
Eurographics/ IEEE-VGTC Symposium on Visualization 2009
H.-C. Hege, I. Hotz, and T. Munzner
(Guest Editors)

Volume 28 (2009), Number 3

Force-Directed Edge Bundling for Graph Visualization

Danny Holten1 and Jarke J. van Wijk1

1Eindhoven University of Technology

Abstract
Graphs depicted as node-link diagrams are widely used to show relationships between entities. However, node-
link diagrams comprised of a large number of nodes and edges often suffer from visual clutter. The use of edge
bundling remedies this and reveals high-level edge patterns. Previous methods require the graph to contain a
hierarchy for this, or they construct a control mesh to guide the edge bundling process, which often results in
bundles that show considerable variation in curvature along the overall bundle direction. We present a new edge
bundling method that uses a self-organizing approach to bundling in which edges are modeled as flexible springs
that can attract each other. In contrast to previous methods, no hierarchy is used and no control mesh. The resulting
bundled graphs show significant clutter reduction and clearly visible high-level edge patterns. Curvature variation
is furthermore minimized, resulting in smooth bundles that are easy to follow. Finally, we present a rendering
technique that can be used to emphasize the bundling.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and Curve Generation; I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Physically Based Modeling

1. Introduction
Graphs are widely used to depict data in which information
is comprised of objects and the relationship between these
objects. Typical examples are the following:
• Social networks, in which nodes depict individual people

and edges depict if people are acquainted;
• Software systems, in which nodes depict source-code ele-

ments and edges depict dependency relations;
• Traffic networks, in which nodes depict locations and

edges depict the amount of traffic between locations.
Graphs are generally visualized as node-link diagrams, in

which dots depict the nodes, joined by lines or curves for
the edges. Although node-link diagrams provide an intuitive
way to represent graphs, visual clutter quickly becomes a
problem when graphs comprised of a large number of nodes
and edges are visualized.

This could be remedied by using a different representa-
tion instead of a node-link diagram to depict large graphs.
For instance, a matrix-based representation can be used as
an alternative to node-link diagrams [vH03]. However, al-
though matrix views offer a clean and uncluttered layout,
they are less intuitive than node-link diagrams [GFC04]. We
therefore want to retain the node-link diagram while reduc-

ing the visual clutter that is generally associated with this
representation in case of large graphs.

When addressing visual clutter in node-link diagrams, one
can focus on the nodes, the edges, or both. We choose to fo-
cus on the representation of the edges in this paper, since
visual clutter in node-link diagrams is generally the direct
result of edge congestion. Furthermore, since node positions
often have a clearly defined meaning, e.g., in case of nodes
depicting locations in traffic networks, it is not always pos-
sible to modify node positions to reduce visual clutter.

Improved rendering and interaction provide two ways to
address edge clutter. Rendering can be improved by drawing
node-link diagrams at high resolutions while making use of
anti-aliasing and alpha blending. Anti-aliasing reduces stair-
case effects when drawing lines, while alpha blending in-
creases the visibility of individual edges in areas with high
edge density. Interaction can be used to address edge conges-
tion by providing a user with the ability to zoom in on certain
parts of the graph. Furthermore, interaction techniques such
as EdgeLens and Edge Plucking can be used to curve graph
edges away from a user’s focus of attention without chang-
ing node positions [WC05, WCG03].

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

Danny Holten & Jarke J. van Wijk / Force-Directed Edge Bundling for Graph Visualization

However, rendering does not take advantage of the possi-
bility to change the shape of edges and interaction is not an
option in case of static representations of graphs. It is possi-
ble to change the shape of edges by visually bundling them
together analogous to the way electrical wires and network
cables are merged into bundles along their joint paths and
fanned out again at the end, in order to make a tangled web
of wires and cables more manageable.

As previous methods have demonstrated, such edge
bundling effectively reduces visual clutter. Bundled flow
map layouts have been used for single-source graphs,
while Hierarchical Edge Bundling has been used to visu-
alize graphs that contain a hierarchical structure [Hol06,
PXY∗05]. Cui et al. propose a Geometry-Based Edge
Bundling (GBEB) method suitable for general graphs
[CZQ∗08]. GBEB is partially based on previous work by
Zhou et al. and Qu et al. and relies on the generation of a
control mesh to guide the bundling [QZW06, ZYC∗08].

