Decision Diagrams to Encode and Manipulate Large Structured Data

Slides made by Marco Beccuti

Università degli Studi di Torino Dipartimento di Informatica

May 2020

Outline

2 Symbolic model checking and GreatSPN

3 Some experimental results using symbolic approach

Model Checking CTL

Symbolic model checking and GreatSPN

Some experimental results using symbolic approach

٢

CTL Model Checking

Model checking CTL

٢

It is a formal verification technique such that:

- the system is represented as a Kripke Model \mathcal{K} ;
- a property is expressed as Computation Tree Logic (CTL) formula Φ.

It checks whether the set of state of Kripke model satisfy a CTL formula.

(\mathfrak{S})

Model checking CTL

A Kripke model $\mathcal{K} = (S, \mathcal{N}, L)$ is defined as follows:

- S is a finite set of state;
- \mathcal{N} is a transition relation $S \times 2^{S}$;
- L is a labeling function $S \times 2^{AP}$, where AP is a set of atomic propositions.

 \mathcal{K} can be seen as a tree of executions.

Model checking CTL

CTL formula Φ can be state formula or path formula.

State formula:

- is an atomic proposition, true or false in each state;
- if p and p' are state formulas, then ¬p, p ∧ p' and p ∨ p' are state formulas;
- if q is a path formula, Eq and Aq are state formulas.

Path formula:

• if p and p' are state formulas, Xp, Fp, Gp, pUp' are path formulas

In CTL:

- a path quantifier, E (i.e. possibly) or A (i.e. inevitably), must always immediately precede a temporal operator X (i.e. next), F (i.e. finally), G (i.e. globally) and U (i.e. until);
- CTL expressions can be nested: $p \vee E \neg pU(\neg p \land AXp)$

CTL formula semantics

EX, *EU*, and *EG* form a complete set of CTL operators, since: • $AXp = \neg EX \neg p$ • $AFp = \neg EG \neg p$ • EFp = EtrueUp• $AGp = \neg EF \neg p$ • $ApUq = \neg (E \neg qU(\neg p \land \neg q)) \land \neg EG \neg q$

Examples of CTL statements

• Mutual exclusion:

$$AG(\neg(crit_1 \land crit_2))$$

 For every computation, it is always possible to return to the initial state:

AG EF initial

• Every request will eventually be granted:

AG (request \Rightarrow AF response)

• Each process has access to the critical section infinitely often:

AG AF crit₁ \land AG AF crit₂

• If a process asks access to the critical region, it eventually obtains it:

AG request_critical \Rightarrow AF access_critical

CTL model checking algorithm: general idea

The algorithm can be synthesized in two macro-steps:

O Construct the set of states where the formula holds:

$$S_{\Phi} = \{s \in S : \mathcal{K}, s \models \Phi\}$$

2 compare S_{Φ} with the set of initial states:

 $S_{\Phi} \cap S_0 \neq \emptyset$

CTL model checking algorithm

Since EX, EU, and EG form a complete set of CTL operators then only the following algorithm are sufficient:

- explicit/symbolic EX algorithm;
- explicit/symbolic EU algorithm;
- explicit/symbolic EG algorithm.

EX algorithm for CTL (explicit version)

We assume that all states satisfying p are inserted in S_p and function $\mathcal{N}^{-1}(s_i)$ returns all the states reaching s_i

1: procedure COMPUTEEX (S_p, S_{Φ}) $S_p = \text{set of all the states satisfying } p$ $S_{\Phi} = \text{set of the state which satisfies } EX p$ 2: for all $(s \in S_p)$ do 3: $S_{\Phi}.insert(\mathcal{N}^{-1}(s));$ 4: end for 5: end procedure

EX algorithm for CTL (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs.

