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Steps in the  
verification process 

Check the kind of 
system to analyze. 

Choose formalisms, 
methods and tools. 

Express system 
properties. 

Model the system. 

Apply methods. 

Obtain verification 
results. 

Analyze results. 

Identify errors. 

Suggest correction. 
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CTL main concepts 

Computational Tree Logic, has been introduced by 
Clarke&Emerson in 1980 

 

The linear notion of time (one single successor for 
each event) is substituted by a branching notion of 
time (each event has many successors, at each time 
instant there are many possible futures) 

 

CTL is interpreted over a model in which R(s) is a set 
of states  
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Possibility can't be expressed in LTL 
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CTL: Syntax 

AP, set of atomic proposition. pAP. 

CTL formulae:  

 ::= p | ¬ |  | EX| E[U]| A[U]



E: “for some path” 

A: “for all paths” 

EX: “for some path next” 

U: until 

Note: syntactically correct formulas quantifiers and 
temporal operators are in strict alternation  
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Derived operators 

 EFE[true U ]  “holds potentially” - “is  
            possible”  

 AFA[true U ]  “is inevitable (unavoidable)” 

 EG¬AF¬  “potentially always ” – "globally  
         along some path" 

 AG¬EF¬“invariantly ”

 AX¬EX¬  “for all paths next” 
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CTL vs LTL 

 LTL: statements about all paths starting in a state 

 CTL: statements about all or some paths starting 
in a state 

 Checking E can be done in LTL using A¬,        
  (but it does not work for AGEF)

 Incomparable expressiveness 
 there are properties that can be expressed in LTL, but not in CTL 

 there are properties that can be expressed in CTL, but not in LTL 

 Distinct model-checking algorithms, and their time 
complexities 

 Distinct treatment of fairness  
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Semantic definition  
CTL formulas are interpreted over Kripke structures  

M(S, R, L) 

where  

 S is a set of states   

 R: S-->2S is a successor function, assigning to s its set of  
successors R(s) 

 L: S-->2AP, is a labelling function 

 
M can be seen as a tree of executions. 

 

Given a model M and a formula ,we define the satisfaction 
relation as  (M,s,)  |=,and we write (M,s) |=.
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Semantic definition 

A model M and its computation tree 
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Semantic visualization 

(EF red) 
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Formal semantics 
Let M(S, R, L) be a Kripke structure 

Def: a path is an infinite sequence  of states 
s0s1s2…… such that (si,si+1)R 

Def: if s is a path, s[i] is the (i+1)-th element of 
the sequence 

Def: PM(s) is the set of all paths starting in s,  

 PM(s) = {s Sw | s[0] = s}  

Def: s is a p-state if pL(s) 

Def: s is a p-path if it consists solely of p-states 
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Formal semantics 

 Given a Kripke structure M  

 s |= p iff p  L(s). 

 s |= ¬ iff ¬(s |= ).

 s |=  iff s |=   s |= . 

 s |= EX iff sPM(s): s[1] |=.  

 s |= E[U ] iff  sPM(s): j0, s[j] |= 
         for each 0k<j, s[k] |=. 

 s |= A[U ] iff  sPM(s): j0, s[j] |= 
         for each 0k<j, s[k] |=. 
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Examples 

Sat() = set of all states that satisfy . Compute 
Sat() for: 

 EX p 

 AX p 

 EF p 

 AF p 

 E qU r 

 A qU r 
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Examples 

Color each state that 
satisfy the formula. 

Sat() = set of all 
states that satisfy . 

s1 s2 

s3 

s4 
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Examples 

Color each state that 
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states that satisfy . 
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s4 
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Spring Example 

s1 s3 s2 

pull 

release 

release 

extended 
malfunction} 

{extended, 

Computation tree? 

… 
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CTL satisfaction examples 

malfunction 

s1 s3 s2 pull 

release 

release 

extended extended 

si |= EG extended  ?? 

si |= AG extended  ?? 

si  |= AX extended ?? 

si |= AX EX extended ?? 

si |= AF extended ?? 

si  |= AG extended ?? 

