Decision Diagrams to Encode and Manipulate Large Structured Data

Slides made by **Marco Beccuti**

Università degli Studi di Torino Dipartimento di Informatica

May 2020

Outline

2 [Symbolic model checking and GreatSPN](#page-17-0)

³ [Some experimental results using symbolic approach](#page-23-0)

CTL Model Checking

Model Checking CTL

Model checking CTL

It is a formal verification technique such that:

- \bullet the system is represented as a Kripke Model K ;
- a **property** is expressed as **Computation Tree Logic (CTL) formula** Φ.

It checks whether the set of state of Kripke model satisfy a CTL formula.

Model checking CTL

A **Kripke model** $K = (S, N, L)$ is defined as follows:

- \bullet S is a finite set of state;
- $\cal N$ is a transition relation $S\times 2^S;$
- L is a labeling function $S \times 2^{AP}$, where AP is a set of atomic propositions.

 K can be seen as a tree of executions.

Model checking CTL

CTL formula Φ **can be state formula or path formula.**

State formula:

- is an atomic proposition, true or false in each state;
- if ρ and ρ' are state formulas, then $\neg \rho$, $\rho \wedge \rho'$ and $\rho \vee \rho'$ are state formulas;
- \bullet if q is a path formula, Eq and Aq are state formulas.

Path formula:

if p and p' are state formulas, Xp , Fp , Gp , pUp' are path formulas

In CTL:

- \bullet a path quantifier, E (i.e. possibly) or A (i.e. inevitably), must always immediately precede a temporal operator X (i.e. next), F (i.e. finally), G (i.e. globally) and U (i.e. until);
- **O** CTL expressions can be nested: $p \vee E \neg pU(\neg p \wedge AXp)$

CTL formula semantics

EX, EU, and EG form a complete set of CTL operators, since: $\bullet AXp = \neg EX\neg p \bullet AFp = \neg EG\neg p \bullet EFp = E$ trueUp •AGp = $\neg E \rightarrow \rightarrow A \rho Uq$ = $\neg (E \rightarrow qU(\neg p \land \neg q)) \land \neg EG \rightarrow q$

Examples of CTL statements

Mutual exclusion:

$$
AG(\neg(crit_1 \wedge crit_2))
$$

For every computation, it is always possible to return to the initial state:

AG EF initial

• Every request will eventually be granted:

AG (request \Rightarrow AF response)

Each process has access to the critical section infinitely often:

AG AF crit₁ \wedge AG AF crit₂

If a process asks access to the critical region, it eventually obtains it:

CTL model checking algorithm: general idea

The algorithm can be synthesized in **two** macro-steps:

O Construct the set of states where the formula holds:

$$
S_\Phi = \{s \in S : \mathcal{K}, s \models \Phi\}
$$

2 compare S_{Φ} with the set of initial states:

 $S_{\Phi} \cap S_0 \neq \emptyset$

CTL model checking algorithm

Since EX, EU, and EG form a complete set of CTL operators then only the following algorithm are sufficient:

- \bullet explicit/symbolic EX algorithm;
- \bullet explicit/symbolic EU algorithm;
- \bullet explicit/symbolic *EG* algorithm.

EX algorithm for CTL (explicit version)

We assume that all states satisfying p are inserted in S_p and function $\mathcal{N}^{-1}(s_i)$ returns all the states reaching s_i

> 1: **procedure** $COMPUTEEX(S_p, S_p)$ S_p = set of all the states satisfying p
 S_Φ = set of the state which satisfies *EX* p 2: **for all** $(s \in S_p)$ **do**
3: $S_{\Phi}.insert(\mathcal{N}^{-1})$
4: **end for** 3: $S_{\Phi}.insert(\mathcal{N}^{-1}(s))$; end for 5: **end procedure**

EX algorithm for CTL (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs.

EX algorithm for CTL (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{S_ρ} encoding the set S_ρ of states satisfying p and $MDD_{N^{-1}}$ encoding the backward transition relation have been already built.

