnets, (b) and (c), have
unbounded local state spaces when considered in isola-
tion. In subnet (b), transition u can keep adding tokens
to place a since, without the input arc from b, u is al-
ways locally enabled. Hence, in isolation, a may con-
tain arbitrarily many tokens. The same can be said for
subnet (c). However, S = {(1, 0), (0, 1)}, so we would
ideally like to define S2 = S1 = {0, 1}. This can be
enforced by adding either inhibitor arcs, (d), or com-
plementary places, (e). Consider now the Petri net of
Fig. 13(f), partitioned into two subnets, one containing
c, d, and e, the other containing f and g. The inhibitor

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 13

b’

a

b

t

u

a
t

u
b

t

u

a

b

t

u

a b

t

u

a’

a b c d e

c

d

e

f

g

t

u

v

w

x

y
f

c

d

e

f

g

t

u

v

w

x

y
g

Fig. 13. Local state spaces built in isolation can be strict supersets
of the actual ones

arcs shown avoid unbounded local state spaces in isola-
tion, but they don’t ensure that the local state spaces
are as small as possible. For example, the local state
space built in isolation for the subnet containing f and
g is {(0, 0), (1, 0), (0, 1), (1, 1)}, while only the first three
states are actually reachable in the overall net, since f
and g can never contain a token at the same time. This is
corrected in (g) by adding two more inhibitor arcs, from
g to v and from f to w. An analogous problem exists for
the other subnet as well, and correcting it with inhibitor
arcs is even more cumbersome.

Thus, there are two problems with pregeneration: a
local state space in isolation might be unbounded (caus-
ing pregeneration to fail) or it might contain spurious
states (causing inefficiencies in the symbolic state-space
generation, since nk is larger that needed). Asking the
modeler to cope with these problems by adding con-
straints to the original model (e.g., the inhibitor arcs in
Fig. 13) is at best burdensome, since it requires a priori
knowledge of S, the output of state-space generation,
and at worst dangerous, since adding the wrong con-
straint might hide undesirable behaviors present in the
original model. This has been addressed before for ex-
plicit compositional approaches [27,35], but not, to the
best of our knowledge, for symbolic approaches.

4.1 Local state spaces with unknown bounds

We now describe an on-the-fly algorithm to intertwine
explicit generation of the local state spaces with sym-
bolic generation of the global state space and, as a result,
build the smallest local state spaces Sk needed to encode
the correct global state space S ⊆ Ŝ = SK × · · · × S1.
Ideally, the additional time spent exploring local state
spaces on-the-fly should be comparable to that spent
in the pregeneration phase of our previous algorithm.
This is indeed the case for our new algorithm, which in-
crementally discovers a set Ŝk of locally-reachable local
states, of which a subset Sk is known to be also glob-
ally reachable. Our algorithm confirms that a local state
ik ∈ Ŝk is globally reachable when it appears as the kth

component of some state encoded by the MDD rooted
at 〈K|r〉. Since unconfirmed local states in Ŝk \ Sk are

limited to a “rim” around the confirmed ones, and since
unconfirmed states do not affect the size of the MDD
nodes, there is only a small memory and time overhead
in practice.

In this on-the-fly version of the saturation algorithm,
the arcs of the MDD nodes are labeled only with con-
firmed states, while our Kronecker encoding of the next-
state function must describe all possible transitions from
confirmed local states to both confirmed and uncon-
firmed local states. Thus, we only explore global symbolic

firings originating in confirmed states.
The on-the-fly algorithm follows exactly the same

steps as the pregeneration one, except for the need to
confirm local states. Rather than providing the entire
pseudocode for this modified algorithm, we show proce-
dure Confirm in Fig. 14, and list the three places where
it should be called from the pregeneration pseudocode
of Fig. 12. Between lines 3 and 4 of function Generate

we add the statement

Confirm(k, 0);

to confirm each initial local state, since we number local
states starting at 0, that is, ψ(sk) = 0 for all submodels
k. Between lines 10 and 11 of function SatFire we add
the statement

if j 6∈ Sk then Confirm(k, j);

and between lines 12 and 13 of function SatRecFire we
add the statement

if j 6∈ Sl then Confirm(l, j);

to confirm each local state j (if not already confirmed)
after it has been determined that a global state with j

as the kth, or lth, component can be reached through a
symbolic firing.

The firing of an event α in a local state i for node
〈k|p〉 may lead to a state j ∈ Sk or j ∈ Ŝk \ Sk. In the
former case, j is already confirmed and row j of Nk,α

has been built, thus the local states reachable from j

are already in Ŝk. In the latter case, j is unconfirmed: it
is locally, but not necessarily globally, reachable, thus it
appears as a column index but has no corresponding row
in Nk,α. Local state j will be confirmed if the global sym-
bolic firing that used the entry Nk,α[i, j] is actually pos-
sible, i.e., if α can fire in an MDD path from Top(α) to
Bot(α) passing through node 〈k|p〉. Only when j is con-
firmed, the corresponding rows Nk,α[j, ·] (for all events
α that depend on k) are built, using one forward step of
explicit local reachability analysis. This step must con-
sult the description of the model itself, and thus works
on actual submodel variables, not state indices. This is
the only operation that may discover new unconfirmed
local states. Thus, the on-the-fly algorithm uses “rect-

angular” Kronecker matrices over {0, 1}Sk× bSk . In other
words, only confirmed local states “know” their succes-
sors, confirmed or not, while unconfirmed states appear
only in the columns of the Kronecker matrices.

14 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

(a) Initial Configuration:

0

0

0

2

2

2

a b c d

3 I I
2 I
1 I I

S3 ={p1} ≡ {0}
S2 ={q0r0} ≡ {0}
S1 ={s1t0} ≡ {0}

(b) Confirm initial p1 ≡ 0, q0r0 ≡ 0, s1t0 ≡ 0:

0

0

0

2

2

2

a b c d

3 0:1 0:2 I I
2 0:1 I
1 I I 0:1

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1} ≡ {0, 1}

S1 ={s1t0, s0t1} ≡ {0, 1}

(c) Saturate 〈3|2〉(Fire a):

0

0

0

2

2

2

1

13

a b c d

3 0:1 0:2 I I
2 0:1 I
1 I I 0:1

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1} ≡ {0, 1}

S1 ={s1t0, s0t1} ≡ {0, 1}

(d) Confirm q1r1 ≡ 1:

0

0

0

2

2

2

1

13

a b c d

3 0:1 0:2 I I
2 0:1 1:2 1:3 I
1 I I 0:1

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0} ≡ {0, 1, 2, 3}

S1 ={s1t0, s0t1} ≡ {0, 1}

(e) Saturate 〈2|3〉(Fire c):

