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Abstract— This work considers multi-vehicle systems in
which self-interested, mobile agents compete to capture a target
that has been distributed on a ring. In the scenarios studied,
agents face the added difficulty of having minimal sensing
capabilities and limited knowledge of where the target is
located. We consider strategic algorithms that allow agents to
effectively make decisions and plan trajectories in these settings.
Specifically, we characterize equilibria strategies for a search
game in which two cows compete to find a patch of clover
located somewhere on the unit ring. Throughout, we motivate
the work using the example of taxi drivers that compete with
one another to garner fares in a busy urban landscape.

I. INTRODUCTION

Traditional one-sided search problems involve a mobile
agent trying to find a target within a spatial environment.
Based on agent attributes, e.g., sensing radius, detection ef-
ficiency, and kinematic constraints, as well as other problem
specifics, e.g., workspace geometry and target mobility, the
agent must devise a search plan that is optimal in some
sense, e.g., minimizes the expected capture time. When
multiple agents are employed, these plans are often designed
in a coordinated manner with a common objective in mind.
For example, cooperative strategies may facilitate smaller
detection times as compared to protocols in which the agents
search independently. Even in the game-theoretic problems
considered, competitive tension emerges only between a
hider, which can be viewed as a decision-making target,
and the team of search agents, in that the search agents act
cooperatively, with no preference for which agent, if any,
ultimately finds the target.

While the multi-agent, search problems highlighted above
address decision-making in a host of pertinent applications,
they say little about how the agents should search when
they, themselves, are in competition to secure scarce re-
sources. In this paper, we study a new type of multi-agent
search game that stresses precisely this type of inter-agent
competition. We consider scenarios in which multiple self-
interested, search agents compete to capture immobile targets
that are distributed in an environment Q . Each search agent
possesses a prior probability distribution for where the targets
are located, but has limited sensing capabilities and can
discover a target only when they are directly over it. The
targets are viewed as artifacts of the environment, not as
strategic decision-makers. Rather, the search agents are the
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only decision-makers and the game is played among them,
with each agent trying to capture as many targets as possible.
To emphasize the stark differences that exist between our
framework and cooperative approaches to search, we refer
to the problems we consider as competitive search games.

We believe the competitive search game framework cap-
tures the incentive for strategic decision-making, among
mobile agents, at play in a host of applications. For example,
in many cities, cab drivers make their living from “street
pickups”, whereby the cab driver is hailed by prospective
passengers in real time [1]. This is in contrast to other
operational models in which drivers may have some jobs
forwarded to them via centralized call-in centers. In this
example, Q is a graph with edges and vertices representing
roadways and intersections, respectively. The targets are
the potential passengers, which arrive on an ongoing basis
according to a spatio-temporal process. The game is played
between the cab drivers: each driver trying to maximize
their revenue. To operate effectively, drivers must plan routes
through the city by accounting for spatial demand patterns
as well as other nearby drivers.

As a second example, consider two rival shipwreck-
recovery boats searching the outskirts of a jagged coral reef
for the remnants of a treasure ship lost at sea. In this case,
Q is the subset of R2 representing the waters surrounding
the reef. The lone target is the sunken ship. The game is
played between the two recovery boats: each boat trying to
discover the wreck, and any associated treasure, first. Given a
priori knowledge of where the ship sank, perhaps from crude
sonar images, historical maps, word of mouth accounts, etc.,
each boat must chart a course to search the coastal waters
surrounding the reef, while factoring in the presence of a
rival salvage boat that harbors similar ambitions.

The scenarios described above both fall within the com-
petitive search game framework we have outlined, yet they
differ markedly in terms of workspace geometry, the number
of search vehicles, the target arrival process, and the time
scales over which searching evolves. Surprisingly, although
we believe there are an abundance of practical problems that
fit naturally within the competitive search game framework,
there have been few associated results, even in the case of
just two search agents. It is in this direction that this paper
seeks to make an initial contribution.

The remainder of the paper is structured as follows:
Sections II and III provide the relevant background and re-
view a well-known, single-agent, line search scenario called
the Cow-Path Problem. Section IV considers a variant of
this problem, in which the search takes place over a ring.
Section V adds a second vehicle to the ring in a competitive
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search game we refer to as the Cow-Path Game. Theoretical
results concerning the optimal strategies of searchers are
provided in Sections VI and VII. Finally, Section VIII
summarizes the prominent ideas of the paper and outlines
directions of ongoing and future research.

II. RELATED WORK

The search scenarios we study are closely associated with
two fields 1.) search theory or one-sided search and 2.) search
games [2]. With regard to the former, [3] has long served
as the definitive reference for developing optimal search
plans given constraints that limit the resources available for
searching. In many cases, the search agent has a finite sensing
radius and probability p > 0 of failing to detect a target inside
its sensing zone. Consequently, a target may go undetected
and search is discussed in probabilistic terms.

The Cow-Path Problem, an instance of which involves a
nearsighted cow that, starting from the origin, travels at unit
speed and wishes to discover a patch of clover, distributed
along R according to a known distribution f , in minimal
expected time is introduced in [4] and [5]. A canonical
problem in the fields of online algorithms and probabilistic
robotic path planning, it has received considerable attention
in [6], [7], [8], [9], and [10], in which a variety of conditions
an optimal search trajectory must satisfy have emerged.
Recently, the problem has received renewed interest in [11],
in which costs are associated with the cow turning.

