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e Images:
- color histogram, shape, edges, etc.
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Vectors...what are they???
C |

e Image with 1 pixel <5>
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Vectors...what are they???
.

e Image with 2 pixels <5,7>
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Vectors...what are they???

e Image with 3 pixels <5,7,3>
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Distance between two images???

e Given A<a1,a2,a3> and B<b1,b2,b3>, how
different are they?

s

r

Maria Luisa Sapino (BDM 2018)

Euclidean distance

A(4.B) = \/(u] —b1)2+ (a2 —b2)2 + (a3 —b3)2
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Which image is more similar to A?
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Which image is more similar to A?

[} AAC)

A(AB)

Closer to A
Similar to A
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“Find 2 most similar images to A”
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“Find 2 most similar images to A”
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Nearest-neighbor search
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“Find images at most & different
from A”
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“Find images at most & different
from A”
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Are there other similarity

measures?
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Let’s try angles...
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Let’s try angles...
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Let’s try angles...

Similar
composition F EE
Als]s [s ]
Ela ]2 [2]
O A
E )
(=) F If we use
/ angles as a
similarity

measure,
thenAis
more similar

cos(A/E) > cos(/l:\\F) to E than F
uisa Sapino (BDM 2018)

Angle-based measures

e Given
F=(x, 00 ,) I =P Yara)

— Dot product

"
xy= 2 Xy,
i=
- Cosine similarity .
cos(fc,)"/)= —
‘xHy‘ Maria Luisa Sapino (BDM 2018)

What is a good measure then??

e Application dependent...

e ...but, distances in a metric space help indexing!
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Metric model: axioms
¢ |

e Any function d expressing a distance must satisfy the
following axioms:

- self-minimality: d(s,s)=0

— minimality d(sy,8,)>=d(sy,84)

- simmetry d(sy, s,) =d (s, 84)

- triangular inequality d(sy,s,) + d (s,,85) >=d (s4,53)

e Example: Euclidean distance
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Metric distances (Minkowski
metrics)

e L1-metric: d = (dX+dY)

Also called Manhattan Distance
Maria Luisa Sapino (BDM 2018)

Metric distances (Minkowski
metrics)

e L2-metric: d = (dX?+dY?)"2

Y

Also called Euclidean Distance
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Metric distances (Minkowski
metrics)

G
e L3-metric; d = (dX3+dY?3)"3

e L(infinity): d = max{X,Y}
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...metric model
¢ ]

e Well suited for certain kinds of similarity evaluation,
such as color based comparisons

e Consistent with widely used approaces from
computer vision and pattern recognition communities
- results suggest that the L1 metric may better capture human
notions of image similarity.
e Makes it relatively easy to index data, modeled as
vectors of properties, in terms of classical multi-
dimensional indexing techniques.
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