0

0

0

2

2

2

1

13

13

a b c d

3 0:1 0:2 I I
2 0:1 1:2 1:3 I
1 I I 0:1

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0} ≡ {0, 1, 2, 3}

S1 ={s1t0, s0t1} ≡ {0, 1}

(f) Confirm s0t1 ≡ 1:

0

0

0

2

2

2

1

13

13

a b c d

3 0:1 0:2 I I
2 0:1 1:2 1:3 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0} ≡ {0, 1, 2, 3}

S1 ={s1t0, s0t1} ≡ {0, 1}

(g) Saturate 〈1|3〉(Fire d):

0

0

0

2

2

2

1

13 3

03 1

a b c d

3 0:1 0:2 I I
2 0:1 1:2 1:3 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0} ≡ {0, 1, 2, 3}

S1 ={s1t0, s0t1} ≡ {0, 1}

(h) Confirm q1r0 ≡ 3:

0

0

0

2

2

2

1

13 3

03 1

a b c d

3 0:1 0:2 I I
2 0:1,3:4 1:2,3:0 1:3 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(i) Confirm p0 ≡ 1:

0

0

0

2

2

2

1

13 3

03 1

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(j) Continue Saturating 〈3|2〉(Fire b):

0

0

0

2

2

2

1

13 3

03 1

24

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(k) Confirm q0r1 ≡ 2:

0

0

0

2

2

2

1

13 3

03 1

24

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3,2:0 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(l) Saturate 〈2|4〉(Fire c):

0

0

0

2

2

2

1

13 3

03 1

0 24

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3,2:0 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(m) Union 〈2|2〉 and 〈2|4〉:

0

0

2

2

1

13 3

03 1

0 24

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3,2:0 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(n) Continue Saturating 〈3|2〉(Fire a):

0

0

2

2

1

13 3

03 1

0 2415

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3,2:0 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(o) Saturate 〈2|5〉(Fire c):

0

0

2

2

1

13 3

03 1

0 2 54 1 3

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3,2:0 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(p) Union 〈2|3〉 and 〈2|5〉:

0

0

2

2

1

15 3

03 1

0 24

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3,2:0 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(q) Continue Saturating 〈3|2〉(Fire b):

0

0

2

2

1

15 3

03 1

0 240 26

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3,2:0 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(r) Union 〈2|4〉 and 〈2|6〉:

02 1

15 3

03 1

0 26

a b c d

3 0:1 0:2,1:0 I I
2 0:1,3:4 1:2,3:0 1:3,2:0 I
1 I I 0:1 1:0

S3 ={p1, p0, p2} ≡ {0, 1, 2}

S2 ={q0r0, q1r1, q0r1, q1r0, q2r1} ≡ {0, 1, 2, 3, 4}

S1 ={s1t0, s0t1} ≡ {0, 1}

(s) Discard unreachable local states:

02 1

15 3

03 1

0 26

a b c d

3 0:1 1:0 I I
2 0:1 1:2,3:0 1:3,2:0 I
1 I I 0:1 1:0

S3 ={p1, p0} ≡ {0, 1}

S2 ={q0r0, q1r1, q0r1, q1r0} ≡ {0, 1, 2, 3}

S1 ={s1t0, s0t1} ≡ {0, 1}
Fig. 15. Saturation by example

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 15

Confirm(k : level , i : local)
Add local state index i to Sk and build the corresponding

rows Nk,α[i, ·] for all matrices Nk,α 6= I.

1 declare α : event , j : local , n : int , ik, jk : state;

2 ik ← ψ−1

k (i);
3 foreach α s.t. Nk,α 6= I do

4 foreach jk ∈ Nk,α(ik) do • access high-level model

5 j ← ψk(jk);

6 if j = null then • jk 6∈ bSk, new local state

7 ψk(jk)← | bSk|; • assign next local index to jk

8 j ← | bSk|;

9 bSk ← bSk ∪ {jk};
10 Nk,α[i, j]← 1;

11 Sk ← Sk ∪ {ik};

Fig. 14. The Confirm procedure for saturation on-the-fly

4.2 Example

Fig. 15 illustrates the application of the on-the-fly algo-
rithm on our running example. The net is partitioned
into three subnets, defined by sets of places {p}, {q, r},
and {s, t}, respectively. Accordingly, the events are par-
titioned into E3 = {a, b}, E2 = {c}, and E1 = {d}. In
each snapshot we show the current status of the MDD on
the left, and of the Kronecker matrices and local spaces
on the right. Local states are described by the number
of tokens, listed as superscripts, for each place in the
subnet. Their equivalent indices, that is, the mapping
ψ, is also given, and confirmed local states are under-
lined. Saturated MDD nodes are shown in reversed: dark
background, light foreground. For the matrices we adopt
a concise description listing only the nonzero entries, in
the format row :col . This is very close to the actual sparse
storage representation we use for each Kronecker matrix.

(a) The algorithm starts with the insertion of the initial
state (0, 0, 0), encoded with one MDD node per level.

(b) The initial local states, each indexed 0, are confirmed.
Their corresponding rows in the Kronecker matrices
are built by consulting the model. This leads to the
discovery of new local states. In subspace Ŝ3, local
state p0, indexed 1 is obtained by firing event a, and
local state p2, indexed 2, by firing event b. Similarly,
in subspaces Ŝ2 and Ŝ1, local states q1r1 and s0t1 are
discovered from the initial local state, and are each
indexed 1.

(c) The saturation process starts with the bottom node
〈1|2〉. Since it enables no event, it is marked satu-
rated. The same holds for node 〈2|2〉. Moving up, we
begin saturating the root node, 〈3|2〉. Event a is en-
abled at level 3 by local state 0. SatFire(a, 3, 2) calls
SatRecFire(a, 2, 〈3|2〉[0]), which creates a new node,
〈2|3〉. Since local state 0 at level 2 enables a, the re-
cursive call continues downstream with SatRecFire

(a, 1, 〈2|2〉[0]). This returns index 2 = 〈2|2〉[0], since
1 < Bot(a).

(d) Upon return, an arc is set from 〈2|3〉[1] to 〈1|2〉,
meaning the unconfirmed local state q1r1 ≡ 1 has
been globally reached and the Confirm procedure is
called on substate q1r1. As a result, two new local
states, q0r1 and q1r0, are discovered by locally fir-
ing events b and c, respectively, and indexed 2 and
3 in Ŝ2. The pairs 1 : 2 and 1 : 3 are added to the
corresponding matrices, N2,b and N2,c.