In [12], the authors consider the problem of finding a target
that intermittently emits a signal. The target can be located
only when it emits a signal and is inside the sensing zone
of a search vehicle. They study the expected search time for
a team of vehicles to find the target using periodic search
paths. By not employing a prior distribution, the authors
effectively assume the target is distributed uniformly over
Q . In contrast, in [13], a prior distribution over the target’s
location is assumed and persistent trajectories are designed
such that a patrol vehicle, with limited sensing capabilities,
can detect newly arrived incidents in minimal expected time.

Search games, in which a searcher tries to capture a hider
in minimal time, while the hider tries to delay capture for as
long as possible are considered in [14]. Given the compet-
ing objectives, optimal player strategies are best expressed,
through the language and formalisms of game theory, using
various notions of equilibria. Equilibrium strategies, which
are typically highly dependent on the workspace geometry,
are reported in [15] for games taking place in an assortment
of environments, including line segments, specialized graphs,
and compact regions of R2. In the same work, the authors
consider team search games in which multiple search agents
scour the environment in an effort to locate the hider. In this
respect, the game is played between the team of agents and
the lone hider, with individual agents having no preference
for who ultimately succeeds in capturing the hider.

We remark that in the multi-agent scenarios mentioned,
search agent trajectories are planned in a coordinated or
cooperative manner, with consideration for optimizing a
mutual objective. In the competitive settings we consider,

the search agents must not only explore the workspace to
locate targets, but must do so with an awareness for other
nearby agents that harbor similar ambitions.

Finally, the competitive search games we consider are
closed-loop, in the sense that each agent is, at all times,
aware of the position of every other agent [16]. Concurrently,
there has been interest in studying open-loop competitive
search games, for which agents craft search strategies without
knowing the position of any other agent [17].

III. BACKGROUND

In this section, we present requisite ideas that find appli-
cation in the analysis and discussion of later sections.

We begin by stating the version of the Cow-Path Problem,
or CPP, that we are interested in.

Definition 3.1: (The Cow-Path Problem) A patch of
clover, T , is distributed on the real line according to a known
density function f : R → R+. Starting from x = 0, a cow
C, capable of moving at unit speed, wishes to discover T in
minimal expected time. It is assumed C can change directions
instantaneously, but can discover T only when she is directly
over it.

The cow’s search plan is a sequence of points, {xi} ∈ R
satisfying · · ·< x4 < x2 < 0 < x1 < x3 < · · · , at which to turn
around [5]. Intuitively, the points at which C turns are those
which, given f , collectively minimize the expected amount
of backtracking required before finding T . Exact solutions to
the CPP are known for only a handful of target distributions,
e.g., rectangular, triangular, Gaussian, though, for general
f , dynamic programming-based methods can be used to
find solutions of arbitrary accuracy given a sufficiently fine
discretization of R [15].

In our study of competitive search games, we will be
interested in search strategies that prove efficient in the face
of inter-agent competition. To this end, we make frequent
use of the following equilibrium notion from game theory.

Definition 3.2: (ε-Nash Equilibrium)[18] Let G be a
game with n players. Let Si be the strategy set of player
i and S = S1×·· ·×Sn the set of strategy profiles. For s ∈ S,
let si be the strategy played by player i in s and s−i the
strategy profile of all players other than i in s. Let Ui (s) be
the utility of player i under s. A strategy profile s∗ ∈ S is an
ε-Nash equilibrium, for ε > 0, if for all i = 1, . . . ,n,

Ui
(
s∗i ,s

∗
−i
)
+ ε≥Ui

(
si,s∗−i

)
for all si ∈ Si. (1)

In words, (1) says s∗ is an ε-Nash equilibrium if no player
can unilaterally deviate from s∗ and improve their utility by
more than ε. We will be interested in cases where ε is small.

IV. THE COW-PATH RING PROBLEM

In the CPP, exploring R− and R+ are mutually exclusive
tasks, implying the cow must initially have a contingency
plan to turn around at least once. Here, we consider searching
along the unit ring, an environment that affords the cow
new search possibilities, including being able to conduct an
exhaustive search without ever turning around. To this end,
let R1 denote the unit ring and O a point on R1, henceforth,
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to be referred to as the origin. We define the Cow-Path Ring
Problem (CPRP) as follows:

Definition 4.1: (The Cow-Path Ring Problem) A patch of
clover, T , is distributed on the unit ring, R1, according to a
known density function f : R1→R. Starting from O, a cow
C, capable of moving at unit speed, wishes to discover T in
minimal expected time. It is assumed C can change directions
instantaneously, but is nearsighted and can discover T only
when she is directly over it.

The following coordinate system provides the descriptive
power needed to concisely articulate search plans in the
CPRP. We refer to a point x ∈ R1 by the number in [0,2π]
that represents the CCW distance from O to x. At the same
time, we may also refer to x by the number in [−2π,0] whose
magnitude represents the CW distance from O to x.

