
Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.1

Pipelined Computations

Chapter 5

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.2

Pipelined Computations

Problem divided into a series of tasks that have to be completed

one after the other (the basis of sequential programming). Each

task executed by a separate process or processor.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.3

Example
Add all the elements of array a to an accumulating sum:

for (i = 0; i < n; i++)
sum = sum + a[i];

The loop could be “unfolded” to yield

sum = sum + a[0];
sum = sum + a[1];
sum = sum + a[2];
sum = sum + a[3];
sum = sum + a[4];

.

.

.

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.4

Pipeline for an unfolded loop

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.5

Another Example

Frequency filter - Objective to remove specific frequencies (f0, f1,
f2,f3, etc.) from a digitized signal, f(t).
Signal enters pipeline from left:

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.6

Where pipelining can be used to
good effect

Assuming problem can be divided into a series of sequential
tasks, pipelined approach can provide increased execution speed
under the following three types of computations:

1. If more than one instance of the complete problem is to be
Executed

2. If a series of data items must be processed, each requiring
multiple operations

3. If information to start the next process can be passed forward
before the process has completed all its internal operations

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.7

“Type 1” Pipeline Space-Time Diagram

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.8

Alternative space-time diagram

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.9

“Type 2” Pipeline Space-Time Diagram

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

“Type 3” Pipeline Space-Time Diagram

Pipeline processing where information passes to next stage before

5.10

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

If the number of stages is larger than the number of processors
in any pipeline, a group of stages can be assigned to each
processor:

5.11

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Computing Platform for Pipelined
Applications

Multiprocessor system with a line configuration.

Strictly speaking pipeline may not be the best structure
for a cluster - however a cluster with switched direct
connections, as most have, can support simultaneous
message passing.

5. 12

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Example Pipelined Solutions
(Examples of each type of computation)

5.13

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Pipeline Program Examples

Adding Numbers

Type 1 pipeline computation

5.14

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Basic code for process Pi :

recv(&accumulation, Pi-1);
accumulation = accumulation + number;
send(&accumulation, Pi+1);

except for the first process, P0, which is

send(&number, P1);

and the last process, Pn-1, which is

recv(&number, Pn-2);
accumulation = accumulation + number;

5.15

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

SPMD program

if (process > 0) {
recv(&accumulation, Pi-1);
accumulation = accumulation + number;

}
if (process < n-1)

send(&accumulation, P i+1);

The final result is in the last process.

Instead of addition, other arithmetic operations could be done.

5.16

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Pipelined addition numbers with a
master process and ring configuration

5.17

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Sorting Numbers
A parallel version of insertion sort.

5.18

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.19

Pipeline for sorting using insertion sort

Type 2 pipeline computation

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

The basic algorithm for process Pi is

recv(&number, Pi-1);
if (number > x) {

send(&x, Pi+1);
x = number;

} else send(&number, Pi+1);

With n numbers, how many the ith process is to accept is
known; it is given by n - i.
How many to pass onward is also known; it is given by n - i - 1
since one of the numbers received is not passed onward.
Hence, a simple loop could be used.

5.20

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Insertion sort with results returned to
the master process using a

bidirectional line configuration

5.21

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Insertion sort with results returned

5.22

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Prime Number Generation
Sieve of Eratosthenes

Series of all integers is generated from 2. First number, 2, is
prime and kept. All multiples of this number are deleted as
they cannot be prime. Process repeated with each remaining
number. The algorithm removes nonprimes, leaving only
primes.

Type 2 pipeline computation

5.23

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

The code for a process, Pi, could be based upon

recv(&x, Pi-1);
/* repeat following for each number */
recv(&number, Pi-1);
if ((number % x) != 0) send(&number, P i+1);

Each process will not receive the same amount of numbers
and the amount is not known beforehand. Use a
“terminator” message, which is sent at the end of the
sequence:

recv(&x, Pi-1);
for (i = 0; i < n; i++) {

recv(&number, Pi-1);
If (number == terminator) break;
(number % x) != 0) send(&number, P i+1);

}
5.24

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Solving a System of Linear Equations
Upper-triangular form

where a’s and b’s are constants and x’s are unknowns to be found.

5.25

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Back Substitution
First, the unknown x0 is found from the last equation; i.e.,

Value obtained for x0 substituted into next equation to obtain
x1; i.e.,

Values obtained for x1 and x0 substituted into next equation
to obtain x2:

and so on until all the unknowns are found.

5.26

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Pipeline Solution

First pipeline stage computes x0 and passes x0 onto the second
stage, which computes x1 from x0 and passes both x0 and x1
onto the next stage, which computes x2 from x0 and x1, and so
on.

Type 3 pipeline computation

5.27

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

The ith process (0 < i < n) receives the values x0, x1, x2, …, xi-1
and computes xi from the equation:

5.28

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Sequential Code

Given the constants ai,j and bk stored in arrays a[][] and b[],
respectively, and the values for unknowns to be stored in an
array, x[], the sequential code could be

x[0] = b[0]/a[0][0]; /* computed separately */
for (i = 1; i < n; i++) { /*for remaining unknowns*/

sum = 0;
For (j = 0; j < i; j++

sum = sum + a[i][j]*x[j];
x[i] = (b[i] - sum)/a[i][i];

}

5.29

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved.

Parallel Code

Pseudocode of process Pi (1 < i < n) of could be

for (j = 0; j < i; j++) {
recv(&x[j], Pi-1);
send(&x[j], Pi+1);

}
sum = 0;
for (j = 0; j < i; j++)

sum = sum + a[i][j]*x[j];
x[i] = (b[i] - sum)/a[i][i];
send(&x[i], Pi+1);

Now we have additional computations to do after
receiving and resending values.

5.30

Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,

@ 2004 Pearson Education Inc. All rights reserved. 5.31

Pipeline processing using back
substitution