(e) At this point, SatRecFire(a, 2, 2) has the result of fir-
ing a below level 2, encoded by 〈2|3〉, which we need
to saturate. The only event in E2, c, is enabled by
local state 1, and moves subsystem 2 to local state
3, according to N2,c. SatFire(c, 2, 3) makes the re-
cursive call SatRecFire(c, 1, 〈2|3〉[1]). This creates the
node 〈1|3〉, and sets its arc 〈1|3〉[1] to 〈0|1〉, the base
case result of SatRecFire(c, 0, 1).

(f) Local state s0t1 ≡ 1 has been globally reached and

has to be confirmed in Ŝ1. The only possible move
discovered from this state is via event d, and leads
submodel 1 to the already known local state s1t0 ≡ 0.

(g) Since 〈1|3〉 is a new node, it is immediately satu-
rated, by firing event d, the only element of E1. This
adds the arc 〈1|3〉[0] to point to the terminal node
〈0|1〉. Local state 0 at level 1 is an old state, hence
it does not need to be confirmed again. Node 〈1|3〉
is declared saturated and returned as the result of
SatRecFire(c, 1, 2). An arc is set from 〈2|3〉[3] to 〈1|3〉
to represent the local move from local state 1 to local
state 3 in Ŝ2, as demanded by N2,c.

(h) Local state q1r0 ≡ 3 now has to be confirmed. It leads
to the already known state q0r0 ≡ 0 via b, and a new
local state q2r1, which is indexed 4, via a. Node 〈2|3〉
is now saturated and it is returned as the result of
SatRecFire(a, 2, 2), which started in snapshot (c).

(i) Arc 〈3|2〉[1] is set to point to 〈2|3〉, signifying that
local state p0 ≡ 1 has been reached. The confirmation
of it in Ŝ3 adds one entry in the Kronecker matrices:
to p1 ≡ 0 in N3,b.

(j) The saturation of node 〈3|2〉 continues with the firing
of the other event in E3, b. SatFire(b, 3, 2) is enabled
by both local states at level 3 represented in the node,
0 and 1. The first subsequent call, SatRecFire(b, 2,
〈3|2〉[0]) finds no local states at level 2 enabled in
node 〈3|2〉[0] = 〈2|2〉. The recursion stops and re-
turns index 0, signaling the failure to fire event b
from this particular combination of local states. The
second call, SatRecFire(b, 2, 〈3|2〉[1]) is successful in
firing b, based on the enabling pattern (1, 1, ∗), and
creates node 〈2|4〉.

(k) Since local state q0r1 ≡ 2 is reached in this firing,

q0r1 needs to be confirmed in Ŝ2. The only move dis-
covered is to q0r0 ≡ 0, via event c. The corresponding
element, 1 :0, is inserted in N2,c.

(l) After setting the arc 〈2|4〉[2] to 〈1|3〉, node 〈2|4〉 has
to be saturated. Event c is enabled, and its firing
causes node 〈2|4〉 to be updated by setting its arc
〈2|4〉[0] to 〈1|2〉. No other firings produce changes to

16 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

the node, which is returned as the result of the call
SatRecFire (b, 2, 〈3|2〉[1]).

(m) Upon return, node 〈3|2〉 is updated in-place to incor-
porate the effect of the recursive calls. This requires a
union operation between its existing child in position
0, 〈2|2〉, and 〈2|4〉. The result of the union is 〈2|4〉.
The arc 〈3|2〉[0] is updated accordingly, causing node
〈2|2〉 to become disconnected and, therefore, removed
from the diagram.

(n) Even though both events a and b have already been
fired in 〈3|2〉, the saturation of the root node is not
complete, since both firings produced new states. The
loop continues and event a is fired again, which in-
duces the creation of node 〈2|5〉 at level 2.

(o) Node 〈2|5〉 is saturated by firing event c, and adding
in-place the arc 〈2|5〉[3] to 〈1|3〉.

(p) The union of 〈2|3〉 and 〈2|5〉, required by the in-place
update of the root, is node 〈2|5〉, which is known to be
saturated, as it represents the union of two saturated
nodes. Node 〈2|5〉 is the new successor of the root
along arc 1. The old successor, node 〈2|3〉, becomes
disconnected and is deleted.

(q) Finally, we fire event b one more time and set 〈3|2〉[0]
to the result of the union between 〈2|4〉 and newly
created 〈2|6〉.

(r) The union of the two nodes is encoded by 〈2|6〉. Fur-
ther attempts to fire a or b in the root do not discover
any other new states, hence the root is finally satu-
rated.

(s) The algorithm concludes by discarding all local states
still unconfirmed. These are p2 ≡ 2, at level 3, and
q2r1 ≡ 4, at level 2.

5 Implementation in SmArT

We implemented the data structures and algorithms de-
scribed in this paper are implemented in our tool SmArT

[12], as part of its symbolic model checking functionali-
ties targeted to concurrent systems.

5.1 Data structures for the next-state function

We store the next-state function N of the model using
a sparse matrix N, whose entries are themselves sparse
matrices. The rows of N correspond to the levels of the
model. The columns of N correspond to the events of
the model. Each entry of N contains a sparse matrix
Nk,α describing the effect on level k of firing event α.
Storing N as a full two-dimensional array would waste
a significant amount of memory, since most Nk,α are
identities, so we use a sparse encoding where a missing
entry means “identity”, not “zero”.

We provide access using lists linked by columns (so
that we can efficiently access all levels affected by an
event α), and by rows (so that we can efficiently access all

N3,a3

2

1

a b c d
ByEvent

B
yL

ev
el

N3,b

N2,a N2,b N2,c

N1,c N1,d

Fig. 16. Storage for the matrix nodes

events affecting a level k). These two types of access are
required by the most common and expensive operations
of state space generation, firing an event and confirming

that a local state is globally reachable, respectively. The
resulting data structure is shown in Fig. 16.

Each node in the figure consists of a pointer to the
data structure storing Nk,α, plus pointers to the next
elements along its row and along its column. Each Nk,α,
in turn, is stored as a sparse row-wise matrix [39], since
the only required access to Nk,α is the retrieval of all
local state indices j such that Nk,α[i, j] = 1, for a given
i. The only implementation difficulty is that the matrix
size must be dynamic, since as we discover local states
on-the-fly, we need to add new rows to it (adding new
columns is not an issue, since, in a sparse row-wise rep-
resentation, column indices appear only as values in the
entries for each row).