To bundle edges in an intuitive way without requiring
a control mesh or hierarchy, we propose to use a self-
organizing approach. Edges are modeled as flexible springs
that can attract each other while node positions remain fixed.
A force-directed technique is used to calculate the bundling.
The resulting graphs show significant clutter reduction and
clearly visible high-level edge patterns. The variation in cur-
vature is minimized as well, resulting in smooth bundles that
are easy to follow. We also provide an interactive and con-
tinuous way to change the bundling strength.

Since GBEB is the only edge bundling method for gen-
eral graphs as far as we know, we compare the results of
our Force-Directed Edge Bundling (FDEB) technique to the
GBEB results throughout this paper [CZQ∗08].

The remainder of this paper is organized as follows. In
Section 2 we give an overview of node-link-based visualiza-
tion techniques and techniques for visual-clutter reduction.
Section 3 describes the FDEB technique in detail, followed
by Section 4, in which we present example visualizations
and compare the results of FDEB to the results of GBEB.
Section 4 also introduces a rendering technique to further
emphasize the bundling. Finally, Sections 5 and 6 present
conclusions and directions for future work, respectively.

2. Related Work
Since we make use of straight-line edges that are already
present in the node-link diagram as the starting point for our
FDEB approach, we first give an overview of techniques that
are commonly used for visualizing graphs as node-link di-
agrams. This is followed by an overview of general meth-
ods that can be used to reduce visual clutter resulting from
edge congestion. Current methods for reducing edge clutter
by means of bundling are subsequently presented.

2.1. Node-Link-Based Graph Visualization
The most well-known class of node-link-based visualization
techniques for general graphs is the class of force-directed

methods and its derivatives [FR91, KK89]. An overview
of additional techniques for specific kinds of graphs, such
as directed acyclic graphs (DAGs) or trees, is presented
in [BETT99, HMM00, KW01]. Force-directed methods po-
sition graph nodes so that all edges are of more or less
equal length and there are as few edge crossings as pos-
sible. This is achieved by assigning forces as if the edges
are springs and the nodes are electrically charged particles.
The entire graph is then simulated as a physical system. Is-
sues with regard to computational complexity and layout
stability have recently been treated by various approaches
[HK02, HMM00, KCH03]. GPU implementations can sig-
nificantly reduce computation time even further [FT07].

2.2. General Edge Clutter Reduction
Various techniques are available for the reduction of edge
clutter. A general taxonomy of techniques for reducing vi-
sual clutter, not specifically concerned with edge clutter re-
duction, is presented in [ED07].

Visualizing graphs in a clustered way reduces edge clut-
ter by drawing edges between clusters of nodes instead of
individual edges between all nodes. Clustered graphs con-
tain a hierarchical component in the form of a recursive clus-
tering structure as well as non-hierarchical connections be-
tween the nodes of the clusters. Methods for drawing clus-
tered graphs are presented by Eades et al. [EFL96,Fen97]. A
more general survey on drawing clustered graphs is provided
by Kaufmann et al. [KW01]. A drawback of these methods
is the necessity of (the generation of) a hierarchy and the fact
that many low-level edges are fully merged into inter-cluster
edges, making it impossible to discern individual edges.

Interaction-based techniques such as EdgeLens and Edge
Plucking can be used to curve graph edges away from a
user’s focus of attention without changing node positions
[WC05, WCG03]. However, the use of such techniques is
not an option in case of non-interactive graph visualization.

Becker et al. use half-lines for the visualization of edges
[BEW95]. A directed edge from source node A to target node
B visualized as a half-line only shows the first half of the line
between both nodes. Although this reduces edge clutter, it is
generally hard to identify the target node of a half-line.

2.3. Edge Clutter Reduction using Edge Bundling
Edge clutter reduction techniques based on edge bundling
have recently been gaining interest in graph visualization.

Confluent graph drawing is a technique for visualizing
non-planar graphs in a planar way by allowing groups of
edges to be merged and drawn together [DEGM03]. How-
ever, not every graph is confluently drawable and in gen-
eral, it appears difficult to quickly determine whether or not
a graph can be drawn confluently.

Dwyer et al. propose to add edge routing to force-directed
layouts [DMW07]. However, no bundling is performed and

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Danny Holten & Jarke J. van Wijk / Force-Directed Edge Bundling for Graph Visualization

edges are route around nodes in this approach. Hence, min-
imization of curvature-variation to generate smooth bundles
that are easy to follow is not addressed by edge routing.

