
Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models

What’s next?

5 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 172 / 540

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models

Figure 5.1, p.130 Paths as trees

Gills

Beak

=no

[0+, 4–]

 =yes

Length

=yes

[0+, 0–]

 =no

Teeth

=[3,5]

[1+, 1–]

 ≠[3,5]

Length

=few

[2+, 0–]

=many

[1+, 0–]

=3

[1+, 0–]

=5

ĉ(x) = ⊕

Gills

Length

=no

ĉ(x) = ⊖

 =yes

Teeth

ĉ(x) = ⊖

=few

ĉ(x) = ⊕

=many

=3 =4

ĉ(x) = ⊕

 =5

(left) The path from Figure 4.6, redrawn in the form of a tree. The coverage numbers in
the leaves are obtained from the data in Example 4.4. (right) A decision tree learned on
the same data. This tree separates the positives and negatives perfectly.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 173 / 540

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

4. Concept learning 4.2 Paths through the hypothesis space

Example 4.4, p.115 Data that is not conjunctively separable I

Suppose we have the following five positive examples (the first three are the
same as in Example 4.1):

p1: Length= 3 ^ Gills= no ^ Beak= yes ^ Teeth=many

p2: Length= 4 ^ Gills= no ^ Beak= yes ^ Teeth=many

p3: Length= 3 ^ Gills= no ^ Beak= yes ^ Teeth= few

p4: Length= 5 ^ Gills= no ^ Beak= yes ^ Teeth=many

p5: Length= 5 ^ Gills= no ^ Beak= yes ^ Teeth= few

and the following negatives (the first one is the same as in Example 4.2):

n1: Length= 5 ^ Gills= yes ^ Beak= yes ^ Teeth=many

n2: Length= 4 ^ Gills= yes ^ Beak= yes ^ Teeth=many

n3: Length= 5 ^ Gills= yes ^ Beak= no ^ Teeth=many

n4: Length= 4 ^ Gills= yes ^ Beak= no ^ Teeth=many

n5: Length= 4 ^ Gills= no ^ Beak= yes ^ Teeth= few

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 159 / 540

The dataset

c(x)=+[4+,0-]

Modification of feature tree and  
transformation into a decision tree

• In order to represent the i-th concept from the bottom of the
feature tree, we could prune the i leaves from the left and
incorporate all of them in a single leaf

• For instance, we would like to represent the 3rd concept
from the left:

c(x)=-

c(x)=-

c(x)=-

• Turning the modified feature
tree into a decision tree by  
labelling the leaves

Equivalent logical expressions

• From the feature tree we might obtain many equivalent logical
expressions:

Gills = no ^ Length = 3 _Gills = no ^ Length = 5 _Gills = no ^ Length = 4 ^ Teeth = many

The above expression represents the positive concept;  
other possibilities include for instance applying the distributive
property (A∧B)∨(A∧C)=A∧(B∨C) or applying the De Morgan laws.

Finally, we could represent the negative concept:  
(Gills=no∧Length=4∧Teeth=few)∨(Gills=yes)  
and then negate it.

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models

Important point to remember

Decision trees are strictly more expressive than conjunctive concepts.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 174 / 540

Decision trees correspond to logical expressions in Disjunctive Normal Form
(DNF).
Suppose we build a tree, with each path corresponding to a conjunctive
hypothesis covering one single example of the training set.  
Then we have obtained a model, perfectly performing on the training set but
which completely overfits it!

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models

Important point to remember

One way to avoid overfitting and encourage learning is to deliberately choose a
restrictive hypothesis language.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 175 / 540

This is the inductive bias often reached by learning algorithms by:

• the way the hypothesis space is searched
• incorporating a penalty for the complexity of each hypothesis  

in the objective function

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models

Definition 5.1, p.132 Feature tree

A feature tree is a tree such that each internal node (the nodes that are not
leaves) is labelled with a feature, and each edge emanating from an internal
node is labelled with a literal.

The set of literals at a node is called a split.

Each leaf of the tree represents a logical expression, which is the conjunction of
literals encountered on the path from the root of the tree to the leaf. The
extension of that conjunction (the set of instances covered by it) is called the
instance space segment associated with the leaf.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 176 / 540

Learning a feature tree

• A feature tree is a compact way of representing a number of
conjunctive concepts in a hypothesis space

• The learning problem is to decide which of the possible
concepts will be the best to solve the given task

• When we will see rule learners, we will see that they learn one
concept at a time

• Instead, tree learners perform a top-down search for all these
concepts at once

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models

Algorithm 5.1, p.132 Growing a feature tree

Algorithm GrowTree(D,F) – grow a feature tree from training data.

Input : data D ; set of features F .
Output : feature tree T with labelled leaves.