5.2 Unconfirmed vs. confirmed state indices

With the exception of the first local state for each level,
which is assigned index 0 and is confirmed by definition,
any other local state we find is always unconfirmed at
first. Yet, this unconfirmed state jk must be referenced
as a column index j = ψk(jk) on a confirmed state row
i, that is, we need to be able to set Nk,α[i, j] = 1. It
is natural and efficient to assign increasing sequential
state indices to the states in Ŝk, but, unfortunately, not
all states in Ŝk will be necessarily confirmed. Worse yet,
even those that will be confirmed are not guaranteed to
be confirmed in the order they are discovered.

We could ignore this problem and simply index lo-
cal states using ψk : Ŝk → {0, . . . , n̂k − 1} everywhere,

where n̂k = |Ŝk|, obviously for the currently-known Ŝk.
This would be indeed correct, but inefficient in two ways.
First, the sparse row-wise storage of each Nk,α would re-
quire n̂k pointers to the rows, while we know that only
nk = |Sk| rows corresponding to the confirmed local
states need to be built and accessed, thus the remaining
n̂k −nk row pointers would simply be null. Second, each
MDD node at level k would require n̂k arcs, while, again,
we know that only the subset corresponding to states
in Sk may be pointing to nodes other than 〈k − 1|0〉.
This second problem can potentially have a large impact,

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 17

since it may substantially increase the memory require-
ments, depending on how the MDD nodes are stored.

To avoid these inefficiencies, we then use a second
mapping Φk : {0, . . . , n̂k − 1} → {0, . . . , nk − 1} ∪ {null}
from “unconfirmed indices” to “confirmed indices”. A lo-
cal state jk, then, has an unconfirmed index j = ψk(j)k,
which is used exclusively for column indices in Nk,α.
Once it is confirmed, though, it also has a confirmed in-
dex j′ = Φk(j), which is used as a row index in Nk,α

and as an arc label in the MDD nodes at level k. Thus,
to test whether a local state jk ∈ Ŝ is confirmed given
its unconfirmed index j, we only need to test whether
Φk(j) 6= null.

When state-space generation is complete, we know
that any unconfirmed state can never be reached, so we:

– Discard the states in Ŝk \ Sk, keep only those in Sk.
– Redefine ψk, so that ψk : Sk → {0, . . . , nk − 1}.
– Examine the matrices Nk,α and, for each of them,

delete any entry Nk,α[i, j] such that Φk(j) = null.
– Switch from unconfirmed to confirmed indices in the

column indices, i.e.,, change the entries of each Nk,α

so that Nk,α[i, Φk(j)] = 1 if Nk,α[i, j] was 1.
– Discard the array used to store the Φk mapping.

5.3 Storing MDD nodes

To store the state space, we use a quasi-reduced MDD,
which naturally lends itself to a level-oriented node stor-
age. In our implementation, the data for an MDD node
〈k|p〉 is divided into two extensible arrays nodesk and
arcsk associated with level k (Fig. 17). Entry nodesk[p]
occupies the same number of bytes for each node (at any
level) and stores the following data:

– an integer offset into extensible array arcsk,
– an integer size describing the length of the portion

array used by the node,
– a count of incoming arcs,
– and the boolean flags saturated , shared , sparse, and

deleted (the first two are required only when SmArT

manages multiple MDDs on the same potential state
space S, e.g., for model checking).

The data for the arcs of node 〈k|p〉 occupies instead a
variable-size portion of arcsk. If nodesk[p].sparse = true,
the arcs of node 〈k|p〉 occupy 2 · nodesk[p].size entries
of arcsk starting in position nodesk[p].offset , as pairs
of local and index values, meaning that 〈k|p〉[local] =
index . If instead nodesk[p].sparse = false, “truncated
full” storage is used, that is, arcsk[x] = q if 〈k|p〉[x −
nodesk[p].offset] = q. However, not all nk arcs need to
be stored: if the last m arcs are 0, i.e., 〈k|p〉[nk −m] =
· · · = 〈k|p〉[nk − 1] = 0, nodesk[p].size is set to nk −m.

5.4 MDD nodes of variable size

We keep track of the index of the last node in nodesk

and of the last used position in arcsk, and request for

deleted

sparse

saturated

shared
counter

offset size

KEY:

8 7

2
1

2

1 3 3 3 3 0 3

1 1

2
0

2

4
0

3

6
0

4

1
0

5

2
0

6

2
1

7

3
1

8

2
0

2

2
4

3

0

2 6

8

Fig. 17. Node and arc storage for MDDs

0 1 3

0 1 2

2

0 1 3

0 1

2

0 1

5

4

7

5

4

7

0 1 3

0 1

2

5

4

7

0 1 3

0 1 2

2

0 1

5

4

7

8 8

a b c d

Fig. 18. Adding local state 2 to S2: reduced (a-b) vs. quasi-
reduced (c-d) MDDs

a new node al level k are satisfied by using the next
available position in these arrays. Thus, the node being
saturated is always at the end of the array, and so are
its arcs. This is particularly important with saturation
on-the-fly, where we do not know beforehand how many
entries in arcsk are needed to store the arcs of a node
being saturated.

A fundamental property of our encoding is that a
saturated node 〈k|p〉 remains saturated and encodes the
same set even after a new state i is added to Sk. This is
because, regardless of whether the node is using sparse
or truncated full storage, it will be automatically and
correctly interpreted as having 〈k|p〉[i] = 0. However,
the possible growth of Sk implies that it becomes hard
to exploit the special meaning for node 〈k|1〉, which, we
recall is B(〈k|1〉) = Sk × · · · × S1. With pregeneration,
this optimization speeds up computation whenever node
〈k|1〉 is involved in a union, since we immediately con-
clude that B(〈k|1〉) ∪ B(〈k|p〉) = B(〈k|1〉). Further, such
nodes need not be explicitly stored.

To reserve index 1 for the same purpose with the
on-the-fly approach is possible, but problematic, since,
whenever a new state is added to Sl, for l≤k, the mean-
ing of B(〈k|1〉) implicitly changes. This is one of the rea-
sons that led us to use quasi-reduced instead of reduced

18 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

MDDs. The latter eliminates redundant nodes and is
potentially more efficient, but its arcs can span multiple
levels. As discussed in [13], such arcs are more difficult
to manage and can yield a slower state-space generation
when exploiting locality. With the on-the-fly algorithm,
they create an even worse problem: they become “incor-
rect” when a local state space grows. For example, both
the reduced and the quasi-reduced 3-level MDDs in Fig.
18(a) and (c) encode the state space

S = {(0, 0, 2), (0, 1, 2), (1, 0, 2), (1, 1, 2), (3, 0, 2)},

when S3 = {0, 1, 2, 3}, S2 = {0, 1}, and S1 = {0, 1, 2}.
If we want to add global state (3, 2, 2) to S, we need
to add local state 2 to S2 and set arc 〈2|4〉[2] to 〈1|7〉.
However, while the resulting quasi-reduced MDD in (d)
is correct, the reduced one in (b) is not, since now it
also encodes global states (0, 2, 2) and (1, 2, 2). To fix the
problem, we could reintroduce the formerly-redundant
node 〈2|8〉 so that the new reduced and quasi-reduced
MDDs coincide. While it would be possible to modify
the MDD to obtain a correct reduced ordered MDD in
this manner whenever a local state space grows, the cost
of doing so is unjustifiably high. Of course, we can still
reserve index 0 for the empty set, and exploit the relation
B(〈k|0〉) ∪ B(〈k|p〉) = B(〈k|p〉), since the representation
of the empty set does not change as the local state spaces
expand.