Flow map layouts use hierarchical, binary clustering on
a set of nodes, positions, and flow data to route edges
[PXY∗05]. As mentioned by Phan et al., the biggest draw-
back is that all edge splits are binary [PXY∗05].

Gansner et al. present a technique that reduces edge clutter
by merging groups of edges as bundled splines that share
part of their route [GK06]. This method is limited to graphs
that use a circular layout, however.

Hierarchical Edge Bundling (HEB) bundles edges to-
gether by bending each edge, modeled as a B-spline curve,
toward the polyline path defined by the available hierarchy
[Hol06]. This method is not applicable to general graphs,
since it requires a graph to contain a hierarchy.

Cui et al. present a GBEB method suitable for gen-
eral graphs [CZQ∗08]. However, their method relies on
the generation of a control mesh to guide the bundling,
which frequently results in bundles that display considerable
curvature-variation. This can make such bundles hard to fol-
low (see Section 4.2).

3. Force-Directed Edge Bundling
A straightforward way to bundle edges together in a gen-
eral graph would be to first create a hierarchy and then use
HEB to perform the bundling [Hol06]. However, creating a
suitable HEB-hierarchy for a general graph is not trivial. The
bundles induced by the hierarchy should faithfully reflect the
high-level edge patterns that are present in the graph. It is not
evident which hierarchical-clustering scheme or spanning-
tree generation method would be suitable for such a task.

Furthermore, a self-organizing, force-directed approach is
beneficial for the following reasons. Its behavior is easy to
understand because of the straightforward physics model,
the core algorithm can be implemented in a few lines of
code, and it can easily be extended to accommodate for addi-
tional layout criteria (the compatibility measures introduced
in Section 3.2 are an example of this).

3.1. Main Technique
The initial input for our FDEB method is a straight-line
node-link diagram of a general graph. This node-link dia-
gram can be generated using any available graph layout tech-
nique. In case of graphs that represent geographic informa-
tion such as traffic between locations, the node positions are
determined by geographic coordinates instead.

To enable straight-line edges to change shape while
bundling, edges are subdivided into segments. Figure 1
shows an example in which two interacting edges P and Q
are subdivided using four subdivision points per edge. The
position of edge end-points P0, P1, Q0, and Q1 remains fixed.

For each edge, a linear, attracting spring force Fs is

Figure 1: Two interacting edges P and Q. The spring forces
Fs and the electrostatic force Fe that are exerted on subdivi-
sion point p2 by p1, p3, and q2 are shown.

used between each pair of consecutive subdivision points
(see Figure 1). Springs between two points are zero-length
springs, i.e., springs that exert zero force when they have
zero length. A global spring constant K is used to control the
amount of edge bundling in a graph by determining the stiff-
ness of the edges. Since edges have different initial lengths
and are subdivided into segments (the springs between con-
secutive subdivision points), a local spring constant kP is cal-
culated for each segment of edge P. kP is identical for each
segment of P and is calculated as kP = K/|P|(number of seg-
ments), where |P| is the initial length of edge P.

Furthermore, an attracting electrostatic force Fe is used
between each pair of corresponding subdivision points of a
pair of interacting edges. Thus there are four Fe interactions
in Figure 1: between p0 and q0, p1 and q1, p2 and q2, and p3
and q3. Using an inverse-square model instead of an inverse-
linear model results in stronger, more localized bundling (see
Section 4). In this section the inverse-linear model is used in
the figures and equations.

Fe could also be calculated for each combination of sub-
division points (p,q) with p ∈ P and q ∈ Q. However, this
significantly increases the computational complexity from
O(N) to O(N2) for the interaction between a pair of edges
with N subdivision points per edge. Furthermore, we have
observed that both approaches do not differ much from a
visual point of view. We therefore chose the least computa-
tionally expensive approach.

During each calculation step of the iterative simulation,
the combined force exerted on each subdivision point of each
of the edges is calculated. The position of each subdivision
point is updated by moving it a small distance in the direc-
tion of the combined force that is exerted on it. For a sub-
division point pi on edge P, the combined force Fpi exerted
on this point is a combination of the two neighboring spring
forces Fs exerted by pi−1 and pi+1 and the sum of all elec-
trostatic forces Fe. It is defined as

Fpi = kP · (‖pi−1− pi‖+‖pi− pi+1‖)+ ∑
Q∈E

1
‖pi−qi‖

,

with
kp : spring constant for each segment of edge P,
E : set of all interacting edges except edge P.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Danny Holten & Jarke J. van Wijk / Force-Directed Edge Bundling for Graph Visualization

Figure 2: Part of (a) a straight-line graph that is bundled (b) without and (c) with edge compatibility measures. These measures
reduce the amount of bundling between incompatible edges while retaining it in parts of the graph where this is desirable.

