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Purpose

● To describe the fundamentals of Petri nets so that
you begin to understand what they are and how
they are used.

● To give you resources that you can use to learn
more about Petri nets.
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Petri Net Applications

● Manufacturing, production, and scheduling systems

● Sequence controllers (Programmable Logic
Controller, PLC)

● Communication protocols and networks

● Software -- design, specification, simulation,
validation, and implementation
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Petri Nets --  Graphic Tool

● A bipartite directed graph containing places
(circles), transitions (bars), and directed arcs
(places <--> transitions).

Places -- buffers, locations, states

Transitions -- events, actions

Tokens -- parts

loading processing Unloading
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         Petri Nets -- Mathematical Models

A Petri net is a four-tuple:
PN = <P, T, I, O>
P: a finite set of places, {p1, p2, ..., pn}
T: a finite set of transitions, {t1, t2, ..., ts}
I: an input function, (T x P) −−> {0, 1}
O: an output function, (T x P) −−> {0, 1}

M0: an initial marking,  P −−> N
<P, T, I, O, M0> -- a marked Petri net

loading processing Unloading
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An Example

● P = {p1, p2, p3}
● T = {t1, t2, t3}
● I =    p1  p2  p3

loading processing Unloading
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● O =   p1  p2  p3

● M0 = (1, 0, 0)
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Note:
p1 is the input place of transition t1
p2 is the output place of transition t1
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Dynamics

● Enabling Rule:
» A transition t  is enabled if every input place contains at

least one token

● Firing Rule:
» Firing an enabled transition

– removes one token from each input place of the transition
– adds one token to each output place of the transition

loading processing Unloading
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Dynamics

loading processing Unloading

Initial State:
loading processing Unloading

State  after t1 is fired:

loading processing Unloading

State  after t2 is fired:

loading processing Unloading

State  after t3 is fired:

t1

t2

t3
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Basic Constructs

● Sequential actions

● Dependency
● Conflict (decision, choice)

● Concurrency
● Cycles

● Synchronization - (mutually exclusive actions,
resource sharing, communication, queues)
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Sequential Actions

Each action is a transition.
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Dependency

A transition requires two inputs.
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Conflict Construct

Only one of the two transitions can fire.
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Concurrency Construct

These two sequences  can occur simultaneously.
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Cycles

loading processing Unloading
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Synchronization

loading processing Unloading

Machine can process one part at once.
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Resource Sharing

loading processing
part 1

unloading

loading processing
part 2

unloading

One worker for two machines.
The worker can work at one machine at a time.

resource
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Buffer (Queue)

The buffer can hold a limited number of parts. 
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Communication

Program 1

Program 2
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An Example

Machine States:
Loading
Processing
Waiting for unloading
Unloading

Machine 1

Machine 2

Robot

Buffer

Buffer State:
Space availability
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Put It Together

Loading Processing
Waiting

for
Unloading

Unloading

Machine 1

Machine 2

Robot Buffer Available
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Properties (Questions)

Property Example

Boundedness
- the number of tokens in a place is bounded

Work-in-process

Safeness
- the number of tokens in a place never exceeds one

Hardware devices

Deadlock-free
- none of markings in R(PN, M0) is a deadlock

Resources competing

Reachability
- find R(PN, M0)

Messages delivery
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Analysis Methods

● Enumeration
» Reachability Tree
» Coverability Tree

● Linear Algebraic Technique
» State Matrix Equation
» Invariant Analysis: P-Invariant and T-invariant

● Simulation
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Reachability Tree (1)

p1

p2 p4

p3 p5

p6

t1

t2 t3

t4

Initialization: M0=(1,0,0,0,0,1)

Step 1: M0 = (1,0,0,0,0,1)

M1 = (0,1,0,1,0,1)

t1

Step 2: M0 = (1,0,0,0,0,1)

M1 = (0,1,0,1,0,1)

M2 = (0,0,1,1,0,1) M4 = (0,1,0,0,1,1)

t1

t2 t3
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Reachability Tree (2)

p1

p2 p4

p3 p5

p6

t1

t2 t3

t4

M0 = (1,0,0,0,0,1)

M1 = (0,1,0,1,0,1)

M2 = (0,0,1,1,0,1) M4 = (0,1,0,0,1,1)

M3 = (0,0,1,0,1,1)

t1

t2 t3

t3

Step 3:

Step 4: M0 = (1,0,0,0,0,1)

M1 = (0,1,0,1,0,1)

M2 = (0,0,1,1,0,1) M4 = (0,1,0,0,1,1)

M3 = (0,0,1,0,1,1)

t1

t2 t3

t3 t2

M3



Edward Lin, University of Maryland 26

Reachability Tree (3)

M0 = (1,0,0,0,0,1)

M1 = (0,1,0,1,0,1)

M2 = (0,0,1,1,0,1) M4 = (0,1,0,0,1,1)

M3 = (0,0,1,0,1,1)

t1

t2 t3

t3 t2

t4

M0

M3

p1

p2 p4

p3 p5

p6

t1

t2 t3

t4

Step 5:
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Reachability Tree/Graph

p1

p2 p4

p3 p5

p6

t1

t2 t3

t4

M0 = (1,0,0,0,0,1)

M1 = (0,1,0,1,0,1)

M2 = (0,0,1,1,0,1) M4 = (0,1,0,0,1,1)

M3 = (0,0,1,0,1,1)

t1

t2 t3

t3 t2

t4

M0

M3

M0

M1

M2 M4

M3

t1

t2 t3

t3 t2

t4
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Reachability Tree

t1p1

t2

p3

p2

(1, 0, 0)