5.5 Garbage collection

If a node 〈k|p〉 becomes disconnected, we “mark it for
deletion” by setting its flag nodesk[p].deleted to true.
However, the node itself remains in memory until the
garbage collection manager performs a cleanup. Such a
node can then be “resuscitated” by simply resetting this
flag. This occurs if a reference to it is retrieved as the re-
sult of an operation cache lookup (of course if a cleanup
is issued after marking 〈k|p〉 for deletion and prior to the
cache lookup, there will be cache lookup miss, since all
entries referring to nodes marked for deletion are elimi-
nated when these nodes are actually deleted).

There is a tradeoff between reducing memory con-
sumption through frequent cleanups versus optimisti-
cally hoping to resuscitate nodes and generally avoiding
the inherent cost of cleanups. Thus, SmArT allows the
user to parameterize the garbage collection method by
specifying a lazy policy, where nodes are physically re-
moved only after having reached a fixed point (the state
space, in our particular case), or a strict policy, where
garbage collection is triggered when a given threshold for
the number of nodes marked for deletion is exceeded.

One problem with MDD nodes of variable sizes is
that the “hole” left in arcsk when a node is deleted can
be smaller than what is needed for a new node, thus it
cannot be easily “recycled”. However, the use of sepa-
rate nodesk and arcsk arrays affords us great flexibility

2

p q r

t

u
v

2

Submodel 2
Submodel 1

Fig. 19. Potential, not actual, overflow of a local state space

in our garbage collection strategy. In particular, we can
“compact to the left” the entire arcsk array any time
the memory used by its holes exceed some threshold (we
use 10%) without having to access nodes at other lev-
els. The space freed at the right end of arcsk can then
be reused for new nodes. This compaction only requires
to re-adjust the values of each nodesk[p].offset , for each
level-k node. There are several ways to do this.

One approach is to store, together with the chunk
for 〈k|p〉 in arcsk, a back pointer to the node itself, i.e.,
the value p. This allows compaction of arcsk via a lin-
ear scan: valid values may be shifted to the left over
invalid values until all holes have been removed. Simul-
taneously, using the back pointer p, we access and update
the value nodesk[p].offset after shifting the correspond-
ing arcs. With respect to our previous pregeneration im-
plementation, where array arcsk is not used because the
arcs are stored directly in nodesk as arrays of fixed-size
nk, this requires 12 additional bytes per node, for offset

and size in nodesk and for the back pointer in arcsk.
However, it can also save memory, since we can now em-
ploy sparse or truncated full storage.

A better alternative is to build a temporary array
tmp when compacting the arcs at level k by scanning
the nodes sequentially and copying the arcs of each non-
deleted node from arcsk to tmp. When done copying,
tmp becomes our new compacted arcsk array, and the
old arcsk array is deleted. This additional array tmp

temporarily increases the memory requirements, but avoids
the need for back pointers, saving four bytes per node.

In addition to compacting the arcsk array, we also
need to regularly and independently compact the nodesk

array. This can also be done by “compacting to the left”
over nodes marked for deletion but, this now means that
what was node 〈k|p〉 is now node 〈k|q〉, with q < p.
When performing this compaction, we build a temporary
indirection array old2new of size equal to the old number
of nodes, so that old2new [p] = q. Then, once compaction
is completed, we scan the arcs in the level above, arcsk+1,
and change each occurrence of p into q using a lookup
into old2new . Finally, old2new is destroyed when this
scan has completed.

5.6 Overflow of potential local state spaces

Our new algorithm eliminates the need to specify addi-
tional constraints for any formalism where each state can
reach a finite number of states in a single step. A subtle

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 19

problem remains, however, if an infinite number of states
can be reached in one step. For example, in Generalized
Stochastic Petri Nets [1], immediate transitions, such as
v in Fig. 19, are processed not by themselves, but as
events that can take place instantaneously after the fir-
ing of timed transitions, such as t and u (somewhat anal-
ogous to internal events in process algebra). In Fig. 19,
we partition the net into submodel 2, containing place
p, and submodel 1, containing places q and r.

The initial local states are (p0) and (q1r0) respec-
tively. When the latter state is confirmed into S1, an
explicit local exploration begins. Transition t can fire
in submodel 1 in isolation, leading to marking (q2r0).
This enables immediate transition v which, processed
right away as part of the firing of t, leads to markings
(q2r1), (q2r2), (q2r3), ... and so on. Thus, the explicit
local exploration fails with an overflow in place r, while
a traditional explicit global exploration would not, since
it would never reach a global marking with two tokens in
q. This situation is quite artificial, however. It can occur
only if the formalism allows a state to reach an infinite
number of states in one “timed step”.

6 Results

We conducted two series of experiments on a 3 Ghz Pen-
tium IV workstation with 1GB of memory. The first ex-
periment compares the various exploration algorithms
presented in Section 3, which we implemented in our
tool SmArT using MDDs and Kronecker matrices. The
second experiment compares the saturation algorithm of
SmArT with the traditional approach of NuMSV [20], a
symbolic verifier built on top of the CUDD library [45].

Our examples include four models parametrized by
an integer N : dining philosophers and slotted ring [38],
round robin mutual exclusion [28], and flexible manufac-
turing system (FMS) [19]. Detailed descriptions can be
found in [11]. The first three models are safe Petri nets:
N affects the height of the MDD but not the size of
the local state spaces (except for S1 in the round robin
model, which grows linearly in N). The FMS has in-
stead an MDD with fixed height but size of the nodes
increasing linearly in N .