EX algorithm for CTL (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{S_p} encoding the set S_p of states satisfying p and $MDD_{N^{-1}}$ encoding the backward transition relation have been already built.

 procedure COMPUTEEX(MDD_{S_p}, MDD_{N⁻¹}, MDD_{S_Φ})
 MDD_{S_p} = MDD encoding the set of all the states satisfying *p* MDD_{N⁻¹} = MDD encoding the backwards transition relation MDD_{S_Φ} = MDD encoding the set of all the states satisfying Φ
 MDD_{S_Φ} = RelationalProduct(MDD_{S_p}, MDD_{N⁻¹});
 end procedure

EU algorithm for CTL (explicit version)

We assume that all states satisfying p are inserted in S_p and those satisfying q are inserted in S_q . Function $\mathcal{N}^{-1}(s_i)$ returns all the states reaching s_i .

EU algorithm for CTL (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{S_p} encodes the set S_p of states satisfying p, MDD_{S_q} encodes the set S_q of states satisfying q and $MDD_{\mathcal{N}^{-1}}$ encodes the backward transition relation.

1: procedure COMPUTEEU($MDD_{S_{\rho}}, MDD_{S_{\sigma}}, MDD_{\mathcal{N}^{-1}}, MDD_{S_{\phi}}$)

 $\begin{array}{l} MDD_{S_p} = \text{MDD} \text{ encoding the set of all the states satisfying } p \\ MDD_{S_q} = \text{MDD} \text{ encoding the set of all the states satisfying } q \\ MDD_{\mathcal{N}^{-1}} = \text{MDD} \text{ encoding the backward transition relation} \\ MDD_{S_{\Phi}} = \text{MDD} \text{ encoding the set of all the states satisfying } \Phi \end{array}$

8: until $(MDD_{Curr} \neq MDD_{S_{\Phi}})$

9: end procedure

EG algorithm for CTL (explicit version)

We assume that all states satisfying p are inserted in S_p . Function $\mathcal{N}^{-1}(s_i)$ returns all the states reaching s_i . The algorithm relies on finding the **strongly connected components (SCCs)** of a graph.

1: procedure COMPUTEEG(S_p, S_{Φ}) S_p = set of all the states satisfying p S_{Φ} = set of the state which satisfies EGp 2: 3: $S_{\Phi} = ComputeSSC(S_p);$ repeat 4: $S_{Curr}.copy(S_{\Phi});$ 5: for all $(s \in S_{Curr})$ do $S_{prev} = \mathcal{N}^{-1}(s);$ 6: for all $(s' \in S_{prev})$ do 7: 8: if $(s' \in S_p)$ then 9: S_{Φ} .insert(s'); 10: end if 11: end for 12: end for 13: until $(S_{\Phi} \neq S_{Curr})$ 14: end procedure

EG algorithm for CTL (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{S_p} encodes the set S_p of states satisfying p and MDD_{N-1} encodes the backward transition relation.

1: procedure COMPUTEEG($MDD_{S_n}, MDD_{\mathcal{N}^{-1}}, MDD_{S_{\Phi}}$)

 $\begin{array}{l} MDD_{S_p} = MDD \mbox{ encoding the set of all the states satisfying p} \\ MDD_{\mathcal{N}^{-1}} = MDD \mbox{ encoding the backwards transition relation} \\ MDD_{S_{\Phi}} = MDD \mbox{ encoding the set of all the states satisfying Φ} \end{array}$

2:
$$MDD_{S_{\Phi}} = MDD_{S_{p}};$$

4:
$$MDD_{Curr} = MDD_{S_{\Phi}}$$

5:
$$MDD_{Prev} = RelationalProduct(MDD_{S_{\phi}}, MDD_{\mathcal{N}^{-1}});$$

6: $MDD_{S_{\phi}} = Intersection(MDD_{Prev}, MDD_{S_{\phi}});$

$$MDD_{S_{\Phi}} = Intersection(MDD_{Prev}, MDD_{S_{\Phi}})$$

7: until
$$(MDD_{Curr} \neq MDD_{S_{\Phi}})$$

Model Checking CTL

Symbolic model checking and GreatSPN

Some experimental results using symbolic approach

Symbolic model checking and GreatSPN

Symbolic model checking and GreatSPN

Symbolic model checking and GreatSPN

The symbolic algorithms have been implemented in GreatSPN using Meddly library (http://meddly.svn.sourceforge.net/)

