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Purpose

o To describe the fundamentals of Petri nets so that
you begin to understand what they are and how
they are used.

e TO give you resources that you can use to learn
more about Petri nets.
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Petri Net Applications

o Manufacturing, production, and scheduling systems

e Sequence controllers (Programmable Logic
Controller, PLC)

o« Communication protocols and networks

o Software -- design, specification, simulation,
validation, and implementation
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IR Petri Nets-- Graphic Tool

o A bipartite directed graph containing places
(circles), transitions (bars), and directed arcs
(places <--> transitions).

loading processing Unloading Places -- buffers, locations, states

/ : | : | : | \. Transitions -- events, actions

Tokens -- parts
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Petri Nets -- Mathematical Models

loading processing Unloading

/@—4—@—4—@—4\

A Petri net isafour-tuple:

PN=<P, T, 1, O>

P: afinite set of places, {p;, p,, ---, Pr}

T: afinite set of trangitions, {t,, t,, ..., t}
|. an input function, (T x P) ——>{0, 1}
O: an output function, (T x P) ——> {0, 1}

MO: an initial marking, P —> N
<P, T, I, O, M% -- amarked Petri net
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An Example

loading processing Unloading
pl t1 p2 2 p3 3
[ P — {pl, p2, p3} [ ] O — pl p2 p3
— t10 1 o0
o T={t1,t2, t3} 2B o 1
{ I: pl p2 p3 t3g 0 og
t1d 0 oO —
tzg) 1 OB « MO= (1’ O! O)
t3f) 0 1H
Note:

pl is the input place of transition t1
p2 is the output place of transition t1
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Dynamics

e Enabling Rule:

» A transition t is enabled if every input place contains at
least one token

e Firing Rule:

» Firing an enabled transition
— removes one token from each input place of the transition
— adds one token to each output place of the transition

loading processing Unloading

/Q—ﬁ—@—ﬁ—@—%\
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Dynamics

Initial State: State after t1 isfired:
loading processing Unloading tl loading processing Unloading
/@ —O—t—0 #\ /O >@—+—(0 #\
t2
State after t3isfired: State after t2 isfired:
loading processing Unloading

loading processing Unloading O
> ( ]
——>(®
/@ OO »r\ /’@ ’*\
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Basic Constructs

e Sequential actions

o Dependency

o Conflict (decision, choice)
o Concurrency

e Cycles

e Synchronization - (mutually exclusive actions,
resource sharing, communication, gueues)
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Sequential Actions

Each action is a transition.
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Dependency

A transition requires two inputs.
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Conflict Construct

Only one of the two transitions can fire.

A

A
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Concurrency Construct

These two sequences can occur simultaneously.

I

—
4
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loading

processing

Unloading

A
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Synchronization

Machine can process one part at once.

loading processing Unloading

O——0O——0O—
N
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Resource Sharing

loading processing unloading
part 1

resource

loading processing unloading
part 2

One worker for two machines.
The worker can work at one machine at a time.
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Buffer (Queue)

The buffer can hold a limited number of parts.

O \i/ \;) /4 O
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Communication

O
Program 1 > C | /7j_)|

/

Program 2 O > ’O )I/ )O )|
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An Example

Machine 1

I l. Robot
Buffer
]
s |
Buffer State:
Space availability

Machine States:
Loading
Processing

Waiting for unloading

Unloading

Machine 2
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Put It Together

Waiting
Loading  Processing for Unloading
Unloading

Machine 1 Q_’|_’ ’ ‘ ’

Robot () () Buffer Available

Machine 2 Q—>|—’ O | O
\ /
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Properties (Questions)

Property Example
Boundedness Work-in-process
- the number of tokens in a place is bounded
Safeness Hardware devices
- the number of tokensin a place never exceeds one
Deadlock-free Resources competing
- none of markingsin R(PN, M°) is a deadlock
Reachability Messages delivery
- find R(PN, M°)
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Analysis Methods

o« Enumeration
» Reachability Tree
» Coverability Tree

e Linear Algebraic Technique
» State Matrix Equation
» Invariant Analysis: P-Invariant and T-invariant

e Simulation
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Reachability Tree (1)