We now consider how to formally represent search plans
in the CPRP. Given the close association to the CPP, it
comes as little surprise that, in the CPRP, search plans are
again naturally specified by an initial heading, followed by
a sequence of turn-around points. However, because R1 is
a closed curve, C now has the option of maintaining her
heading and sweeping R1 until she discovers T . Indeed, it
is easy to see that once a contiguous segment of length `≥ π

has been explored along R1, sweeping becomes the optimal
online contingency for finding T .

With these ideas in mind, we represent a search plan
in the CPRP by a sequence s = {xi}n

i=0, where xi ∈ R1
is the coordinate of the i-th turn-around point. Because it
proves notationally advantageous for the analysis to follow,
we assume x0 = 0, i.e., the origin. Semantically, s stipulates
the search for T is to evolve by exploring the following path
(delineated for the case where x1 > 0 and n is even):

0 ccw−−→ x1
cw−→ x2

ccw−−→ x3
cw−→ ·· · cw−→ xn

ccw−−→ (2π+ xn). (2)

In words, (2) states that, starting from the origin, C travels
in the CCW direction toward x1. Should she reach x1 having
not found T , she reverses direction and travels toward x2.
Should she reach x2, still having not found T , she again
reverses direction and travels toward x3, and so on. Now,
should she reach xn, with T still proving elusive, she reverses
direction one last time and then sweeps R1 until T is found.
For the time being, we leave open the possibility that n→∞,
and remark that there exist distributions in the CPP for which
C’s optimal search plan budgets a countably infinite number
of turns. The pertinent geometric features of the CPRP are
illustrated in Figure 1.

Since we are interested in optimal search plans, we restrict
our focus to those s that satisfy the following conditions:

1) xi · xi+1 ≤ 0, for 0≤ i≤ n−1,
2) |xi|< |xi+2|, for 1≤ i≤ n−2, and
3) |xi|+ |xi+1| ≤ π, for 1≤ i≤ n−1.

Taken together, conditions 1 and 2 ensure C alternate
between moving in the CW and CCW directions when
searching unexplored regions. Violation of either condition
would introduce the possibility of reversing direction in a

T !

x = 0

x

x1

x2

Fig. 1. The Cow-Path Ring Problem. The target density f (x) as a function
of radial position, x∈R1, is shown in blue. In this instance, the target, T , is
located along the North-West portion of the ring. In the search plan shown,
the cow (yellow triangle) travels in the CCW direction toward x1, where,
having not found T , she reverses direction, and travels in the CW direction
toward x2. Upon reaching x2, having still not found T , she again reverses
direction and continues with her search in the CCW direction. The site at
which T is found is illustrated with a red exclamation mark.

previously explored region — a wasteful policy. Condition 3,
in conjunction with the first condition, ensures the cow
does not waste time backtracking over previously explored
territory to access unexplored regions can be more readily
reached by maintaining the course and continuing to travel
in the current direction.

Assuming the well-formedness conditions above, we are
now in a position to consider the discovery time, or cost, of
search plan s, which we denote as c(s). Recognizing c(s)
is a random variable, and following the approach in [5], we
have (again assuming n is even and, thus, xn < 0):

E [c(s)] =
2π+xnZ
y=0

x f (x)dx+

|xn|Z
x=0

x f (−x)dx +

2
n

∑
i=1
|xi|(1−F (xi,xi−1)) , (3)

where we have extensively employed our coordinate system
and for any y,z∈ [−2π,2π] such that yz≤ 0, we define F (y,z)
to be the probability that T is located along the segment of
R1 with endpoints y and z, i.e., F (y,z) =

∣∣R z
y f (x)dx

∣∣.
As mentioned, because R1 is a closed curve, a viable

search plan is to sweep R1 in the CCW direction. Because
this strategy is somewhat unique, we denote it explicitly by
sccw := {0}. Similarly, we denote sweeping R1 in the CW
direction by scw := {0,0}, i.e., C immediately turns around.
For target distribution f , let s∗ = {0,x∗1,x

∗
2, . . . ,x

∗
n∗} denote

a search plan with minimal expected cost. Recalling that
C moves at unit speed, we immediately have the following
upperbound on the search time:

E [c(s∗)]≤min(E [c(sccw)] ,E [c(scw)]) < 2π. (4)

Before addressing the optimal number of turns to schedule
in a search plan, we introduce machinery to better describe
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the maximum number of turns C could be forced to make
under search plan s. We note that this worst-case statistic is
deterministic, although the number of turns is, in general, a
random variable. We let |s| denote the number of turn-around
points in s. According to this definition, |s∗| = n∗. Finally,
let s∗n denote an optimal search strategy containing n turn-
around points. For a large class of target densities, we have
the following result.

Proposition 1: For a CPRP with bounded target density
f : R1→ [a,b], 0 < a≤ b, n∗ is finite. �

Before proving the above result, we comment on the
applicability of the assumption that f (x) ∈ [a,b] for x ∈ R1.
In many applications for which the exact position of the
target is unknown, it is reasonable to associate some non-
zero probability to T residing in any interval of finite length.
Moreover, it is also the case that for many applications, it
is only over intervals of finite length that one can associate
positive probability to finding T . For the class of problems
over which both of the preceding conditions are true, the
assumption that f : R1→ [a,b], is reasonable.