Figure 3: Geometric concepts and situations necessary to illustrate the edge compatibility measures (a) angle compatibility
Ca, (b) scale compatibility Cs, (c) position compatibility Cp, and (d) visibility compatibility Cv.

3.2. Edge Compatibility Measures
The model presented in the previous section generates an
edge-bundled graph, but the amount of bundling is often too
high (see Figure 2b). Although this could be remedied by
increasing the value of K, i.e., by making edges stiffer, this
generally also results in less bundling in parts of the graph
where a high amount of bundling is still desirable. To address
this, we introduce a set of edge compatibility measures to
control the amount of interaction between edges.

In general, edges that are almost perpendicular should not
be bundled together. We therefore introduce the concept of
angle compatibility Ca(P,Q) ∈ [0,1] as

Ca(P,Q) = |cos(α)|,
with
α : arccos(P·Q

|P||Q|).

This is illustrated in Figure 3a. The larger the angle be-
tween edges P and Q, the smaller Ca(P,Q). Ca(P,Q) is 0 if
P and Q are orthogonal and 1 if P and Q are parallel.

Furthermore, edges that differ considerably in length
should not be bundled together either; doing so might re-
sult in noticeable stretching and curving of short edges to
accommodate to the shape of long edges, as is illustrated in
Figure 4). We therefore introduce the concept of scale com-
patibility Cs(P,Q) ∈ [0,1] as

Cs(P,Q) = 2
lavg·min(|P|,|Q|)+max(|P|,|Q|)/lavg

,

with
lavg : |P|+|Q|

2 .

This is illustrated in Figure 3b. Cs(P,Q) is 1 if P and Q
have equal length and approaches 0 if the ratio between the
longest and the shortest edge approaches∞.

Figure 4: Bundling edges that differ considerably in length
can result in noticeable stretching and curving of short
edges. Original edges, curved edges and attracting forces
are shown in black, blue, and red, respectively.

Edges that are far apart should not be bundled together
either. We therefore introduce the concept of position com-
patibility Cp(P,Q) ∈ [0,1] as

Cp(P,Q) = lavg/(lavg +‖Pm−Qm‖),
with
Pm and Qm : midpoints of edges P and Q.

This is illustrated in Figure 3c. Cp(P,Q) is 1 if Pm and Qm
coincide and approaches 0 if ‖Pm−Qm‖ approaches∞.

However, it is possible that edges are parallel, equal in
length, and close together, but should nevertheless have a
fairly low bundling-compatibility. The opposite edges of a
(highly) skewed parallelogram are an example of this (see
Figure 3d). To address this, we also introduce the concept of
visibility compatibility Cv(P,Q) ∈ [0,1] as

Cv(P,Q) = min(V (P,Q),V (Q,P)),
with
V (P,Q) : max(1− 2‖Pm−Im‖

‖I0−I1‖ ,0),
Im : midpoint of I0 and I1.

This is illustrated in Figure 3d. V (P,Q) is the visibility of
P to Q and is determined by extending a “band of sight” from
Q and calculating the intersection points I0 and I1 of this

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Danny Holten & Jarke J. van Wijk / Force-Directed Edge Bundling for Graph Visualization

band with the extended line P. Cv(P,Q) is 1 if Pm coincides
with the intersection midpoint Im (ideal position). Cv(P,Q)
becomes 0 if P is moved outside the band of sight along its
extended line.

We define the total edge compatibility Ce(P,Q) ∈ [0,1]
between two edges P and Q as

Ce(P,Q) = Ca(P,Q) ·Cs(P,Q) ·Cp(P,Q) ·Cv(P,Q).

The combined force Fpi is now redefined as

Fpi = kP · (‖pi−1− pi‖+‖pi− pi+1‖)+ ∑
Q∈E

Ce(P,Q)
‖pi−qi‖

.

Figure 2c shows the effect of the total edge compatibility
Ce(P,Q) when bundling a graph of US airlines. The amount
of bundling between incompatible edges is significantly re-
duced while a high amount of bundling is retained in parts
of the graph where this is desirable.