1: **procedure** COMPUTEEX(*MDD_{Sp}*, *MDD_N*-1, *MDD_S_a*) $MDD_{S_n} = MDD$ encoding the set of all the states satisfying p $\textit{MDD}_{\mathcal{N}-1} = \textit{MDD}$ encoding the backwards transition relation $\textit{MDD}_{\mathcal{S}_\Phi} = \textit{MDD}$ encoding the set of all the states satisfying Φ 2: $MDD_{S_{\Phi}} = RelationalProduct(MDD_{S_{p}}, MDD_{\mathcal{N}^{-1}});$ 3: **end procedure**

EU algorithm for CTL (explicit version)

We assume that all states satisfying p are inserted in S_p and those satisfying q are inserted in \mathcal{S}_q . Function $\mathcal{N}^{-1}({\mathcal{S}_i})$ returns all the states reaching s_i.

EU algorithm for CTL (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{S_ρ} encodes the set S_ρ of states satisfying p , MDD_{S_q} encodes the set S_q of states satisfying q and $\mathit{MDD}_{\mathcal{N}^{-1}}$ encodes the backward transition relation.

1: **procedure** COMPUTEEU(MDD_{S_p} , MDD_{S_q} , $MDD_{\mathcal{N}^{-1}}$, $MDD_{S_{\Phi}}$)

 $MDD_{S_p} = MDD$ encoding the set of all the states satisfying p
 $MDD_{S_q} = MDD$ encoding the set of all the states satisfying q $\textit{MDD}_{\mathcal{N}-1}=\text{MDD}$ encoding the backward transition relation $\textit{MDD}_{S_\Phi}=\text{MDD}$ encoding the set of all the states satisfying Φ

\n- 2:
$$
MDDs_{\Phi} = MDD_{Sq}
$$
;
\n- 3: **repeat**
\n- 4: $MDD_{Curr} = MDD_{S_{\Phi}}$;
\n- 5: $MDD_{Prev} = RelationalProduct(MDD_{S_{\Phi}}, MDD_{\mathcal{N}}-1)$;
\n- 6: $MDD_{Prev} = Intersection(MDD_{Prev}, MDD_{S_{\Phi}})$;
\n- 7: $TMDD_{S_{\Phi}} = Union(MDD_{Prev}, MDD_{S_{\Phi}})$;
\n- 8: **until** $(MDD_{Curr} \neq MDD_{S_{\Phi}})$
\n- 9: **end procedure**
\n

EG algorithm for CTL (explicit version)

We assume that all states satisfying p are inserted in S_n . Function $\mathcal{N}^{-1}(\mathsf{s}_i)$ returns all the states reaching $\mathsf{s}_i.$ The algorithm relies on finding the **strongly connected components (SCCs)** of a graph.

> 1: **procedure** $COMPUTEEG(S_p, S_\Phi)$ $S_p =$ set of all the states satisfying p S_{Φ} = set of the state which satisfies EGp 2: $S_{\Phi} = ComputeSSC(S_p);$

> 3: repeat

> 4: $S_{Curr} . copy(S_{\Phi});$

> 5: for all $(s \in S_{Curr})$ c 3: **repeat** S_{Curr} .copy $(S_{\Phi});$ 5: **for all** $(s \in S_{Curr})$ **do**
6: $S_{prev} = \mathcal{N}^{-1}(s)$; 6: $S_{prev} = \mathcal{N}^{-1}(s);$ 7: **for all** $(s' \in S_{prev})$ do 8: **if** $(s' \in S_p)$ then 9: $S_{\Phi}.insert(s')$; 10: **end if** 11: **end for** 12: **end for**
13: **until** $(S_0 \neq$ until $(S_{\Phi} \neq S_{Curr})$ 14: **end procedure**

EG algorithm for CTL (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{S_ρ} encodes the set S_ρ of states satisfying ρ and $MDD_{N^{-1}}$ encodes the backward transition relation.

1: **procedure** COMPUTEEG(MDD_{Sp}, MDD_N-1, MDD_{St})

 $MDD_{Sp} = MDD$ encoding the set of all the states satisfying p
 $MDD_{\mathcal{N}^{-1}} = MDD$ encoding the backwards transition relation
 $MDD_{\mathcal{S}_{\Phi}} = MDD$ encoding the set of all the states satisfying Φ

$$
2: \qquad MDD_{S_{\Phi}} = MDD_{S_p};
$$

3: **repeat**

$$
4: \qquad MDD_{\text{Curr}} = MDD_{S_{\Phi}}
$$

5:
$$
MDD_{\text{Prev}} = RelationalProduct(MDD_{S_{\Phi}}, MDD_{\mathcal{N}}-1);
$$

6:
$$
MDD_{S_{\Phi}} = Intersection(MDD_{Prev}, MDD_{S_{\Phi}});
$$

7: until
$$
(MDD_{Curr} \neq MDD_{S_{\Phi}})
$$

8: **end procedure**

Symbolic model checking and GreatSPN

Symbolic model checking and GreatSPN

Symbolic model checking and GreatSPN

The symbolic algorithms have been implemented in GreatSPN using Meddly library (http://meddly.svn.sourceforge.net/)

Symbolic model checking and GretSPN

CTL formula grammar

Observe that tag $\langle var \rangle$ corresponds to a name of a transition or a place in the input model.