Proof: Assume, to obtain a contradiction, that for a
given f : R1 → [a,b] the optimal number of turn-around
points is infinite. Let s∗ denote an optimal search plan.
From earlier discussion, s∗ must satisfy |xi|+ |xi+1| ≤ π

for all i ∈ Z≥0. Therefore, for any n ∈ Z>0, it must be
the case that |xn|+ |xn+1| ≤ π. Additionally, it must also
be the case that |x2n|+ |x2n+1| ≤ π. Therefore, with finite
probability p ≥ aπ, the target will not have been found
upon reaching x2n+1. It follows that the expected search
time satisfies E [c(s∗)] ≥ pnxn, and, for sufficiently large n,
exceeds min(E [c(scw)] ,E [c(sccw)]) = 2π. The latter point
contradicts the assumption that it is optimal to turn around
an infinite number of times.

The next result formally captures the intuitive idea that
search plans that employ more than n∗ turn-around points
can recover optimal performance.

Proposition 2: For target density f : R1→ [a,b], 0 < a≤
b, and n > n∗, E [c(s∗n)] is arbitrarily close to E [c(s∗)]. �

Proof: Since n∗ is, by definition, the optimal number of
turn-around points, the need to specify a search plan with one
or more additional turn-around point(s) offers no advantage
to C, i.e., E [c(s)] ≥ E [c(s∗)], for all n ≥ n∗. In the case
where n = n∗+ 1, a sensible strategy to determine s∗n is to
nullify the extra turn-around point so that it stands only an
insignificantly small chance of ever being required. That is,
the target is virtually guaranteed to be found before having
to act on the last turn around point. To this end, for small
ε > 0, consider the search plan sn∗+1 = {s∗n∗ ,xn∗+1}, where

xn∗+1 =−2π · sgn(xn∗)+ xn∗ + ε · sgn(xn∗) . (5)

The extra turn-around point in s∗n∗+1 mandates that, should
it prove necessary, C turn for the last time just before she
would have finished sweeping R1 in s∗n∗ . Consequently, the
expected discovery time changes only in those cases where T
lies within distance ε to one side of xn∗ . Because f (x)∈ [a,b]
for all x ∈ R1, limε→0+ E [c(sn∗+1)] = E [c(s∗n∗)], such that

sn∗+1 discovers T in expected time arbitrarily close to that
in s∗. For n ≥ n∗+ 2, we can again make the extra turn-
around points have arbitrarily small chance of being acted
upon by taking for k = 0,1, . . . ,n−n∗,

xn∗+k =

{
xn∗ −0.5k · ε · sgn(xn∗) , k even
−2π · sgn(xn∗)+ xn∗ +0.5k · ε · sgn(xn∗) , k odd,

(6)
such that E [c(sn∗+k)]→ E [c(s∗)] as ε→ 0+.

The above discussion suggests the following practical
approach to determine n∗. Staring from n = 1, compute an
s∗n that minimizes (3). If, for s∗n, |xn−1|+ |xn| ≈ 2π, then
an appropriate value to take for n∗ is n− 1, otherwise let
n = n+1 and repeat.

We conclude that, left to her own devices, C’s optimal
search plan is to turn around a finite number of times at
select location on R1. Moreover, the exact number of turns
and the specific locations in question can be determined using
a nonlinear optimization package in conjunction with the
simple algorithm described. In the next section, we add a
second hungry cow to the ring and study the behavior that
emerges when the cows compete to find the patch of clover.

V. THE COW-PATH GAME

In the CPRP, it is not immediately obvious, for general f ,
at which points C should turn to find T in minimal expected
time. In this section, we compound matters by adding a
second cow to R1. We continue to assume R1 contains a
single patch of clover. Each cow must now devise a search
plan to find T based not only on their position and the
spatial profile of f , but also the knowledge that a rival cow is
present on R1. This latter point necessitates a re-examining
of bovine logic. We assume that, although either cow would
like to discover T quickly, it is more important that, given
the scarcity of clover, that they be the first to find it. Since
many elements of this scenario draw heavily from the CPRP,
which itself is largely inspired by the CPP, we refer to it as
the Cow-Path Game (CPG), formally defined as follows.

Definition 5.1: (The Cow-Path Game) A patch of clover,
T , is distributed on R1 according to a known density function
f : R1 → R+. For i = 1,2, Ci is a rational cow, capable of
moving at unit speed, that, starting from point xi(0)∈R1 with
initial heading φi (0) ∈ {CW,CCW}, wishes to discover T
first. It is assumed Ci can reverse directions instantaneously,
but can discover T (if not already found) only when she
is directly over it. Finally, it is assumed Ci is aware of her
rival’s position at all times.