Symbolic model checking and GretSPN

CTL formula grammar

<i>(CTLformula)</i>	::=	(atomicProposition) (CTLformula)
		(CTLformula) "and" (CTLformula)
		(CTLformula) "or" (CTLformula)
		"not" (CTLformula) (CTLformula) "->" (CTLformula)
		"E" "X" (CTLformula) "E" "G" (CTLformula)
		"E" "[" (CTLformula) "U" (CTLformula) "]"
		"A" "X" (CTLformula) "A" "F" (CTLformula)
		"E" "F" (CTLformula) "A" "G" (CTLformula)
		"A" "[" (CTLformula) "U" (CTLformula) "]"
$\langle atomicProposition \rangle$::=	<i>(inequality)</i> <i>(boolvalue)</i> "ndeadlock" "deadlock" "en <i>(var)</i> "
(boolvalue)	::=	"true" "false"
(inequality)	::=	"(" (expression) (comp oper) (expression) ")"
(comp_oper)	::=	"<" ">" "<=" ">=" "=" "! ="
(expression)	::=	"(" (expression) (arit_oper) (expression) ")" (term)
		"(" (number_expr) ")"
(arit_oper)	::=	"+" "-" "*" "/"
(term)	::=	<pre>(number_expr) "*" (var) (number_expr) "/" (var) (var)</pre>
(number_expr)	::=	"(" <number_expr> <arit_oper> <number_expr> ")" <number></number></number_expr></arit_oper></number_expr>
(var)	::=	[(A-Z)(a-z)][(A-Z)(a-z)(0-9)]*
(numbr)	::=	\mathbb{R}^+

Observe that tag $\langle \textit{var} \rangle$ corresponds to a name of a transition or a place in the input model.

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{RS} encodes the Rechability Set (RS) and $MDD_{N^{-1}}$ encodes the backward transition relation.

1: procedure COMPUTEDEADLOCK (MDD_{RS}, MDD_{N-1})

 $MDD_{RS} = MDD$ encoding RS $MDD_{\mathcal{N}^{-1}} = MDD$ encoding the backwards transition relation $MDD_{S_{\Phi}} = MDD$ encoding the set of all the states satisfying Φ

- $\begin{array}{l} MDD_{Prev} = RelationalProduct(MDD_{RS}, MDD_{\mathcal{N}^{-1}}); \\ MDD_{S_{\Phi}} = Difference(MDD_{RS}, MDD_{Prev}); \end{array}$ 2:
- 3:

Deadlock (symbolic version)

4: end procedure

Enabled Transition (symbolic version)

All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{RS} encodes the Rechability Set (RS) and $MDD_{\mathcal{N}^{-1}}^{t}$ encodes the backward transition relation for transition *t*. Currently, It works only for PN.

1: procedure COMPUTEENABLET(MDD_{RS}, t)

 $\begin{array}{l} MDD_{RS} = \text{MDD encoding RS} \\ MDD_{\mathcal{N}^{-1}}^{t} \text{ encodes the backward transition relation for transition } t \\ MDD_{S_{\Phi}} = \text{MDD encoding the set of all the states satisfying } \Phi \end{array}$

2:
$$MDD_{S_{\Phi}} = RelationalProduct(MDD_{RS}, MDD_{N-1}^{t});$$

3: end procedure

<u>EF algorithm for CTL (symbolic version)</u>

In **GreatSPN**, to improve the efficiency, the *EF* algorithm is implemented directed instead of using EFp = EtrueUp. All sets of states and relations over sets of states are encoded using MDDs. We assume that MDD_{S_p} encodes the set S_p of states satisfying p and $MDD_{N^{-1}}$ encodes the backward transition relation.