Initialization: M0=(1,0,0,0,0,1)

Step 1: MO = (1,0,0,0,0,1)

i,tl

M1 = (0,1,0,1,0,1)

Step 2: MO = (1,0,0,0,0,1)

i,tl

M1 = (0,1,0,1,0,1)

X

M2 = (0,0,1,1,0,1) M4 =(0,1,0,0,1,1)
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Reachability Tree (2)

Step 3: MO = (1,0,0,0,0,1)

l,tl

M1 = (0,1,0,1,0,1)

M2 =(0,0,1,1,0,1) M4 =(0,1,0,0,1,1)

|

M3 = (0,0,1,0,1,1)

Step 4: MO = (1,0,0,0,0,1)

l,tl

M1 = (0,1,0,1,0,1)

M2 = (0,0,1,1,0,1) M4 =(0,1,0,0,1,1)

.| | -
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Reachability Tree (3)

Step 5:

MO = (1,0,0,0,0,1)

l,tl

M1 = (0,1,0,1,0,1)
p4 y w)

M2 =(0,0,1,1,0,1) M4 =(0,1,0,0,1,1)

t3
t3 l l t2

S M3 = (0,0,1,0,1,1) M3

“

MO
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Reachability Tree/Graph

MO = (1,0,0,0,0,1)

¢t1

M1 = (0,1,0,1,0,1)

M2 = (0,0,1,1,0,1) M4 = (0,1,0,0,1,1) M2

M3 =(0,0,1,0,1,1) M3

g

MO
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Reachability Tree

(1, 0, 0)

27 N\
pl 6\‘ t1 (0,1,1) (1,1,0)
O

v 0,0, 1) (1,2,0) (0,2,1)

t2 B
p2 / \[2 \t3

(1,3,0) (0,3,1) (0,1,1)

03 4 }/ \tZ i t2 lts

t3 (1,4,0) (Of,l) (0,2,1) (0,0,1)
t3

v i \ (0,3,1)
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Coverability Tree (1)

Initialization: MO = (1,0,0) new
Step 1: 1.0.0) hew
AB(/ | )\% ml=(1,1,0) >=(1,0,0)

new ml = (1,w,0)0 mM2=(0,1,1) new

Step 2 (m1): (1,0,0) new

B8

newml=(1,w,00 m2=(0,1,1) new
t]/ \tZ

old (1,w,0) new m3=(0,w,1)
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Coverability Tree (2)
Step 3 (m3): (1,0,0) new
y \tzA
pl 6\ 1 new m1=(1,w,0) m2=(0,1,1) new

tl‘/ \tZ
old (1,w,0) m3=(0,w,1) new
2 = ltB
p2
old (0,w,1)

Y Step 4 (m2):

p3 CA)\j . (1,0,0) new
new ml=(1,w ,0) m2=(0,1,1) new

17\ o

new (1,w,0) m3=(0,w,1) new M4 =(0,0,1) new
l 3

old (0,w,1)
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Coverability Tree (3)

Step 5 (m4): Coverability Tree Reachability Tree

(1,0,0) (1,0, 0)
new NG
% —_ (1,1,0) 0,1,1)
ml:(liw 10) m2:(0,1,1) E}/ \tzk \ 3

new new (1,2,0) (0,2,1) (0,0,1)
tl‘/ \tz Lt At/J/ \}2 B
m3=(0,03,1) ma = 0.0.1) @30 8D B
(16(;()],'0) ne\;v ’ terminate }/ \tz l t2 it3
ltS 1,400 (041 (021 (0,0,1)
old (0,05,1) VRN w3
! (0,3,1)
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IMR Linear Algebraic Technique