The CPG is a game, not only in the vernacular, but also
in the game-theoretic sense, because each cow wants to
find T before the other. We emphasize this added level of
strategic decision-making by henceforth referring to search
plans in the CPG as search strategies. To understand how Ci
should search in the CPG, let Si denote the set of Ci’s search
strategies and S = S1 × S2 the set of search strategy profiles.
For brevity, we will henceforth refer to S simply as the set
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of search profiles. For s ∈ S, define the landclaim of Ci as

Xi (s) := {x ∈ R1 : Ci is the first cow to visit x under s}.
(7)

The utility Ci derives from s may then be expressed as

Ui (s) = P(Ci finds T under s) =
Z

x∈Xi(s)
f (x)dx. (8)

At time t, let xi (t) denote the position of Ci on R1. Addi-
tionally, let x̄i,t : [0, t]→ R1 denote the trajectory travelled
by Ci up to and including time t, such that xi,t (τ) = xi (τ)
for τ ∈ [0, t]. Given our information model, for any t ≥ 0,
Ci knows x−i (τ) for all 0 ≤ τ ≤ t. Assuming Ci remembers
the past position of C−i, it follows that Ci knows x̄−i,t for all
times t ≥ 0. Consequently, si will, in general, be a function of
both x̄i,t and x̄−i,t , such that upon letting SC = {straight, turn}
denote the set of local steering commands, we have that
si : (x̄i,t , x̄−i,t) 7→ {straight, turn}.

Before proceeding, it is worth mentioning why we have
chosen to study competitive search in a ring environment.
The reason is that we feel it is the most basic topology
that affords non-trivial solutions. Namely, if the two cows
were competing to find T on a line segment, the equilibrium
solutions are easy to characterize: each cow travels toward
their rival and, upon meeting, reverses direction to cover any
previously unexplored territory.

To gain an appreciation for the types of complex decisions
C1 and C2 face in the CPG, consider the scenario in Figure 2.
In particular, focus on the segment of R1 described by
−π/4 ≤ x ≤ 0, on which f has a global maximum. We are
temped to ask, should C1 explore this region immediately, or
is she better off to “set it aside” and return to it later? The
answer, of course, is highly contingent on C−i’s strategy.
For example, C−i, could threaten, and occasionally follow
through with, raids into territories that Ci values highly, and
may have had her own aspirations of searching first. In the
next section, we consider a restricted version of the CPG
more amenable to a first analysis of the underlying strategic
dynamics at play.

VI. THE 1-TURN COW-PATH GAME

In this section, we consider the 1-Turn Cow-Path Game
(1T-CPG) in which each cow is allowed to turn at most once.

Definition 6.1: (1-Turn Cow-Path Game) The 1-Turn
Cow-Path Game is a special case of the CPG, defined in
Definition 5.1, with the following amendment: for i = 1,2,
Ci can turn around at most once.

In analyzing the 1T-CPG, it proves advantageous to work
in terms of turn-around times, rather than turn-around points.
We remark that the latter can be determined from the former,
and vice versa, using the appropriate initial conditions and
recalling that cows are assumed to move with unit speed. To
this end, let si = t denote the strategy in which at time t,
Ci turns (irrespective of C−i’s behavior) and, after turning,
sweeps R1. Then Ui (ti, t−i) is the probability Ci captures T
given Ci and C−i turn at times ti and t−i, respectively. Given
the cows travel with unit speed and R1 has circumference 2π,

T

!

C1

C2

x

x = 0

Fig. 2. An instance of the CPG illustrating the initial positions and initial
headings of cows C1 and C2. Portions of each cow’s trajectory, including the
location of each cow’s first turn-around point, are shown as gray paths with
arrowheads. In this instance of the game, T is located along the North-West
portion of the ring and the site at which T is found, in this case by C2, is
shown with a red exclamation mark.

we assume ti ∈ [0,2π] and adopt the convention that ti = 2π

implies Ci forgoes turning during the search.
In the interest of characterizing equilibria strategies, con-

sider the search profile, s = (2π,2π), in which neither cow
turns. In the event neither cow can unilaterally deviate and
improve their utility by more than ε, s is an ε-equilibrium.
If, however, one of the cows, say Ci, has an incentive to
deviate, then it must be that Ci would prefer to turn at some
time t ∈ [0,2π). Moreover, if Ci could guarantee that she
turns first, then her optimal turning time is

t1
i = arg max

ti∈[0,2π]
Ui

(
ti,arg max

ti≤t−i≤2π
U−i (ti, t−i)

)
, (9)

and C−i’s best response is to turn at time

t1
−i = arg max

t1
i ≤t−i≤2π

U−i
(
t1
i , t−i

)
. (10)

Note that since the game is zero-sum, i.e., U1 (s)+U2 (s) = 1
for s∈ S, (9) is reminiscent of Ci utilizing a maximin strategy
for which C−i is restricted in the actions she can choose from.
Although (9) ensures Ci is doing the very best she can as the
designated first mover, it does not guarantee C−i is willing to
resign herself to turning second. To explore the issue further,
for t ∈ [0,2π], define the strategy si =∼ t as

si⇒
{

Ci best responds to C−i , C−i turns by time t
Ci turns around at t , otherwise.

(11)

Returning to Ci and C−i, which turn at (9) and (10),
respectively, it is reasonable to ask if C−i would prefer to
turn before Ci. If the answer is no, then we have reached an
ε-equilibrium. Otherwise, assuming Ci adopts strategy ∼ t1

i ,
C−i’s best strategy is to turn around at time

t2
−i = arg max

0≤t−i≤t1
i

U−i

(
arg max

t−i≤ti≤2π
Ui (ti, t−i) , t−i

)
, (12)

and Ci to respond by turning at a time given the appropriate
modification to (10). We may then ponder if Ci is content
turning second in (∼ t1

i ,∼ t2−i), or if she would prefer to,
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once again, turn first, and so on, and for each occurrence in
which one cow elects to turn before the other, record the time
at which the associated turn occurs. Let Ψ be the sequence
of all such times that emerge from this procession of one-
upmanship. In Algorithm 1, we capture the turn-around times
and strategies the cows adopt while jockeying for position
throughout the experiment we have described. The important
issue of termination is addressed in the discussion to follow.