3.3. Calculation
An iterative refinement scheme is used to calculate the
bundling to improve performance. The simulation starts with
an initial number of subdivision points P0 for each edge and
an initial step size S0. The step size S determines the dis-
tance a point is moved at each iteration step in the direction
of the combined force that is exerted on it. Furthermore, a
fixed number of simulation cycles C is performed. A specific
number of iteration steps I is performed during each cycle.
I0 is the number of iteration steps during the first cycle.

After performing a cycle, the number of subdivision
points P is doubled and the step size S is halved before initi-
ating the next cycle. The number of iteration steps I per cycle
is decreased as well. After experimenting with different val-
ues, we settled for P0 = 1, S0 = 0.04, C = 6, and I0 = 50.
The factor by which I is decreased was set to 2

3 . This leads
to the following scheme:

cycle 0 1 2 3 4 5
P 1 2 4 8 16 32
S .04 .02 .01 .005 .0025 .00125
I 50 33 22 15 9 7

The scheme above performs 141 iteration steps in total
and ends with edges that contain 32 subdivision points. This
proved to be satisfactory for the collection of graphs that we
used as test input for our FDEB method. The graphs were
bundled sufficiently and 32 subdivision points were enough
to guarantee smooth edges. Furthermore, S0 was set as high
as possible without destabilizing the simulation. Possible os-
cillating movement of subdivision points was dampened by
using a local cooling scheme. Actual running times are given
in Section 4 for each of the depicted graphs.

We also found that performance can be significantly in-
creased without compromising the bundling result by using a
threshold for the total edge compatibility Ce(P,Q). A pair of
edges P and Q is only considered for calculation if Ce(P,Q)

is above a certain threshold. The total number of edge inter-
actions often drops to 25%− 50% of the total as a result of
this, even for small threshold values such as 0.05.

As a final post-processing step, a variable amount of
smoothing can be applied to all edges by convolving the po-
sitions of the subdivision points using a Gaussian kernel. The
maximum width of the Gaussian kernel and hence, the max-
imum amount of smoothing, is determined by the number of
subdivision points per edge. A small amount of smoothing
gives the edges a less jagged appearance resulting in bun-
dles that are easy to follow. Figure 5 shows the effect of us-
ing smoothing amounts of 0%, 25%, and 50%.

Figure 5: Part of a bundled graph at (a) 0%, (b) 25%,
and (c) 50% smoothing. A small amount of smoothing makes
edges less jagged resulting in bundles that are easy to follow.

4. Results
This section illustrates the results of our FDEB approach.
Section 4.1 describes the rendering technique that is used to
emphasize the bundling. Example visualizations and a com-
parison of FDEB and GBEB are provided in Section 4.2.
Finally, Section 4.3 presents an interactive and continuous
way to change the bundling strength.

4.1. Rendering
A GPU-based, OpenGL rendering technique is used to fur-
ther emphasize the bundling. The edges are first drawn into
a floating-point accumulation buffer to determine the num-
ber of edges passing through each pixel (by measuring the
amount of overdraw). After this, the minimum and max-
imum number of edges passing through a pixel is deter-
mined. This information is subsequently used to assign a
user-defined color gradient to the edges in the accumulation
buffer, which can be done in a linear or logarithmic way. The
graphs shown here use the default low-to-high color gradient
depicted in Figure 6 to perform the gradient-based rendering.

Figure 6: The default low-to-high color gradient that is
used to perform the gradient-based rendering.

4.2. Visualization Examples and Comparison
The bundled graphs shown in this section depict US airlines
and US migration information. All of the visualizations that

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Danny Holten & Jarke J. van Wijk / Force-Directed Edge Bundling for Graph Visualization

Figure 7: US airlines graph (235 nodes, 2101 edges) (a) not bundled and bundled using (b) FDEB with inverse-linear model,
(c) GBEB, and (d) FDEB with inverse-quadratic model.

Figure 8: US migration graph (1715 nodes, 9780 edges) (a) not bundled and bundled using (b) FDEB with inverse-linear
model, (c) GBEB, and (d) FDEB with inverse-quadratic model. The same migration flow is highlighted in each graph.

Figure 9: A low amount of straightening provides an indication of the number of edges comprising a bundle by widening the
bundle. (a) s = 0, (b) s = 10, and (c) s = 40. If s is 0, color more clearly indicates the number of edges comprising a bundle.

we generated use the rendering technique described in Sec-
tion 4.1. To facilitate the comparison of migration flow in
Figure 8, we use a similar rendering technique as the one
that Cui et al. [CZQ∗08] used to generate Figure 8c.