Table 1 contains three groups of columns. To the left
are the model parameters (N and |S|, the state space
size), while the runtimes and memory requirements for
seven different exploration strategies are listed in the
middle and right blocks of columns, respectively. The
strategies considered are the two variants of breadth-
first search, BfSsGen and AllBfSsGen, the two variants
of BFS with chaining, ChSsGen and AllChSsGen, the
forwarding arcs approach of [13] to implement update-
in-place, the saturation algorithm with pregeneration of
the local state spaces [14], and the saturation on-the-fly
algorithm [15]. The last column lists the memory needed

by the final MDD, encoding the entire state space, this
quantity is of course independent of the algorithm used.

The results show a steady performance gain that
“chronologically” follows the series of improvements pre-
sented in this paper. In a nutshell, there are three huge
“leaps” in technology: the idea of chaining, the exploita-
tion of event locality in the forwarding arcs approach,
and the radical change in iteration strategy introduced
by saturation. The chaining technique improves on tra-
ditional BFS, the in-place-updates and locality improve
on chaining, while the saturation strategy is vastly supe-
rior to all predecessors by several orders of magnitude,
both in terms of time and memory consumption.

On the issue of using just the MDD encoding of fron-
tier set (strictly new states) versus the encoding of the
entire current set in the BFS iterations, we found a
rather surprising fact. Not only the unanimous prefer-
ence for the frontier set approach seems to be unjusti-
fied, but, at least for the class of asynchronous systems
studied here, the second approach that uses all states
performs consistently better (even for the dining philoso-
pher model, where ChSsGen and AllChSsGen have sim-
ilar timing performance, AllChSsGen uses substantially
less peak memory). This is counterintuitive only in the
context of explicit methods. Decision diagrams exploit
structure in the encoded sets, which seems to be poor in
the frontier set.

Regarding our two saturation algorithms, the results
demonstrate that the overhead of the on-the-fly algo-
rithm versus pregeneration is acceptable. Moreover, the
additional per-node memory overhead required to man-
age dynamically-sized nodes at a given level k can be
offset by the ability to store nodes with m < nk arcs
(because they were created when Sk contained only m

states, or because the last nk −m arcs point to 〈k−1|0〉
and are truncated). In fact, for the FMS model, this
results in smaller memory requirements than with pre-
generation, suggesting that the use of sparse nodes is ad-
vantageous in models with large local state spaces. Even
if our on-the-fly implementation is not yet as optimized
as that of pregeneration, the runtime of the on-the-fly
algorithm is still excellent, at most double (for the FMS
model) and consistently under 70% overhead compared
to the pregeneration version for the other models. This
is a good tradeoff, given the increase in modeling ease
and safety afforded by not having to worry about local
state space generation in isolation.

Table 2 lists the peak and final memory and the run-
time for SmArT using saturation on-the-fly with NuSMV.
For comparison’s sake, we assume that a BDD node in
NuSMV uses 16 bytes. To be fair, we point out that our
memory consumption refers to the MDD only, while we
believe that the number of nodes reported by NuSMV
includes also those for the next-state function; however,
our Kronecker encoding for N is extremely efficient, re-
quiring at most 300KB in any model. Memory for the
operation caches is not included in either our or NuSMV

20 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

Table 1. Comparing state-space generation algorithms in SmArT (“—” indicates excessive time or memory requirements)

N Reachable Time (sec) Memory (MB)
states Bf AllBf Ch AllCh Fwd Sat Otf Bf AllBf Ch AllCh Fwd Sat Otf final

Dining Philosophers: K=N , |Sk|=34 for all k

50 2.2×1031 37.6 36.8 1.3 1.3 0.1 0.0 0.0 146.8 131.6 2.2 2.2 0.0 0.0 0.0 0.0

100 5.0×1062 644.1 630.4 5.4 5.3 0.3 0.2 0.2 > 999.9 > 999.9 8.9 8.9 0.2 0.2 0.2 0.0

1000 9.2×10626 — — 895.4 915.5 4.6 1.1 1.9 — — 895.2 895.0 0.5 0.4 0.4 0.3

10000 4.3×106269 — — — — 704.0 84.4 129.7 — — — — 5.5 3.9 3.7 3.1

Slotted Ring Network: K = N , |Sk|=15 for all k

5 5.3×104 0.2 0.3 0.1 0.1 0.0 0.0 0.0 0.8 1.1 0.3 0.2 0.0 0.0 0.0 0.0

10 8.3×109 21.5 24.1 2.1 1.2 0.1 0.0 0.0 39.0 45.0 5.7 3.3 0.0 0.0 0.0 0.0

15 1.5×1015 745.4 771.5 18.5 8.9 0.5 0.1 0.2 344.3 375.4 35.1 20.2 0.1 0.1 0.1 0.0

50 1.7×1052 — — — — 120.3 2.9 4.4 — — — — 4.2 2.0 2.2 0.1

100 2.6×10105 — — — — 4976.1 21.6 33.9 — — — — 44.5 14.8 16.1 0.4

Round Robin Mutual Exclusion: K=N+1, |Sk|=10 for all k except |S1|=N+1

10 2.3×104 0.2 0.3 0.1 0.1 0.0 0.0 0.0 0.6 1.2 0.1 0.1 0.0 0.0 0.0 0.0

20 4.7×107 2.7 4.4 0.3 0.3 0.1 0.0 0.0 5.9 12.8 0.5 0.5 0.0 0.0 0.0 0.0

30 7.2×1010 16.4 26.7 0.7 0.7 0.3 0.1 0.1 22.7 48.2 1.3 1.1 0.1 0.0 0.0 0.0

50 1.3×1017 263.2 427.6 2.9 2.8 1.0 0.2 0.2 126.7 257.7 4.3 3.8 0.2 0.1 0.1 0.1

100 2.9×1032 — — 22.1 19.3 7.7 1.2 1.7 — — 22.1 20.0 0.7 0.4 0.4 0.4

200 7.2×1062 — — — — 58.1 10.9 13.6 — — — — 2.7 1.4 1.4 1.4

FMS: K=19, |Sk|=N+1 for all k except |S17|=4, |S12|=3, |S7|=2

5 2.9×106 0.7 0.7 0.1 0.1 0.0 0.0 0.0 2.6 2.2 0.4 0.2 0.0 0.0 0.0 0.0

10 2.5×109 7.0 5.8 0.5 0.3 0.1 0.0 0.0 18.2 14.7 2.3 1.3 0.0 0.0 0.0 0.0

15 2.2×1011 41.0 30.5 1.9 1.0 0.2 0.0 0.0 61.9 48.8 8.0 4.3 0.1 0.1 0.1 0.0

20 6.0×1012 183.6 126.0 5.3 2.3 0.5 0.1 0.1 154.0 119.4 20.2 10.3 0.1 0.1 0.1 0.1

25 8.5×1013 677.2 437.9 12.9 5.1 1.0 0.1 0.1 319.7 245.3 42.7 21.2 0.3 0.2 0.2 0.1

150 4.8×1023 — — — — — 8.4 16.4 — — — — — 30.7 16.5 15.8

results (for our algorithms, caches never exceeded 2MB
on these examples). Overall, SmArT can handle signifi-
cantly larger models than NuSMV. For each model, the
last row corresponds to the largest value of N for which
generation was possible with NuSMV. For these values,
saturation shows speed-ups over 100,000 and memory
reductions over 1,000.