State Equation: M= M°+ H A, where H is a vector with s elements

loading processing Unloading
pl tl p2 12 pP3 3
e O= pip2p3 e |I= pi1p2p3 Incidence Matrix
t10 1 00 t11 0 OO _
- 5 e A=0O-1
tzg) 0 15 tZ%D 1 0q _
t38 0 OF t3 0 1F — Pl pz p3
t1F1 1 0O
0 t200 -1 1F
e M°=(1,0,0) O [
t3d1 0 -1
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loading

IMR Linear Algebraic Technique

processing

o) —
pl tl

O

Unloading

p2

t1 fired [0 1 0]
t1, t2 fired [0 0 1]
t1 2 t3 fired [1 0 0
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1 00 + [10 0 0y

+1 1

1 00 + [11 0 -1 1p

+1 1

1 00 + [111] -1 1p



T-Invariant

T-Invariant. YA =0, where Y'is a s element vector
Y is the number of transition firings

F1 1 00
[yi y2 yd [0 -1 1p=o0
91 0 -1
-yl +y3=0
yl-y2 =0
¥2-y3=0 o 5 Mo O - o

yl=y2 =y3

minimum t-invariant = (1, 1, 1)

Edward Lin, University of Maryland
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loading

pl

T-Invariant

t1

processing

p2

Unloading

t2 p3

(1,0,0)

(0,1,0)

(0,0,1)

(1,0,0)

Edward Lin, University of Maryland
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P-lnvariant

P-Invariant;: AX" = 0, where Xis a n element vector,
X Is the weight of each place

+1 1 00U x1d

[ U 0,0 _
0 -1 1f %ZD -0
H1 0 -15 m3{
-X1 + X2 =0
X2 +x3=0 : B
1 %3 =0 The quantity S =

*——> 1 M(pl) + x2 M(p2) + x3 M(p3)
X1 =x2 =x3

minimum p-invariant = (1, 1, 1)

Edward Lin, University of Maryland 36



loading

P-lnvariant

processing Unloading

pl tl p2 t2 p3 3

(1,0,0)

(0,1,0)

(0,0,1)

(1,0,0)
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The quantity S =
x1 M(pl) + x2 M(p2) + x3 M(p3)

1=1M(pl) + 1 M(p2) + 1 M(p3)

37



Simulation

o Discrete event simulation

o Same model for simulation and analysis
o Need rules to resolve conflicts

o Useful for validation and visualization
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IR  Extensionsof Petri Nets

o Event Graph (marked graph, decision-free)

» Each place has exactly one input transition and exactly one output transition

o Deterministic Timed Petri Nets
» Deterministic time delays with transitions

o Stochastic Timed Petri Nets
» Stochastic time delays with transitions

e Color Petri Nets
» Tokens with different colors

o Hybrld Nets

» Combine object-oriented concept into Petri nets

Edward Lin, University of Maryland
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Further Readings

Petri nets home page: http://www.daimi.aau.dk/%7Epetrinet/

Petri nets mailing list: PetriNets@daimi.aau.dk

Coloured Petri nets: http://www.daimi.aau.dk/designCPN/

Petri nets standard: http://www.daimi.aau.dk/%7Epetrinet/standard/

Petri Net Theory and the Modeling of Systems,
by J. L. Peterson, Prentice-Hall, 1981.

Petri Nets: An Introduction,
by W. Reisig, Springer-Verlag,1985

Petri Nets: a Tool for Design and Management of Manufacturing
Systems, by J.-M. Proth, X. Xie, Wiley, 1996

Computer Integrated Laboratory(CIM Lab) page:
http://www.isr.umd.edu/Labs/CIM/
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Summary

e A graphical and mathematical tool
o Applications
o Constructs

e Properties: Boundedness, Safeness, Deadlock-free, liveness,
Reachability

e Analysis Techniques:
» Reachability trees
» Coverability trees
» Linear algebraic techniques
» Simulation
o Extensions

e Resources
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