

GPU Teaching Kit

Accelerated Computing

Lecture 1.1 – Course Introduction

Course Introduction and Overview

Course Goals

- Learn how to program heterogeneous parallel computing systems and achieve
 - High performance and energy-efficiency
 - Functionality and maintainability
 - Scalability across future generations
 - Portability across vendor devices
- Technical subjects
 - Parallel programming API, tools and techniques
 - Principles and patterns of parallel algorithms
 - Processor architecture features and constraints

People

- Wen-mei Hwu (University of Illinois)
- David Kirk (NVIDIA)
- Joe Bungo (NVIDIA)
- Mark Ebersole (NVIDIA)
- Abdul Dakkak (University of Illinois)
- Izzat El Hajj (University of Illinois)
- Andy Schuh (University of Illinois)
- John Stratton (Colgate College)
- Isaac Gelado (NVIDIA)
- John Stone (University of Illinois)
- Javier Cabezas (NVIDIA)
- Michael Garland (NVIDIA)

Module 1 Course Introduction	 Course Introduction and Overview Introduction to Heterogeneous Parallel Computing Portability and Scalability in Heterogeneous Parallel Computing
Module 2 Introduction to CUDA C	 CUDA C vs. CUDA Libs vs. OpenACC Memory Allocation and Data Movement API Functions Data Parallelism and Threads Introduction to CUDA Toolkit
Module 3 CUDA Parallelism Model	 Kernel-Based SPMD Parallel Programming Multidimensional Kernel Configuration Color-to-Greyscale Image Processing Example Blur Image Processing Example
Module 4 Memory Model and Locality	 CUDA Memories Tiled Matrix Multiplication Tiled Matrix Multiplication Kernel Handling Boundary Conditions in Tiling Tiled Kernel for Arbitrary Matrix Dimensions
Module 5 Kernel-based Parallel Programming	 Histogram (Sort) Example Basic Matrix-Matrix Multiplication Example Thread Scheduling Control Divergence

Module 6 Performance Considerations: Memory	DRAM Bandwidth Memory Coalescing in CUDA
Module 7 Atomic Operations	Atomic Operations
Module 8 Parallel Computation Patterns (Part 1)	ConvolutionTiled Convolution2D Tiled Convolution Kernel
Module 9 Parallel Computation Patterns (Part 2)	Tiled Convolution AnalysisData Reuse in Tiled Convolution
Module 10 Performance Considerations: Parallel Computation Patterns	Reduction Basic Reduction Kernel Improved Reduction Kernel
Module 11 Parallel Computation Patterns (Part 3)	 Scan (Parallel Prefix Sum) Work-Inefficient Parallel Scan Kernel Work-Efficient Parallel Scan Kernel More on Parallel Scan

Module 12 Performance Considerations: Scan Applications	 Scan Applications: Per-thread Output Variable Allocation Scan Applications: Radix Sort Performance Considerations (Histogram (Atomics) Example) Performance Considerations (Histogram (Scan) Example)
Module 13 Advanced CUDA Memory Model	Advanced CUDA Memory Model Constant Memory Texture Memory
Module 14 Floating Point Considerations	Floating Point Precision ConsiderationsNumerical Stability
Module 15 GPU as part of the PC Architecture	GPU as part of the PC Architecture
Module 16 Efficient Host-Device Data Transfer	 Data Movement API vs. Unified Memory Pinned Host Memory Task Parallelism/CUDA Streams Overlapping Transfer with Computation
Module 17 Application Case Study: Advanced MRI Reconstruction	Advanced MRI Reconstruction
Module 18 Application Case Study: Electrostatic Potential Calculation	 Electrostatic Potential Calculation (Part 1) Electrostatic Potential Calculation (part 2)

Module 19 Computational Thinking For Parallel Programming	Computational Thinking for Parallel Programming
Module 20 Related Programming Models: MPI	 Joint MPI-CUDA Programming Joint MPI-CUDA Programming (Vector Addition - Main Function) Joint MPI-CUDA Programming (Message Passing and Barrier) (Data Server and Compute Processes) Joint MPI-CUDA Programming (Adding CUDA) Joint MPI-CUDA Programming (Halo Data Exchange)
Module 21 CUDA Python Using Numba	CUDA Python using Numba
Module 22 Related Programming Models: OpenCL	 OpenCL Data Parallelism Model OpenCL Device Architecture OpenCL Host Code (Part 1) OpenCL Host Code (Part 2)
Module 23 Related Programming Models: OpenACC	Introduction to OpenACC OpenACC Subtleties
Module 24 Related Programming Models: OpenGL	OpenGL and CUDA Interoperability

Module 25 Dynamic Parallelism	Effective use of Dynamic Parallelism Advanced Architectural Features: Hyper-Q
Module 26 Multi-GPU	Multi-GPU
Module 27 Using CUDA Libraries	 Example Applications Using Libraries: CUBLAS Example Applications Using Libraries: CUFFT Example Applications Using Libraries: CUSOLVER
Module 28 Advanced Thrust	Advanced Thrust
Module 29 Other GPU Development Platforms: QwickLABS	Other GPU Development Platforms: QwickLABS
Where to Find Support	

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>