 

si  |= AFEG extended ?? 

si  |= AGEF extended ?? 

si  |= A((¬extended) U malfunction ) 

si  |= EG(¬extended->AX extended)  

 EG(extended A X extended) 
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Some axioms  
(Peled's book notation) 

Next 

A 

AF 

AG 

E 
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Some axioms 
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Some axioms 
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Comparing LTL and CTL  

 Rewrite the syntax in state formulae and path 
formulae 

 

 PLTL: 

 ::= p | ¬ |  | X| U

  

 CTL (existential form) 

  state         ::= p | ¬ |  | E

  path         ::=  ¬ | X| U
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Comparing LTL and CTL 

 Def: a CTL formula  is equivalent to an LTL 
formula  () if, for any model  M, we have 

 M|= iff  M|=  
  

Theorem: let  be a CTL formula and   an LTL 
formula obtained from eliminating all paths  
quantifiers, then   

   or 

 an LTL formula equivalent to  does not exists 
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LTL and CTL are incomparable  

 There are LTL formula that cannot be expressed in 
CTL (an equivalent  CTL formula does not exists) 
 FG p 

 F (p  X p) 

 G F p  Fq  if p holds infinitely often, then q will eventually hold 

 

 There are CTL formula that cannot be expressed in 
LTL (an equivalent  LTL formula does not exists) 
 AF AG p 

 AF (p  AX p) 

 AG EF p 
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LTL and CTL are incomparable  

To show that they are incomparable we need to exhibit  

 a formula LTL for which no corresponding equivalent CTL 
formula exists   

AND  

 a formula CTL for which no corresponding equivalent LTL 
formula exists  

 

The proof relies on the "syntactical theorem" that limits the state 
space of the search for equivalent formulas of a given formula  
(remember that all LTL formula are implicitly quantified as 
"forall", as we are verifying the all model M, and not only an 
execution) 
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LTL and CTL are incomparable  

 

Sketch of proof 

 

LTL does not imply CTL: given a formula LTL show that for all 
choices of quantifiers "addition" it is possible to exibit a 
model for which one formula is satisfied and the other is not 

 

CTL does not imply LTL: remove all quantifiers and exibit a 
model for which one formula is satisfied and the other is not 
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LTL and CTL are incomparable  

The LTL formula F(a  X a)  is not equivalent to the 

CTL formula AF(a  AX a) 

s0|= F(a  X a)  not s0|=AF(a  AX a) 
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LTL and CTL are incomparable  

The LTL formula F(a  X a)  is not equivalent to the 

CTL formula AF(a  EX a) 

 

It is enough to take a model in which s4 does not 
satisfy a (LTL formula becomes false)  

Prop: the LTL formula F(a  X a)  has no equivalent in  CTL  
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LTL and CTL are incomparable  

The CTL formula AF AG a is not equivalent to the 
LTL formula F G a 

s0|= F G a not s0|=AF AG a 



35 

LTL and CTL are incomparable  

CTL* (existential form) 

 state         ::= p | ¬ |  | E

 path         ::=  | ¬ |  | X | U
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Model checking CTL   

Problem definition: given a model M,  a state s, and 
a CTL formula ,  does (M,s) |= ? 

 

In practice the algorithm solves the problem: given 
a model M and a CTL formula ,  which are the 
states s, for which (M,s) |= ? 

 

As a by-product, at zero cost, the algorithm also 
computes all states that satisfy the subformulae 
of . 
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Model checking CTL   

Definition  of sub-formulae. Let p in  AP, and  be 
CTL formulae, then  the set of sub-formulae is 
defined as: 

 
Sub(p)    = {p} 

Sub(¬)   = Sub()  {¬} 

Sub(\/) = Sub()  Sub()   {} 

Sub(EX)  = Sub()  {EX } 

Sub(E[U ]) = Sub()  Sub()   {E[U ]} 

Sub(A[U ]) = Sub()  Sub()   {A[U ]} 
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Model checking CTL   

The algorithms starts with sub-formulae of length 1, 
and proceed by induction, until the formula of 
length || is computed 

Usually S: set of State, is global 

function Sat(: CTL formula, S: set of State): set of 
State 

(* precondition: true*) 

begin 

 if  =true --> return S 

 [] =false --> return  

 []   AP  --> return {s|   L(s)} 
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Model checking CTL   

[]  =¬1 --> return S - Sat(1) 

[] =1\/2 --> return Sat(1)  Sat(2) 

[] =EX1 --> return {s  S|  (s,s’)  R  s’  Sat(1)} 

[] =E[1U2] --> return SatEU(1, 2) 

[] =A[1U2] --> return SatAU(1, 2) 

(* postcondition: Sat() = {s  S | (M,s) |=  } 

end 
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Model checking CTL   

SatEU(1, 2) and SatAU(1, 2) are fixed point 

algorithms that use the axiom of the Until in 

terms of neXt and Until 
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Model checking CTL   
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Model checking CTL   