Deadlock (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{RS} encodes the Rechability Set (RS) and MDD_{N-1} encodes the backward transition relation.

1: **procedure** COMPUTEDEADLOCK(MDD_{RS}, MDD_N-1)

 $MDD_{RS} = MDD$ encoding RS $MDD_N−1$ = MDD encoding the backwards transition relation MDD_{S_n} = MDD encoding the set of all the states satisfying Φ

- 2: MDDPrev =RelationalProduct(MDDRS ,MDDN−¹); 3: MDDS^Φ ⁼Difference(MDDRS *,* MDDPrev);
-
- 4: **end procedure**

Enabled Transition (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{RS} encodes the Rechability Set (RS) and $\mathit{MDD}^t_{\mathcal{N}^{-1}}$ encodes the backward transition relation for transition $t.$ Currently, It works only for PN.

1: **procedure** ComputeEnableT(MDDRS*,*t)

 $MDD_{RS} = MDD$ encoding RS MDD^t encodes the backward transition relation for transition t MDD_{S_n} = MDD encoding the set of all the states satisfying Φ

$$
2: \qquad MDD_{S_{\Phi}} = RelationalProduct(MDD_{RS}, MDD_{\mathcal{N}^{-1}}^{t});
$$

3: **end procedure**

EF algorithm for CTL (symbolic version)

In **GreatSPN**, to improve the efficiency, the EF algorithm is implemented directed instead of using $EF_p = E$ trueUp. All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{S_p} encodes the set S_p of states satisfying p and $MDD_{N^{-1}}$ encodes the backward transition relation.

1: **procedure** COMPUTEEF(MDD_{Sp}, MDD_N-1, MDD_{S^{φ}})</sub>

 $MDD_{Sp} = MDD$ encoding the set of all the states satisfying p
 $MDD_{N-1} = MDD$ encoding the backwards transition relation
 $MDD_{5\Phi} = MDD$ encoding the set of all the states satisfying Φ

$$
2: \qquad MDD_{S_{\Phi}} = MDD_{S_p};
$$

3: **repeat**

4:
$$
MDD_{Curr} = MDD_{S_{\Phi}};
$$

5:
$$
MDD_{Prev} = RelationalProduct(MDD_{S_{\Phi}}, MDD_{\mathcal{N}}-1);
$$

6:
$$
MDD_{S_{\Phi}} = Union(MDD_{Prev}, MDD_{S_{\Phi}});
$$

7: until
$$
(MDD_{Curr} \neq MDD_{S_{\Phi}})
$$

8: **end procedure**

Some experimental results using symbolic approach

Some experimental results using symbolic approach

Experiments on Dining Philosophers

Experiments on Dining Philosophers

Performed on INTEL CORE i7 with 8Gb of RAM

Experiments on Dining Philosophers

Performed on INTEL CORE i7 with 8Gb of RAM

 330 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{2.18e}^{\text{206}} & \text{0.01s.} & \text{399KB.} \ \hline \end{array}$ 399KB. 945KB. $35\text{MB}.(\text{28MB.})$ 0.6s. 3MB. 30MB. $40\text{MB}.(\text{28MB.})$

Experiments on Flexible Manufacturing System FMS tp_{1s} $P1wM1$ $P1M1$ $P1d$ $\cal N$ $P1s$ rp1, γ_{P1} tp_1 $P1wP2$ $M₁$ tp_1

Experiments on Flexible Manufacturing System

Performed on INTEL CORE i7 with 8Gb of RAM

M. Beccuti **DD** to Encode and Manipulate Large Structured Data 29 / 30

Experiments on Flexible Manufacturing System

Performed on INTEL CORE i7 with 8Gb of RAM

M. Beccuti [DD to Encode and Manipulate Large Structured Data](#page-0-0) 30 / 30 / 30 / 30