The airlines graph is comprised of 235 nodes and 2101
edges. It took 19 seconds to calculate the bundled airlines
graphs (Figures 7b and 7d) using the calculation scheme pre-

sented in Section 3.3. The migration graph is comprised of
1715 nodes and 9780 edges. It took 80 seconds to calculate
the bundled migration graphs (Figures 8b and 8d) using the
same calculation scheme. All measurements were performed
on an Intel Core 2 Duo 2.66GHz PC running Windows XP
with 2GB of RAM and a GeForce 8800GT graphics card.
Our prototype was implemented in Borland Delphi 7.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Danny Holten & Jarke J. van Wijk / Force-Directed Edge Bundling for Graph Visualization

Figures 7c and 8c show that the bundling performed
by GBEB results in less “webbing”; almost all edges are
merged into strong bundles and the space between these
bundles is nearly empty. However, GBEB often has to bend
edges considerably to bundle them together, resulting in bun-
dles with high curvature-variation (clearly visible in Fig-
ure 8c). This makes such bundles hard to follow, i.e., it is
not always easy to (roughly) identify the start and end points
of edges that comprise a bundle.

The compatibility measures introduced by FDEB prevent
incompatible edges to be bundled. As a result, graphs bun-
dled using FDEB display more webbing, since not all edges
are bundled. However, edges that are strongly bundled gen-
erally comprise bundles that are easy to follow since these
bundles display less curvature-variation (clearly visible in
Figures 8b and 8d). Furthermore, the use of an inverse-
quadratic instead of inverse-linear model results in graphs
with more localized bundling and less webbing at the ex-
pense of increased curvature (see Figures 7d and 8d).

GBEB is faster in generating its bundled graphs than
FDEB: 2.5 seconds (GBEB) compared to 18.8 seconds
(FDEB) for the airlines graph and 12.9 seconds (GBEB)
compared to 79.6 seconds (FDEB) for the migration graph.
Quickly varying the global spring constant K to view
its effect on the bundling becomes difficult in case of
calculation times in excess of a minute. However, these
computational-complexity issues can be addressed using
various approaches as described in Section 6.

Finally, the algorithmic pipeline of GBEB is more com-
plex than the force-directed approach used by FDEB. The
GBEB phases – graph analysis, control-mesh generation,
and edge bundling and smoothing – rely on various addi-
tional concepts and techniques such as kernel density esti-
mation, Poisson sampling, constrained Delaunay triangula-
tion, K-means clustering, and a local-smoothing algorithm
based on dynamic programming, making GBEB more com-
plex to implement. The core algorithm of FDEB can be im-
plemented in a few lines of code and extending it with edge
compatibility measures is straightforward as well.

4.3. Bundle Straightening
A continuous way to interactively change the bundling
strength without changing the global spring constant K and
recalculating is realized as follows. A bundled edge P can
be straightened into its initial, linear shape by straightening
each of its subdivision points pi. A straightened subdivision
point p′i is calculated using

p′i = (1− s)pi + s(P0 + i+1
N+1 (P1−P0)),

with
N : number of subdivision points,
s : amount of straightening, s ∈ [0,1].

Figure 9 illustrates how low values of s give an indication
of the number of edges comprising a bundle by widening the

bundle. If s is 0, gradient-based rendering provides an indi-
cation instead by using color to show the number of edges
comprising a bundle. By providing a user with the option to
interactively vary s, it is possible to quickly generate bundled
graphs with wider bundles, such as those created by GBEB.

GBEB uses wide bundles exclusively to give an indication
of the number of edges comprising a bundle, since color is
already used by the GBEB transfer-functions to encode edge
orientation and edge length.

5. Conclusions
We have presented an edge bundling method for general
graphs that does not require the generation of a control mesh
or a hierarchy. Our FDEB method uses an intuitive, self-
organizing approach to bundling by modeling edges as flex-
ible springs that can attract each other. A single parameter
K is used to control the amount of bundling. We have also
introduced edge compatibility measures that are used to pre-
vent incompatible edges to be bundled together. The force-
directed algorithm used to calculate the bundling is straight-
forward to implement and provides good results when used
in conjunction with the provided calculation scheme.

The resulting bundled graphs show significant clutter re-
duction and clearly visible high-level edge patterns. Varia-
tion in curvature along the overall bundle direction is min-
imized as well. In conjunction with the smoothing that can
be applied, this results in bundles that are easy to follow.