Algorithm 1 : solve for ε-equilibrium search strategies
1: i = index of any cow that favors turning under s = (2π,2π)
2: Ψ = { /0}
3: si =∼ ti : ti = arg max

ti∈[0,2π]
Ui
(
ti,arg max

ti≤t−i≤2π
U−i (ti, t−i)

)
4: s−i =∼ t−i : t−i = arg max

ti≤t−i≤2π
U−i (ti, t−i)

5: Ψ←{ti}
6: while no ε-equilibrium established do
7: if U−i (ti, t−i)+ ε ≥ max

0≤t−i≤ti
U−i(arg max

t−i≤t ′≤2π
Ui (t ′, t−i) , t−i)

then
8: break
9: else

10: t−i← arg max
0≤t−i≤ti

U−i(arg max
t−i≤t ′≤2π

Ui (t ′, t−i) , t−i)

11: s−i←∼ t−i
12: Ψ←{Ψ, t−i}
13: i← (−i)
14: end if
15: end while

A few remarks are in order. First, sequence Ψ to emerge
from the algorithm is non-increasing. Second, the difficulty
in evaluating the required maximization operations is allevi-
ated somewhat by the circular geometry of R1 and the fact
both cows travel at the same speed. For example, assume, as
in Figure 2, that C1 and C2 are initially heading toward one
another. If t1 = t2, then the land claims X1 and X2 from (7)
may be readily calculated from symmetry. However, should
C1 unilaterally deviate and turn, instead, at time t1 +∆t, then
Ci’s other frontier is ultimately eroded by 2∆t, making the
land claims and utilities easy to calculate. In the event the
cows are chasing each other (e.g., both cows initially have
a CW heading) the strategy of the cow that turns second is
simple: turn the instant before meeting the other cow.

We now describe some properties of Algorithm 1 pertain-
ing to termination and which, if any, of the cows may have
an incentive to deviate unilaterally from the strategy profiles
prescribed throughout the algorithm.

Proposition 3: Let a,b,c be three consecutive times in Ψ.
For search strategies s1 =∼ a and s2 =∼ b, C1 is the only
cow with a unilateral incentive to deviate from the search
profile s = (s1,s2). Moreover, C1’s only profitable deviations
involve preemptively turning before C2. �

Proof: To begin, note the logic of Algorithm 1 implies
a≥ b≥ c. Now consider the strategies s1 =∼ a, s2 =∼ b, and
the search profile s = (s1,s2) . Since c immediately follows
b in the non-increasing sequence Ψ, the clause on line 7 of
Algorithm 1 must fail for s, indicating C1 can obtain a utility
increase (of more than ε) by deviating from s1 =∼ a in favor
of s1 =∼ c; for which C1 turns first in (∼ c,∼ b). To establish

that C1 must turn before C2 to improve her utility, note that
in s, C1 is already best responding to C2 turning at time b,
implying the absence of any profitable unilateral deviations
in which C1 remains the second cow to turn.

Now consider C2, the first cow to turn under s. Using
logic similar to that employed in the previous paragraph,
we conclude from b immediately following a in Ψ, that
C2 prefers turning first at or before time a, rather than
responding to C1 turning first at a. Therefore, C2 has no
incentive to deviate from s to a strategy in which she
responds to C1 turning first at time a. Furthermore, since
adoption of the strategy s2 =∼ b was selected using the
assignment in lines 10 and 11 of Algorithm 1, C2 selects her
turn-around time optimally over [0,a], implying there are no
profitable deviations that involve turning first in [0,a]. We
conclude that C1 is the only cow with a unilateral incentive
to deviate from s, and any profitable deviations involve C1
turning before C2.

From Proposition 3, the strategies s1 and s2 iteratively
assigned to the cows in Algorithm 1, are always such that it
is only the cow that turns second in (s1,s2) that, by preferring
to turn first, has an incentive to deviate. This realization begs
the question, can this succession of one-upmanship continue
indefinitely? The following proposition asserts that, for a
large class of target densities, the answer is no.

Proposition 4: Let f be a bounded target density with
f (x)≤M for x ∈ R1 and finite M > 0. For any combination
of initial cow positions xi (0) and initial cow headings φi (0),
i = 1,2, the sequence Ψ is finite. �

Proof: Assume, to obtain a contradiction, that there
exist initial cow positions and headings, xi (0) and φi (0),
i = 1,2, such that Ψ is infinite. Let Ψ = {t1, t2, . . .}. From
Algorithm 1, Ψ is a non-increasing sequence. Moreover,
because the cows cannot turn before time zero, Ψ is non-
negative. It follows Ψ must approach a limiting value υ≥ 0,
and for any δ > 0, there exists a sufficiently large no (δ) ∈N
such that 0≤ tn− tn+1 ≤ δ for all n≥ no (δ).