7 Conclusions

We presented a novel approach for building the state
space of asynchronous systems using MDDs to store sets
of states and Kronecker operators on boolean matrices
to store the next-state function. This avoids encoding
the global next-state function as a single MDD, and dis-
junctively splits it instead according to the asynchronous
events in the system, and then conjunctively according
to the state variables. The resulting encoding gives us
the opportunity to recognize locality in the effect of each
event on each state variable, and the freedom to choose
the order in which to fire events, that is, the fixed-point
iteration strategy.

The resulting algorithm, saturation, was shown to
be orders of magnitude faster and more memory effi-
cient than traditional symbolic methods that discover

the state space in breadth-first order. Furthermore, we
presented an extended version of this algorithm that can
be used when the state space is known to be finite but
the possible range of the state variables is unknown. The
resulting data structure, MDDs whose nodes can be ex-
panded at runtime, may have useful applications beyond
state-space generation.

We stress that saturation and its related data struc-
tures have also been employed to improve symbolic CTL

model checking [18] and the computation of the distance

function of every state from a set of states [17], which
is useful for the efficient generation of shortest witnesses
to an existential state query (i.e., EF in CTL).

One limitation of the approach we presented is its re-
liance on a Kronecker consistent partition of the model
into submodels. While some formalisms always satisfy
this condition for any partition of the model, others do
not. For a model expressed in such a formalism, then,
Kronecker consistency may be satisfied only by merg-
ing submodels or refining events. Given the effectiveness
of saturation, we believe that an important research en-
deavor is to investigate ways to lift this limitation.

Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration 21

Table 2. Results for SmArT vs. NuSMV

N Reachable Final memory (KB) Peak memory (KB) Time (sec)
states Otf NuSMV Otf NuSMV Otf NuSMV

Dining Philosophers: K=N , |Sk|=34 for all k

20 3.46×1012 4 4,178 5 4,192 0.01 0.4

50 2.23×1031 11 8,847 14 8,863 0.03 13.1

100 4.97×1062 24 8,891 28 15,256 0.06 990.8

200 2.47×10125 48 21,618 57 59,423 0.15 18,129.3

Slotted Ring Network: K = N , |Sk|=15 for all k

5 5.39×104 1 502 5 507 0.01 0.1

10 8.29×109 5 4,332 28 8,863 0.06 6.1

15 1.46×1015 10 771 80 11,054 0.18 2,853.1

Round Robin Mutual Exclusion: K=N+1, |Sk|=10 for all k except |S1|=N+1

10 2.30×104 5 917 6 932 0.01 0.2

20 4.72×107 18 5,980 20 5,985 0.04 1.4

30 7.25×1010 37 2,222 41 8,716 0.09 5.6

100 2.85×1032 357 13,789 372 21,814 2.11 2,836.5

FMS: K=19, |Sk|=N+1 for all k except |S17|=4, |S12|=3, |S7|=2

5 1.92×104 5 2,113 6 2,126 0.01 1.0

10 2.50×109 16 1,152 26 8,928 0.02 41.6

25 8.54×1013 86 17,045 163 152,253 0.16 17,321.9

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. John Wiley & Sons, New York,
1995.

2. V. Amoia, G. De Micheli, and M. Santomauro.
Computer-oriented formulation of transition-rate matri-
ces via Kronecker algebra. IEEE Trans. Rel., 30:123–132,
June 1981.

3. J. A. Bergstra, A. Ponse, and S. A. Smolka. Handbook
of Process Algebra. Elsevier Science, 2001.

4. R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided
search for CTL model checking. In Proc. DAC, pages
29–34, Los Angeles, CA, USA, 2000. ACM Press.

5. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Reg-
ular model checking. In Computer Aided Verification,
pages 403–418, 2000.

6. R. E. Bryant. Graph-based algorithms for boolean func-
tion manipulation. IEEE Trans. Comp., 35(8):677–691,
Aug. 1986.

7. P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper.
Complexity of memory-efficient Kronecker operations
with applications to the solution of Markov models. IN-
FORMS J. Comp., 12(3):203–222, 2000.

8. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 1020 states
and beyond. In Proc. 5th Annual IEEE Symp. on Logic
in Computer Science, pages 428–439, Philadelphia, PA,
4–7 June 1990. IEEE Comp. Soc. Press.

9. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic
model checking with partitioned transition relations. In
A. Halaas and P.B. Denyer, editors, Int. Conference on
Very Large Scale Integration, pages 49–58, Edinburgh,
Scotland, Aug. 1991. IFIP Transactions, North-Holland.

10. G. Cabodi, P. Camurati, and S. Quer. Improving sym-
bolic traversals by means of activity profiles. In Design
Automation Conference, pages 306–311, 1999.

11. G. Ciardo et al. SMART: Stochastic Model checking An-
alyzer for Reliability and Timing, User Manual. Avail-
able at http://www.cs.ucr.edu/∼ciardo/SMART/.

12. G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu.
Logical and stochastic modeling with SMART. In
P. Kemper and W. H. Sanders, editors, Proc. Modelling
Techniques and Tools for Computer Performance Evalu-
ation, LNCS 2794, pages 78–97, Urbana, IL, USA, Sept.
2003. Springer-Verlag.

13. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Efficient
symbolic state-space construction for asynchronous sys-
tems. In M. Nielsen and D. Simpson, editors, Proc. 21th
Int. Conf. on Applications and Theory of Petri Nets,
LNCS 1825, pages 103–122, Aarhus, Denmark, June
2000. Springer-Verlag.

14. G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation:
An efficient iteration strategy for symbolic state space
generation. In T. Margaria and W. Yi, editors, Proc.
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), LNCS 2031, pages 328–342, Gen-
ova, Italy, Apr. 2001. Springer-Verlag.

15. G. Ciardo, R. Marmorstein, and R. Siminiceanu. Sat-
uration unbound. In H. Garavel and J. Hatcliff, edi-
tors, Proc. Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), LNCS 2619, pages
379–393, Warsaw, Poland, Apr. 2003. Springer-Verlag.