Furthermore, an inverse-linear and inverse-quadratic cal-
culation model have been presented. Use of the latter model
results in graphs with more localized bundling and less
webbing at the expense of increased curvature. We have
also provided a rendering technique to further emphasize
the bundling as well as a way to interactively change the
bundling strength by means of straightening.

Finally, we have provided example visualizations and
compared our approach to GBEB with respect to bundling,
performance, rendering, and implementational complexity.

As far as limitations are concerned, we currently consider
the calculational complexity in case of graphs with a large
number of edges to be the biggest problem of FDEB.

6. Future Work
We consider the improvement of the performance and com-
putational complexity of FDEB, which is O(N ·M2 ·K), with
N = iterations, M = edges, and K = subdivision points per
edge, to be the most important direction for future work.
A straightforward way to directly address this is to use a
subdivision-based approach such as Barnes-Hut simulation
to attain O(N ·M logM ·K) complexity [BH86]. To further
speed up calculation, a stress-majorization method [GKN04]
could be used instead of the current iterative refinement
scheme for faster convergence. Finally, a GPU-based imple-
mentation can make the computation of FDEB highly paral-
lel, since pairwise edge interactions can easily be calculated

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Danny Holten & Jarke J. van Wijk / Force-Directed Edge Bundling for Graph Visualization

independently [FT07]. Although it may be possible to imple-
ment GBEB on the GPU as well, computational complexity
is not a primary issue in case of GBEB. A GPU-based imple-
mentation is therefore especially advantageous for FDEB.

After experimentation, we fixed certain parameters, e.g.,
P0, S0, C, and I0, of the calculation scheme presented in Sec-
tion 3.3 to specific values. These values provide satisfactory
results for the graphs that we tested. An important direction
for future work is the verification of these values to confirm
the suitability of FDEB as a visualization method for general
graphs. Additional graphs and graphs of various sizes need
to be tested to see if parameters need to be adjusted.

Apart from performing controlled user-experiments in
which subjects perform different tasks on a collection of
graphs to provide a formal evaluation of FDEB, it might also
be worthwhile to directly quantify the quality of the visu-
alizations. Measuring the amount of pixel-based overdraw
and empty space for FDEB, GBEB, and straight-line graphs
could be used to quantify webbing as well as bundling. Fur-
thermore, edge curvature and length after bundling could be
used to quantify the amount of deviation from the original as
well as how smooth (and easy to follow) bundles are.

Finally, it might be possible to generate a hierarchy for a
general graph by using the edge compatibility measures as
criteria for a hierarchical-clustering scheme. This could re-
sult in bundles that faithfully reflect high-level edge patterns
when such a hierarchy is used in conjunction with HEB.

7. Acknowledgements
We would like to thank Weiwei Cui and his coauthors
[CZQ∗08] for providing us with high-resolution versions of
their GBEB images for comparison purposes (see Figures 7c
and 8c). This project is funded by the Netherlands Organiza-
tion for Scientific Research (NWO) Jacquard program under
research grant no. 638.001.408 (Reconstructor Project).

References
[BETT99] BATTISTA G. D., EADES P., TAMASSIA R., TOL-

LIS I. G.: Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall, 1999.

[BEW95] BECKER R. A., EICK S. G., WILKS A. R.: Visual-
izing Network Data. IEEE Transactions on Visualization and
Computer Graphics 1, 1 (1995), 16–28.

[BH86] BARNES J., HUT P.: A Hierarchical O(N log N) Force-
Calculation Algorithm. Nature 324, 4 (1986), 446–449.

[CZQ∗08] CUI W., ZHOU H., QU H., WONG P. C., LI X.:
Geometry-Based Edge Clustering for Graph Visualization. IEEE
Transactions on Visualization and Computer Graphics (Proc. of
INFOVIS’08) 14, 6 (2008), 1277–1284.

[DEGM03] DICKERSON M. T., EPPSTEIN D., GOODRICH
M. T., MENG J. Y.: Confluent Drawings: Visualizing Non-
Planar Diagrams in a Planar Way. In Proc. of the 11th Int. Sym-
posium on Graph Drawing (2003), pp. 1–12.

[DMW07] DWYER T., MARRIOTT K., WYBROW M.: Integrat-
ing Edge Routing into Force-Directed Layout. In Proc. of the
14th Int. Symposium on Graph Drawing (2007), pp. 8–19.