(1,1,0)(0,1,1)

(1,2,0) (0,2,1)(0, 0, 1)

(1,3,0) (0,3,1) (0,1,1)

t2 t1

t3 t1 t2

t3t1 t2

t3 (0,0,1)(1,4,0)

t1

(0,2,1)

t2

(0,4,1)

t2

(0,3,1)

t3

t3
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Coverability Tree (1)

t1p1

t2

p3

p2

t3

(1,0,0)

new m1 = (1,ω,0) m2 = (0,1,1) new

Step 1:
t1 t2

Step 2 (m1): (1,0,0) new

new m1 = (1,ω ,0) m2 = (0,1,1) new

t1 t2

Initialization: M0 = (1,0,0) new

m1 = (1,1,0) >= (1,0,0)
new

old (1,ω,0)

t1

new m3=(0,ω,1)

t2
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Coverability Tree (2)

t1p1

t2

p3

p2

t3

Step 3 (m3): (1,0,0) new

new m1=(1,ω ,0) m2=(0,1,1) new

t1 t2

old (1,ω,0)

t1

m3=(0,ω,1) new

t2

old (0,ω,1)

(1,0,0) new

new m1=(1,ω ,0) m2=(0,1,1) new

t1 t2

new (1,ω,0)

t1

m3=(0,ω,1) new

t2

old (0,ω,1)

Step 4 (m2):

m4 = (0,0,1) new

t3

t3

t3
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Coverability Tree (3)

(1,0,0)
 new

m1=(1,ω ,0)
new

m2=(0,1,1)
new

t1 t2

(1,ω,0)
old

t1

m3=(0,ω,1)
new

t2

old (0,ω,1)

Step 5 (m4): Coverability Tree

m4 = (0,0,1)
terminate
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(1,1,0) (0,1,1)

(1,2,0) (0,2,1) (0, 0, 1)
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t3

Reachability Tree

t3

t3
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Linear Algebraic Technique

● I =    p1  p2  p3

loading processing Unloading
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● O =   p1  p2  p3

● M0 = (1, 0, 0)
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Incidence Matrix
● A = O - I
        = p1   p2   p3
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State Equation: M = M0 +       A, where     is a vector with s elements  µ µ

t3
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Linear Algebraic Technique

loading processing Unloading
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[ ]1 0 0 [ ]1 1 1+=[ ]1 0 0

t1 fired

t1, t2 fired

t1 t2 t3 fired

t3
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T-Invariant

T-Invariant: YA = 0, where Y is a s element vector
                    Y is the number of transition firings              

-y1        + y3 = 0
 y1 - y2         = 0
        y2 - y3 = 0

−
−

−














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1 1 0

0 1 1

1 0 1
= 0

y1 = y2 = y3

minimum t-invariant = (1, 1, 1)

M0 

[ ]y y y1 2 3

yq → M0 
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T-Invariant

loading processing Unloading

p1 t1 p2 t2 p3

(1,0,0)

(0,1,0)

(0,0,1)

(1,0,0)

(1,0,0)   ---------------> (1,0,0)

(1,1,1)

t3
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P-Invariant

P-Invariant: AXT = 0, where X is a n element vector,
                              X is the weight of each place    

-x1 + x2         = 0
        -x2 + x3 = 0
x1           - x3 = 0
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x1 = x2 = x3

minimum p-invariant = (1, 1, 1)

The quantity S =
 x1 M(p1) + x2 M(p2) + x3 M(p3)
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P-Invariant

loading processing Unloading

p1 t1 p2 t2 p3

(1,0,0)

(0,1,0)

(0,0,1)

(1,0,0)

The quantity S =
 x1 M(p1) + x2 M(p2) + x3 M(p3)

1 = 1 M(p1) + 1 M(p2) + 1 M(p3)

t3
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Simulation

● Discrete event simulation

● Same model for simulation and analysis
● Need rules to resolve conflicts

● Useful for validation and visualization
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Extensions of Petri Nets

● Event Graph (marked graph, decision-free)
» Each place has exactly one input transition and exactly one output transition

● Deterministic Timed Petri Nets
» Deterministic time delays with transitions

● Stochastic Timed Petri Nets
» Stochastic time delays with transitions

● Color Petri Nets
» Tokens with different colors

● Hybrid Nets
» Combine object-oriented concept into Petri nets
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Further Readings

● Petri nets home page: http://www.daimi.aau.dk/%7Epetrinet/
● Petri nets mailing list: PetriNets@daimi.aau.dk
● Coloured Petri nets: http://www.daimi.aau.dk/designCPN/
● Petri nets standard: http://www.daimi.aau.dk/%7Epetrinet/standard/

● Petri Net Theory and the Modeling of Systems,
by J. L. Peterson, Prentice-Hall, 1981.

● Petri Nets: An Introduction,
by W. Reisig, Springer-Verlag,1985

● Petri Nets: a Tool for Design and Management of Manufacturing
Systems, by J.-M. Proth, X. Xie, Wiley, 1996

● Computer Integrated Laboratory(CIM Lab) page:
http://www.isr.umd.edu/Labs/CIM/
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Summary

● A graphical and mathematical tool

● Applications

● Constructs

● Properties: Boundedness, Safeness, Deadlock-free, liveness,
Reachability

● Analysis Techniques:

» Reachability trees

» Coverability trees

» Linear algebraic techniques

» Simulation

● Extensions

● Resources