For δ > 0, let a ≥ b ≥ c be three consecutive elements
of Ψ such that 0 ≤ a− b ≤ δ and 0 ≤ b− c ≤ δ. From
the assumption on Ψ, such times are guaranteed to exist.
Consider the following search profiles: s1 = (∼ a,∼ b) , s2 =
(a,∼ b) , s3 = (∼ c,∼ b), and s4 = (∼ c,b). In s1, C1 best
responds to C2 turning first at time b. Since a≥ b, U1 (s1)≥
U1 (s2), because the option of turning at time a is considered
when forming the best response. Moreover, because c imme-
diately follows b in Ψ, it must be the case that U1 (s3) >
U1 (s1) + ε, and, subsequently, that U1 (s3) > U1 (s2) + ε.
Now consider the search profile s4 = (∼ c,b), in which C2
responds to C1 turning first at time c, by turning at time
b. However, because C2 best responds to C1 turning first at
time c in s3 we have U2 (s3) ≥ U2 (s4). Since the game is
zero-sum, the inequality chain implies

U2 (s2) > U2 (s4)+ ε. (13)

The inequality in (13) indicates the difference in utility C2
sees between s2 and s4 is more than ε. However, because f
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is bounded and 0≤ a−b≤ δ and 0≤ b− c≤ δ, we have

|U2 (s2)−U2 (s4)| ≤
∣∣∣ Z
X2(s2)

f (x)dx−
Z

X2(s4)

f (x)dx
∣∣∣ (14)

≤
Z
X ′2

f (x)dx ≤ 4Mδ, (15)

where X ′2 = X2 (s2)	X2 (s4) is the symmetric difference of
X2 (s2) and X2 (s4); i.e., the collection of all elements that
are in X2 (s2) or X2 (s4), but not both. Thus, by choos-
ing δ such that 0 < δ ≤ ε/4M, we have, from (15), that
|U2 (s2)−U2 (s4)| ≤ ε, which contradicts (13), thereby re-
futing the initial assumption, and establishing Ψ is finite.

We remark that in many applications, the assumption that
f is bounded over R1 is quite reasonable. Namely, it is rarely
the case that given a continuum, e.g, R1, of possible locations
where T might be located, that one can be so bold as to
assign positive probability to finding T at a specific point.
A much more realistic model for searching applications is
to assume, as we have done, that T ’s location is described
by a continuous (and therefore bounded) density function.
Combining Propositions 3 and 4 gives the following result.

Theorem 1: Let f be a bounded target density. The 1-Turn
Cow-Path Game has an ε-Nash equilibrium in S1×S2. �

Proof: From Proposition 4, Algorithm 1 terminates with
Ψ finite. Let the search strategies of C1 and C2 that emerge
from Algorithm 1 be s1 and s2, respectively. Let s = (s1,s2)∈
S1×S2 be the associated search profile. Let i ∈ {1,2} be the
index of the cow that turns first in s. From Proposition 3, C−i
is the only cow that could have an incentive to unilaterally
deviate in s. However, if C−i had an incentive to deviate
from s, Ψ must have cardinality at least one greater than its
actual value, a contradiction. Therefore, neither C1 nor C2
has an incentive to unilaterally deviate from s, implying s is
an ε-Nash equilibrium.

VII. MULTI-TURN COW-PATH GAMES

In the preceding analysis, we assumed C1 and C2 may turn
at most once. This is a rather severe limitation to impose on
the hungry cows. In this section, we briefly describe how the
1T-CPG serves as a foundation for the study of CPGs where
C1 and C2 may turn up to a finite number of times.

To begin, let G1 = GCPG( f ,xi(0),φi (0) ,ni)i=1,2 denote
the CPG with density f in which Ci has initial conditions
(xi(0),φi(0)) and may turn up to ni > 0 times. Let s be
the search profile in which C j turns first at a time denoted
t j ∈ [0,2π) in G1. Also, let X(s, t j) ⊆ R1 denote the set of
all points visited by a cow over [0, t j] in s. The decisions
the cows face in the remainder of the game, i.e., the
game unfolding for t > ti, are precisely those captured by

G2 = GCPG
(

f̃ ,xi (t j) ,φi (t j) , ñi
)

i=1,2, where

f̃ (x) =

{
0, if x ∈ X (s, t j)
f (x) , otherwise

, for x ∈ R1, and (16)

ñi =

{
ni−1, if i = j
ni, otherwise.

(17)

A remark is in order as it relates to f̃ in G2. Equation
(16) implies f̃ is deficient, i.e.,

R
R1

f̃ (x)dx < 1, if, by time
t j, the cows have visited a subset of R1 on which the target
may have been located. However, with respect to maximizing
(8), we see that what is important is the value of

R
Xi

f (x)dx,
where Xi is the land claim acquired, on an on-going basis,
throughout the game. From this perspective, we can think of
the cows as gathering density throughout the search, which
is well-defined even in the case of deficient target densities.
Consequently, when we refer to a game using the notation
above, it is with this tacit assumption in place.