{s|  s': (s,s')  R, s'  Q} 
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Model checking CTL   

{s|  s': (s,s')  R and  s'  Q} 
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Complexity of CTL model checking 

 Sat() is computed |Sub()| times, and |Sub()| is 

proportional to ||  

 SatAU(1, 2) is proportional to |Sys|3, since the 

iteration is traversed at most |Sys| and the 

“forall” inside depend on the pairs in R (at most 

|Sys|2) 

Total complexity amounts to O(|| x |Sys|3) 

More efficient algorithms gets to O(|| x |Sys|2) 
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CTL and fairnes: motivations 

Recall  the following piece of code: 

 

 

where .. means “atomic execution”. 

 

Does the program satisfies “F terminates”? No, since there is 
an execution in which only Inc is executed. 

This situation is not possible if the OS schedule is fair, and we 
would like to rule-out from the model checking whose 
executions that are not fair 
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Fair executions: solutions 

We want to consider  only execution with fair behaviour. 

Can be done:  

• enforcing fairness in the formula: we should check whether 
fairness can be expressed in CTL 

• modifying the MC algorithm as to consider only fair 
executions 

 

Fair  
executions 

Executions 
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Recall the LTL fairness definitions  

 Unconditional fairness:   

 GF       also  stated as      true  GF   
  

 Weak fairness (justice):  
  FG   GF  (as in: FG enab(a)  GF exec(a) 

   
 Strong transition fairness:   

 GF   GF  

 
 

Therefore: modify the model checking algorithm, defining a Fair-

model for CTL 

Weak and strong cannot be 
expressed in CTL 
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Fair executions: solutions 

A fair CTL-model is a quadruple M = (S,R,L,F), where (S,R,L) 
is a CTL-model and F  2S is a set of fairness constraints 

F = {F1, F2, …} 

A path s=s0s1s2……is F-fair if for every set of states Fi  F, 
there are infinitely many states in s that belong to Fi 

 

If lim(s): set of states of s visited infinitely often, then s if F-
fair if lim(s) Fi  , for all i 

 

PfM(s): set of F-fair paths starting in s  
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Fair executions: modified semantics 

Given a Kripke structure M  

s |=f p iff p  L(s). 

s |=f ¬ iff ¬(s |=f ).

s |=f  iff s |=f =   s |=f . 

s |=f EX iff sPfM(s): s[1] |=f .  

s |=f E[U ] iff  sPfM(s): j0, s[j] |=f  
         for each 0k<j, s[k] |=. 

s |=f A[U ] iff  sPfM(s): j0, s[j] |=f  
         for each 0k<j, s[k] |=. 
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Fair executions: example 

(M, so)|= AG[p  AF q]  - false,  

but with  F = {F1, F2}, with F1={s3} and F2 ={s4}  

(M, so) |=f AG[p  AF q] 
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Exercise on CTL 

Check the validity of the formulae in each state 

EFE[true U ]  “holds potentially” 

AFA[true U ]  “is inevitable” 

EG¬AF¬  “potentially always ” 

AG¬EF¬“invariantly ” 
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Exercise on CTL 

EFp: start with Q = {s1, s2, s3, s4} and in one step add s0, and 
at the next iteration the algorithm stops 

AFp: start with Q = {s1, s2, s3, s4} and in the next  step 
consider s0. S0 can be added only if all arcs out of  s0 are in Q 

 

EFpE[true U p]   

AFpA[true U p]   
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Exercise on CTL 

EGp: the result is the complement of the states that satisfy AF¬p 
that can be computed as before 

AGp: the result is the complement of the states that satisfy EF¬p 

EGp¬AF¬p  ¬A[true U ¬p]   

 

AGp¬EF¬p¬E[true U ¬p]   
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Exercise on CTL 

EFq: start with Q = {s1, s2} and in one step add s0, and s3, and 
at the next iteration the algorithm stops 

AFq: start with Q = {s1, s2} and in the next  step s0 is added. 
At the next iteration no new element is added and the algorithm 
stops. 

EFqE[true U q]   

AFqA[true U q]   
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Exercise on CTL 

EGq¬AF¬q  E[true U q]   

 

AGq¬EF¬q A[true U q]   

EGq: the result is the complement of the states that satisfy AF¬q 
that can be computed as before 

AGq: the result is the complement of the states that satisfy EF¬q 
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Exercise on CTL 

Check the validity of the formulae in each state 
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End of CTL 


