Lecture

Network Science

Overview & tools

2/00/5 Over vie u Agende General Information Instructors Schedule Class 0 (vie Google Form) Poll Text books Watworks 40 Introduction

Tools

General

Information

· Computer Science (6 and 9 credits)

. SDS (crechill)

PhD Hodeling and Dote Science (exem: « seminer or a project + ord exam.) · Mondle :

https://informatica.i-learn.unito.it/course/ view.php?id=1700 Instructors

Alessandro FLAMMINI

NDIANA

UNIVERSITY

Schedule

			<u></u>	4	
	Monday	Tuesday	Wednesday	V Thursday	Friday
25/02-01/03	25-Feb	26-Feb	27-Feb	28-Feb	1-Mar
			aula f 11-13	aula f 11-13	
			NetSci Ruffo	DataViz Ruffo	
05/03-08/03	4-Mar	5-Mar	6-Mar	7-Mar	8-Mar
	aula e 11-13		aula f 11-13	aula f 11-13	
~>	NetSci Ruffo		NetSci Ruffo	DataViz Ruffo	
11/03-15/03	11-Mar	12-Mar	13-Mar	14-Mar	15-Mar
	aula e 11-13		aula f 11-13	aula f 11-13	
	NetSci Ruffo		NetSci Ruffo	DataViz Ruffo	
18/03-16/03	18-Mar	19-Mar	20-Mar	21-Mar	22-Mar
	aula e 11-13		aula f 11-13	aula f 11-13	
	NetSci Ruffo		NetSci Ruffo	DataViz Ruffo	
25/03-29/03	26-Mar	27-Mar	28-Mar	29-Mar	30-Mar
	aula e 11-13		aula f 11-13	aula f 11-13	
	NetSci Ruffo		NetSci Ruffo	DataViz Ruffo	
01/04-05/04	1-Apr	2-Apr	3-Apr	4-Apr	5-Apr
	aula e 11-13		aula f 11-13	aula f 11-13	
	NetSci Ruffo		NetSci Ruffo	DataViz Ruffo	
09/04-13/04	9-Apr	10-Apr	11-Apr	12-Apr	13-Apr
	aula e 11-13		aula f 11-13	aula f 11-13	
	NetSci Ruffo		NetSci Ruffo	DataViz Ruffo	
15/04-19/04	15-Apr	16-Apr	17-Apr	18-Apr	19-Apr
	aula e 11-13		aula f 11-13	aula f 11-13	
	NetSci Ruffo		DataViz Ruffo	DataViz Ruffo	
22/04-26/04	22-Apr	23-Apr	24-Apr	25-Apr	26-Apr
L>			aula f 11-13		
			DataViz Ruffo		
29/04-03/05	29-Apr	30-Apr	1-May	2-May	3-May
	aula e 11-13			aula f 11-13	
	NetSci Ruffo			DataViz Ruffo	
06/05-10/05	6-May	7-May	8-May	9-May	10-May
	aula e 11-13		aula f 11-13	aula f 11-13	
	NetSci Ruffo		NetSci Flammini	NetSci Flammini	
13/05-17/05	13-May	14-May	15-May	16-May	17-May
	aula e 11-13		aula f 11-13	aula f 11-13	
	NetSci Flammini		NetSci Flammini	NetSci Flammini	
20/05-24/05	20-May	21-May	22-May	23-May	24-May
	aula e 11-13		aula f 11-13	aula f 11-13	
	NetSci Flammini		NetSci Flammini	NetSci Flammini	
27/05-30/05	27-May	28-May	29-May	30-May	31-May
				aula f 11-13	
				DataViz Ruffo	

Cless

6 credits: Net Sci closfes

9 credits: NetSai + Doto Viz classes

Poll

https://goo.gl/forms/rXXZBKTDq4NUm5m22

· general statistics · your programming skills

Text books

Complex Network Analysis in Python

Recognize \rightarrow Construct \rightarrow Visualize \rightarrow Analyze \rightarrow Interpret

Dmitry Zinoviev edited by Adaobi Obi Tulton

prochizot

dn. 1 - 6ch. 13-14 ch. 13-14 ch. 16-21

online

Albert László Barabási NETWORK SCIENCE

Dynamical Processes on Complex Networks

Alain Barrat, Marc Barthélemy, Alessandro Vespignani

-+ 1 45

Second Edition

Newman

Mark

Networks

oral examples

Dote Vissoliziste +3 credits · project

Introduction to Networks Chapter 1 NETWORKS CROWDS AND MARKETS DAVID EASLEY ION KLEINBERG Notworks are aporouxly "everyshere" - Social Natur Ks · ectors J · Social Hay D-D - Juformalion Systems book, web pepe I citation J-JJ - techn. and economic Systen · con structural crisis be predicted?

Systems Complex

https://youtu.be/5v5eBf2KwF8

+ Complicated Couplex individuals each other connected -70 locol ovel lare(gloSol Synchroniz. Congestion Epidemies phenomene

Networks espects "triviel reprendentation of e ander System

Je need e fremework and e language to describe and understand Complex Networks.