With a dynamic notational system in place, we now
address when to turn in a multi-turn game. Starting from
G1, the optimal time for Ci to turn first is given by

ti = arg max
ti∈[0,2π]

{h(ti)}, with (18)

h(ti) =
Z

Xi(ti)
f (x)dx+G∗,iCPG

(
f̃ ,x j (ti) ,φ j (ti) , ñ j

)
j=1,2 , (19)

where Xi (ti) is the land claim of Ci acquired in [0, ti]
and G∗,iCPG

(
f̃ ,x j (ti) ,φ j (ti) , ñ j

)
j=1,2 is the optimal utility Ci

can acquire in GCPG
(

f̃ ,x j (ti) ,φ j (ti) , ñ j
)

j=1,2. Therefore, in
scheduling her turns, Ci considers not only the density she
acquires prior to turning, but also the density gathered in the
equilibria associated with the resultant game. To solve (18)
using dynamic programming, we must first solve the CPG
for the relevant base case scenarios.

Having solved the 1T-CPG in Section VI, the remaining
base cases are those in which one cow, say Ci, may turn
ni ≥ 2 times, and the other cow, C−i, has used up all of her
turns. Any other finite turn game will degenerate to one of the
aforementioned cases following a sufficient number of turns,
as depicted in Figure 3. For ni ≥ 2, Ci’s best strategy is to
immediately orient herself so that she is traveling toward C−i.
Establishing this alignment takes at most one turn. Then, Ci
proceeds to travel toward C−i before turning one last time at
the instant just before running into C−i. This last turn ensures
Ci captures any unclaimed density still remaining on R1.

We remark that although the multi-turn games degenerate
to simpler games as the cows turn, the dynamic programming
approach suggested by Figure 3 requires these reduced games
be solved for a variety of initial cow headings and positions.
Therefore, employing dynamic programming-based to study
multi-turn CPGs may exact a rather steep computational
price. Nevertheless, it is reassuring to know there exists
a well-developed methodology to address, at least at a
theoretical level, multi-turn CPGs.
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Fig. 3. Transitional diagram relating inter-dependence of families of multi-
turn CPGs. The node labelled with the pair (i, j) denotes the family of games
in which C1 and C2 may turn up to i and j times, respectively. Base case
games for which equilibria strategies may be found directly are shaded in
red. All other families of games are shaded in gray. The arrows indicate how
one family of game degenerates to another when a cow turns. For example,
the (2,2)-CPG becomes an instance of the (1,2)-CPG when C1 turns, and
an instance of the (2,1)-CPG when C2 turns.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We introduced the Cow-Path Game to study strategic
decision-making in systems where multiple, self-interested,
mobile agents compete to find a target. It was assumed
the agents have minimal sensing capabilities and limited
prior knowledge of the target’s location. In the scenarios
of interest, each agent must devise a search strategy for
exploring the environment that is efficient in light of inter-
agent competition.

As a prelude, we considered the problem of a single
hungry cow that searches for a target on the unit ring given a
density function on the target’s location. A second cow was
subsequently added to the ring, making the search strategic in
a game-theoretic sense: each cow now structuring her search
based not only on her position and the prior information
she possesses, but also the presence of a rival cow. We
established the existence of equilibria strategies in a variant
of the game for which each cow can turn at most once and
discussed how these ideas may be extended to the case of
multi-turn games.

Looking forward, it remains to consider versions of the
CPG in which three or more cows are involved in searching
for the target. Additionally, although our efforts have focused
on the ring, there is no conceptual barrier to proposing CPG-
like games in other environments, e.g., star graphs, networks,
or regions of R2. These alterations fundamentally change the
nature of the game and it is unclear in what capacity the
results reported herein can be used to jumpstart the analysis
of such games.

Also of interest are persistent scenarios, in which optimal
strategies are those that prove viable in a long-run or steady-
state setting. In this context, we envision targets arriving in
Q on an on-going basis, according to an appropriate spatio-
temporal process, and either expiring with time or being
consumed by search agents upon detection. Such a setup,
especially in a planar environment, could prove a useful
model for animals foraging in the wilderness, or the diffusion

of bacteria over a nutrient-laden plate. Shifting focus to these
persistent scenarios requires redefining agent utility function
s to reflect the ongoing nature of the game, which, in turn,
is likely to require the adoption of new strategic search
protocols.

Game theorists have delineated various definition of equi-
libria to articulate precise notions of efficiency and social
equality among self-interested agents. To date, we have
focused exclusively on ε-Nash equilibria. To this end, it
may prove advantageous to investigate the existence of other,
perhaps more relevant, notions of equilibria. Along similar
lines, it could prove telling to contrast the expected time
until T is discovered in the CPG, with the associated time
in settings where the cows cooperate to find T . Any result
in this direction would shed valuable insight into the cost of
anarchy in competitive search games.

As a final new direction, we wish to consider settings in
which select targets broadcast their position to search agents
at the time they enter the environment. More in line with
the traditional dynamic vehicle routing framework, one can
imagine search agents capturing a certain fraction of their
targets by exploiting this new source of information, with the
remaining fraction obtained, as in the CPG, through local,
short-range searching. Such a model could serve as a viable
abstraction of taxi systems that permits customers to either
flag down a taxi in realtime, or call a centralized dispatcher
and request pick up at a designated location.
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