1: procedure COMPUTEEF($MDD_{S_n}, MDD_{N^{-1}}, MDD_{S_{\phi}}$)

 $MDD_{S_p} = MDD$ encoding the set of all the states satisfying p $MDD_{\mathcal{N}^{-1}} = MDD$ encoding the backwards transition relation $MDD_{S_{\Phi}}^{N} = MDD$ encoding the set of all the states satisfying Φ

2:
$$MDD_{S_{\Phi}} = MDD_{S_{p}};$$

3: repeat
4: $MDD_{Curr} = MDD_{S_{h}};$

$$MDD_{Curr} = MDD_{S_{\Phi}};$$

$$MDD_{Prev} = RelationalProduct(MDD_{S_{\Phi}}, MDD_{\mathcal{N}^{-1}});$$

6:
$$MDD_{S_{\Phi}} = Union(MDD_{Prev}, MDD_{S_{\Phi}});$$

7: until
$$(MDD_{Curr} \neq MDD_{S_{\Phi}})$$

5:

Some experimental results using symbolic approach

Some experimental results using symbolic approach

Experiments on Dining Philosophers

Experiments on Dining Philosophers

Performed on INTEL CORE i7 with 8Gb of RAM

Experiments on Dining Philosophers

21MB.(17MB.)

33MB.(27MB.)

35MB.(28MB.)

7.66s.

0.7s.

0.6s.

1.7MB.

2.9MB.

3MB.

477KB.

934KB.

945KB.

200

316

330

6.82e¹²⁴

3.64e¹⁹⁷

2.18e²⁰⁶

0.5s.

0.02s.

0.01s

241KB.

382KB.

399KB

DD to Encode and Manipulate Large Structured Data

25MB.(17MB.)

39MB.(27MB.)

40MB.(28MB.

Some experimental results using symbolic approach

Experiments on Flexible Manufacturing System

Some experimental results using symbolic approach

Experiments on Flexible Manufacturing System

RS Generation					CTL checking					
N	RS	T.	Peak MDD	Peak MDD2L	Max. Mem.	Τ.	Peak DD	Max. Mem		
	CTL formula: E G \neg (P1s = N and P2s = N and P3s = N)									
30	2.36e ¹²	23s.	194MB.	1.2MB.	469MB.(24MB.)	45s.	195MB.	758MB.(24MB.)		
40	3.58e ¹³	2m.	481MB.	1.9MB.	891MB.(24MB.)	4m.	482MB.	889MB.(24MB.)		
42	5.70e ¹³	8m.	525MB.	2.2MB.	939MB.(24MB.)	15m.	527MB.	939MB.(24MB.)		
45	1.10e ¹⁴	28m.	587MB.	2.5MB.	1.0GB.(24MB.)	34m.	589MB.	1.0GB.(24MB.)		

Performed on INTEL CORE i7 with 8Gb of RAM

DD to Encode and Manipulate Large Structured Data

Experiments on Flexible Manufacturing System

RS Generation					CTL checking			
N	RS	T.	Peak MDD	Peak MDD2L	Max. Mem.	Τ.	Peak DD	Max. Mem
CTL formula: E F (deadlock)								
30	2.36e ¹²	23s.	194MB.	1.2MB.	469MB.(24MB.)	23s.	195MB.	475MB.(24MB.)
40	3.58e ¹³	2m.	481MB.	1.9MB.	891MB.(24MB.)	2m.	483MB.	909MB.(24MB.)
42	5.70e ¹³	8m.	525MB.	2.2MB.	939MB.(24MB.)	8m.	527MB.	940MB.(24MB.)
45	1.10e ¹⁴	28m.	587MB.	2.5MB.	1.0GB.(24MB.)	28m.	589MB.	1.0GB.(24MB.)

Performed on INTEL CORE i7 with 8Gb of RAM

DD to Encode and Manipulate Large Structured Data