16. G. Ciardo and A. S. Miner. Storage alternatives for
large structured state spaces. In R. Marie, B. Plateau,
M. Calzarossa, and G. Rubino, editors, Proc. 9th Int.
Conf. on Modelling Techniques and Tools for Com-
puter Performance Evaluation, LNCS 1245, pages 44–57,
St. Malo, France, June 1997. Springer-Verlag.

17. G. Ciardo and R. Siminiceanu. Using edge-valued
decision diagrams for symbolic generation of shortest

22 Gianfranco Ciardo et al.: The saturation algorithm for symbolic state-space exploration

paths. In M. D. Aagaard and J. W. O’Leary, editors,
Proc. Fourth International Conference on Formal Meth-
ods in Computer-Aided Design (FMCAD), LNCS 2517,
pages 256–273, Portland, OR, USA, Nov. 2002. Springer-
Verlag.

18. G. Ciardo and R. Siminiceanu. Structural symbolic CTL
model checking of asynchronous systems. In W. Hunt,
Jr. and F. Somenzi, editors, Computer Aided Verification
(CAV’03), LNCS 2725, pages 40–53, Boulder, CO, USA,
July 2003. Springer-Verlag.

19. G. Ciardo and K. S. Trivedi. A decomposition approach
for stochastic reward net models. Perf. Eval., 18(1):37–
59, 1993.

20. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: A new symbolic model verifier. In CAV ’99,
LNCS 1633, pages 495–499. Springer-Verlag, 1999.

21. E. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry
in model checking. In CAV ’93, LNCS 697, pages 450–
462. Springer-Verlag, 1993.

22. E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 1999.

23. O. Coudert and J. C. Madre. Symbolic computation of
the valid states of a sequential machine: algorithms and
discussion. In 1991 Int. Workshop on Formal Methods
in VLSI Design, pages 1–19, Miami, FL, USA, 1991.

24. A. Geser, J. Knoop, G. Lüttgen, B. Steffen, and
O. Rüthing. Chaotic fixed point iterations. Technical
Report MIP-9403, Univ. of Passau, 1994.

25. P. Godefroid. Partial-order Methods for the Verifica-
tion of Concurrent Systems – An Approach to the State-
explosion Problem, volume 1032 of LNCS 1032. Springer-
Verlag, 1996.

26. P. Godefroid and D. E. Long. Symbolic protocol veri-
fication with queue BDDs. Formal Methods in System
Design, 14(3):257–271, May 1999.

27. S. Graf and B. Steffen. Compositional minimization of
finite state systems. In E. M. Clarke and R. P. Kurshan,
editors, Proc. CAV, LNCS 531, pages 186–196, 1990.

28. S. Graf, B. Steffen, and G. Lüttgen. Compositional min-
imisation of finite state systems using interface specifica-
tions. Formal Asp. of Comp., 8(5):607–616, 1996.

29. O. Grumberg, T. Heyman, and A. Schuster. A work-
efficient distributed algorithm for reachability analysis.
In Computer Aided Verification 2003, July 2003.

30. J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klar-
lund, R. Paige, T. Rauhe, and A. Sandholm. Mona:
Monadic second-order logic in practice. In E. Brinksma,
R. Cleaveland, K. G. Larsen, T. Margaria, and B. Stef-
fen, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 1019, pages 89–110.
Springer, 1995.

31. C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

32. G. Holzmann and D. Peled. An improvement in formal
verification. In Proc. Formal Description Techniques,
FORTE94, pages 197–211, Berne, Switzerland, October
1994. Chapman & Hall.

33. T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-
Vincentelli. Multi-valued decision diagrams: theory and
applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

34. S. Kimura and E. M. Clarke. A parallel algorithm
for constructing binary decision diagrams. In Proc.

Int. Conf. on Computer Design (ICCD), pages 220–223,
Cambridge, MA, Sept. 1990. IEEE Comp. Soc. Press.

35. J.-P. Krimm and L. Mounier. Compositional state space
generation from Lotos programs. In E. Brinksma, editor,
Proc. TACAS, LNCS 1217, pages 239–258, Enschede,
The Netherlands, Apr. 1997. Springer-Verlag.

36. A. S. Miner and G. Ciardo. Efficient reachability set gen-
eration and storage using decision diagrams. In H. Kleijn
and S. Donatelli, editors, Proc. 20th Int. Conf. on Appli-
cations and Theory of Petri Nets, LNCS 1639, pages 6–
25, Williamsburg, VA, USA, June 1999. Springer-Verlag.

37. T. Murata. Petri Nets: properties, analysis and applica-
tions. Proc. of the IEEE, 77(4):541–579, Apr. 1989.

38. E. Pastor, O. Roig, J. Cortadella, and R. Badia. Petri
net analysis using boolean manipulation. In R. Valette,
editor, Proc. 15th Int. Conf. on Applications and The-
ory of Petri Nets, LNCS 815, pages 416–435, Zaragoza,
Spain, June 1994. Springer-Verlag.

39. S. Pissanetzky. Sparse Matrix Technology. Academic
Press, 1984.

40. B. Plateau. On the stochastic structure of parallelism
and synchronisation models for distributed algorithms.
In Proc. ACM SIGMETRICS, pages 147–153, Austin,
TX, USA, May 1985.

41. H. Preuss and A. Srivastav. Blockwise variable orderings
for shared BDDs. In MFCS: Symp. on Mathematical
Foundations of Computer Science, 1998.

42. K. Ravi and F. Somenzi. High-density reachability anal-
ysis. In ICCAD ’95, pages 154–158. IEEE Computer
Society Press, 1995.

43. O. Roig, J. Cortadella, and E. Pastor. Verification of
asynchronous circuits by BDD-based model checking of
Petri nets. In G. De Michelis and M. Diaz, editors, Proc.
16th Int. Conf. on Applications and Theory of Petri Nets,
Turin, Italy, LNCS 935, pages 374–391. Springer-Verlag,
June 1995.

44. M. Solé and E. Pastor. Traversal techniques for con-
current systems. Lecture Notes in Computer Science,
2517:220–237, 2002.

45. F. Somenzi. CUDD: CU Deci-
sion Diagram Package, Release 2.3.1.
http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

46. A. Valmari. A stubborn attack on the state explosion
problem. In CAV ’90, pages 25–42. AMS, 1990.

47. B. Yang and D. R. O’Hallaron. Parallel breadth-first
BDD construction. In Proc. of the Sixth ACM SIGPLAN
Symp. on Principles and Practice of Parallel Program-
ming (PPoPP’97), pages 145–156, Las Vegas, NV, June
1997.