[ED07] ELLIS G., DIX A.: A Taxonomy of Clutter Reduction for

Information Visualisation. IEEE Transactions on Visualization
and Computer Graphics 13, 6 (2007), 1216–1223.

[EFL96] EADES P., FENG Q.-W., LIN X.: Straight-Line Draw-
ing Algorithms for Hierarchical Graphs and Clustered Graphs.
In Proc. of the 4th Int. Symposium on Graph Drawing (1996),
pp. 113–128.

[Fen97] FENG Q.-W.: Algorithms for Drawing Clustered Graphs.
PhD thesis, University of Newcastle, 1997.

[FR91] FRUCHTERMAN T. M. J., REINGOLD E. M.: Graph
Drawing by Force-Directed Placement. Software - Practice and
Experience 21, 11 (1991), 1129–1164.

[FT07] FRISHMAN Y., TAL A.: Multi-Level Graph Layout on the
GPU. IEEE Transactions on Visualization and Computer Graph-
ics 13, 6 (2007), 1310–1319.

[GFC04] GHONIEM M., FEKETE J.-D., CASTAGLIOLA P.: A
Comparison of the Readability of Graphs Using Node-Link and
Matrix-Based Representations. In Proc. of the 2004 IEEE Sym-
posium on Information Visualization (2004), pp. 17–24.

[GK06] GANSNER E. R., KOREN Y.: Improved Circular Lay-
outs. In Proc. of the 14th Int. Symposium on Graph Drawing
(2006), pp. 386–398.

[GKN04] GANSNER E. R., KOREN Y., NORTH S. C.: Graph
Drawing by Stress Majorization. In Graph Drawing (2004),
pp. 239–250.

[HK02] HAREL D., KOREN Y.: A Fast Multi-Scale Method for
Drawing Large Graphs. Journal of Graph Algorithms and Appli-
cations 6, 3 (2002), 179–202.

[HMM00] HERMAN I., MELANÇON G., MARSHALL M. S.:
Graph Visualization and Navigation in Information Visualiza-
tion: A Survey. IEEE Transactions on Visualization and Com-
puter Graphics 6, 1 (2000), 24–43.

[Hol06] HOLTEN D.: Hierarchical Edge Bundles: Visualization
of Adjacency Relations in Hierarchical Data. IEEE Transactions
on Visualization and Computer Graphics (Proc. of INFOVIS’06)
12, 5 (2006), 741–748.

[KCH03] KOREN Y., CARMEL L., HAREL D.: Drawing Huge
Graphs by Algebraic Multigrid Optimization. Multiscale Model-
ing and Simulation 1, 4 (2003), 645–673.

[KK89] KAMADA T., KAWAI S.: An Algorithm for Drawing
General Undirected Graphs. Information Processing Letters 31,
1 (1989), 7–15.

[KW01] KAUFMANN M., WAGNER D.: Drawing Graphs: Meth-
ods and Models. Springer, 2001.

[PXY∗05] PHAN D., XIAO L., YEH R., HANRAHAN P., WINO-
GRAD T.: Flow Map Layout. In Proc. of the 2005 IEEE Sympo-
sium on Information Visualization (2005), pp. 219–224.

[QZW06] QU H., ZHOU H., WU Y.: Controllable and Progres-
sive Edge Clustering for Large Networks. In Proc. of the 14th
Int. Symposium on Graph Drawing (2006), pp. 399–404.

[vH03] VAN HAM F.: Using Multilevel Call Matrices in Large
Software Projects. In Proc. of the 2003 IEEE Symposium on In-
formation Visualization (2003), pp. 227–232.

[WC05] WONG N., CARPENDALE S.: Using Edge Plucking for
Interactive Graph Exploration. In Proc. of the 2005 IEEE Sympo-
sium on Information Visualization, Poster Compendium (2005),
pp. 51–52.

[WCG03] WONG N., CARPENDALE S., GREENBERG S.: Edge-
Lens: An Interactive Method for Managing Edge Congestion in
Graphs. In Proc. of the 2003 IEEE Symposium on Information
Visualization (2003), pp. 51–58.

[ZYC∗08] ZHOU H., YUAN X., CUI W., QU H., CHEN B.:
Energy-Based Hierarchical Edge Clustering of Graphs. In
Proc. of the 2008 IEEE Pacific Visualization Symposium (2008),
pp. 55–62.

c© 2009 The Author(s)
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