Zechory"s Korete Club

Figure 1.1: The social network of friendships within a 34-person karate club [421].

Figure 1.2: Social networks based on communication and interaction can also be constructed from the traces left by on-line data. In this case, the pattern of email communication among 436 employees of Hewlett Packard Research Lab is superimposed on the official organizational hierarchy [6]. (Image from http://wwwpersonal.umich.edu/ladamic/img/hplabsemailhierarchy.jpg)

Sme "order" emerges from chaos hierarchy? We need e lenguage to better describe these regularities

Sinoucial Networks

Figure 1.3: The network of loans among financial institutions can be used to analyze the roles that different participants play in the financial system, and how the interactions among these roles affect the health of individual participants and the system as a whole The network here is annotated in a way that reveals its dense core, according to a scheme we will encounter in Chapter 13. (Image from Bech and Atalay [50].)

the emergence of a core us periphery Structure-

Figure 1.4: The links among Web pages can reveal densely-knit communities and prominent sites. In this case, the network structure of political blogs prior to the 2004 U.S. Presidential election reveals two natural and well-separated clusters [5]. (Image from http://www-personal.umich.edu/ ladamic/img/politicalblogs.jpg)

e dro chamber communs les cluster partitions ten den cy homophily -> induiduals to Similar ones link with trivial linear relationships No WARNING BUT INTERRAY

Visuelization? visualizing a network suggests some inherent complaxity this tells a bt about the structure, but almost nothing about the reason it is difficult to summerize succintly the whole network · core us periphery structure · hierarchical structure . tightly - linked regions ve ned e languge the structure is only a starting paint

We need to take into account a rational behavior that Sometimes lead to <u>strategies</u> Actions are not evaluated at individud level (in isolation), but at a netuork level.

When a large group of people is tightly interconnected they often respond in complex veys that can be observable only at the population level : rich get richer Winner takes it all Virol Voleo, At individual level: Sometimes en information poes viral ar one person becomes vary popular, some other times this does not heppen! Why? No prediction here yet.

Recep (1)

Topics

Graph theory Gome theory Information Networks Notwork Dynamics

Greph theory potler/distances dustering Cofficient Legree (distrution of Legrees

Central flas grouper / clustors / partitions communities

Structural Labure spolgaber homophy

Figure 1.7: From the social network of friendships in the karate club from Figure 1.1, we can find clues to the latent schism that eventually split the group into two separate clubs (indicated by the two different shadings of individuals in the picture).

individuals V S groups ve con roles hour different

Fromework fromework where our decisions depend a others' decision Strater -> pog-off Trouportation Networks choice of a route can bring to supertion EX. Porcobx bross 1

Equilibrium: a state that is self-reinforcing: no individuals hour on incentive to unileterelly change their strategy even if those individuals know how others vill Jehove.

Not Joy KS Information the Weg Search engines K react to react to Kouk Juges Juges outhorr Interplay IS you define a measure (e.g., lage hourk), the application of such meesure may change the system.

Figure 1.11: When people are influenced by the behaviors their neighbors in the network, the adoption of a new product or innovation can cascade through the network structure. Here, e-mail recommendations for a Japanese graphic novel spread in a kind of informational or social contagion. (Image from Leskovec et al. [271].)

Figure 1.12: The spread of an epidemic disease (such as the tuberculosis outbreak shown here) is another form of cascading behavior in a network. The similarities and contrasts between biological and social contagion lead to interesting research questions. (Image from Andre et al. [16].)

Recep (2)

Notwork - level dynamics are similar and insights from the study of biobpical epidemics are elso useful in thinking about the procen by which things spread in Networks

Tools

Complex Network Analysis in Python

ch. 182

Complex Not york

factyps

Diffilition ANACONA

	Package	Used version	Package	Used version
	python	3.6.5	networkx)2.1
	matplotlib	2.0.2	community	0.10
	nltk	3.2.5	numpy	1.13.3
	pandas	0.22.0	pygraphviz	1.3
	wikipedia	1.4.0	scipy	1.0.1
	toposort	1.5		

Examples and real datests

Technological networks	Communication systems; transportation; the		
	internet, electric griu, water mains		
Biological/ecological	Food webs; gene/protein interactions; neural		
networks	system; disease epidemics		
Economic networks	Financial transactions; corporate partnerships;		
	international trade; market basket analysis		
Social networks	Families and friends; email/SMS exchanges;		
	professional groups		
Cultural networks	Language families; semantic networks; literature,		
	art, history, religion networks (emerging fields)		

Comportison

		-		
	graph-tool	iGraph	NetworkX	NetworKit
Implementation language	C/C++	C/C++	Python	C/C++
Language bindings	Python	C, Python,	R Python	C++, Python
Installation effort	Hard	Medium	Easy	Medium
OpenMP support	Yes	No	No	Yes
Relative slowdown ⁵	1	1–4	40–135	N/A
Built-in community detection	Yes	Yes	No	Yes
Built-in advanced layouts	Yes	Yes	No	Yes