1 if Homogeneous(D) then return Label(D);
2 S √BestSplit(D,F) ; // e.g., BestSplit-Class (Algorithm 5.2)
3 split D into subsets Di according to the literals in S;
4 for each i do
5 if Di 6=; then Ti √GrowTree(Di ,F) ;
6 else Ti is a leaf labelled with Label(D);
7 end
8 return a tree whose root is labelled with S and whose children are Ti

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 177 / 540

A generic learning procedure for most tree learners

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models

Growing a feature tree

Algorithm 5.1 gives the generic learning procedure common to most tree
learners. It assumes that the following three functions are defined:

Homogeneous(D) returns true if the instances in D are homogeneous enough
to be labelled with a single label, and false otherwise;

Label(D) returns the most appropriate label for a set of instances D ;

BestSplit(D,F) returns the best set of literals to be put at the root of the tree.

These functions depend on the task at hand: for instance, for classification tasks
a set of instances is homogeneous if they are (mostly) of a single class, and the
most appropriate label would be the majority class. For clustering tasks a set of
instances is homogenous if they are close together, and the most appropriate
label would be some exemplar such as the mean.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 178 / 540

*

(*) If there is more than a majority class, then one of them could be chosen  
uniformly random

Comments on GrowTree

• GrowTree is a divide and conquer algorithm. 
It divides the data into subsets and builds a feature tree for each
subset. Then, (at return) it combines the trees into a single one.

• It is recursive, since each subproblem (building a tree for each
subset of the data) is of the same form as the original problem.

• Line 1 and line 6 stop the recursion assigning a label to a leaf
node.

• It is greedy: it selects the best alternative and never reconsiders
this choice (which might get to a sub-optimal solution).  
An alternative would be a backtracking search algorithm at the
expense of an increased computation time and memory
requirements.

Execution and calls of GrowTree

GrowTree(D,F) D=

GrowTree(D1,F)
D1=

GrowTree(D4,F)

D4=

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.1 Decision trees

What’s next?

5 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 179 / 540

Notation
• Let us first suppose we are dealing with boolean features that

perform a binary split of a set of instances D into D1 and D2.  

• Let us also suppose we have 2 classes: + and -  

• The goodness of a split is determined by the purity of D1 and
D2 in terms of the class of their examples.

• The purity of a partition of n examples, containing n+ examples of 
the positive class and n- examples of the negative class, depends  
only on the relative magnitude of n+ and n- (and does not change 
if both of them are multiplied by the same amount).  
Purity can be defined in terms of the empirical probability:

ṗ =
n+

n+ + n�

• Furthermore, the result should not change if we swap the role 
of the positive with the negative.

Some ways to measure impurity

• Minority class: 
or the error rate as it would be measured with the proportion of
misclassified examples if all the examples in the leaf node
were labelled with the majority class

• Entropy:  
it is the expected information (in bits, see following slides on
entropy) contained in a message informing us on the class of a
randomly chosen example in the leaf node.

min{ṗ, 1� ṗ} 1�max{ṗi} i>2 classes

2ṗ(1� ṗ)
X

i

ṗi(1� ṗi)

�ṗ · log2(ṗ)� (1� ṗ) · log2(1� ṗ) �
X

i

ṗi · log2(ṗi)

• Gini index: 
it is the expected error if the examples in the leaf node were
labelled randomly: positive with probability p, negative with
probability (1-p). The probability of a false positive is p(1-p) and
the probability of a false negative is (1-p)p.

.
. .

. .
.

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.1 Decision trees

Figure 5.2, p.134 Measuring impurity I

Indicating the impurity of a single leaf D j as Imp(D j), the impurity of a set of
mutually exclusive leaves {D1, . . . ,Dl } is defined as a weighted average

Imp({D1, . . . ,Dl }) =
lX

j=1

|D j |
|D| Imp(D j)

where D = D1 [. . .[Dl .
For a binary split there is a nice geometric construction to find Imp({D1,D2}):

t We first find the impurity values Imp(D1) and Imp(D2) of the two children
on the impurity curve (here the Gini index).

t We then connect these two values by a straight line, as any weighted
average of the two must be on that line.

t Since the empirical probability of the parent is also a weighted average of
the empirical probabilities of the children, with the same weights (i.e.,
ṗ = |D1|

|D| ṗ1 + |D2|
|D| ṗ2),ṗ gives us the correct interpolation point.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 180 / 540

probability of an example
falls into the partition Dj

Decision Trees

• Separate the dataset into disjoint partitions guided by the
objective function:

• objective function: each partition is pure in the target attribute  

• The objective function is to measure purity of partitions obtained
after split. 
One such measure is entropy

• Entropy is a measure of the amount of confusion
• try to reduce the entropy of the target attribute at each

partition

Entropy

• Entropy is measured in bits

• It can be used both to:

• quantify the number of units (bits) required to represent the information
(and eventually to communicate it by a message)

• measure the amount of information associated to the message

• If an experiment has n possible (equiprobable) outcomes, the number of
bits required to represent any of these outcomes is b: 
 
 

b = dlog2 ne

Example 1

• Suppose we roll a die. It has 6 outcomes.

• If we want to represent and communicate one outcome we need b bits: 
 

• If we communicate first, only the parity of the outcome, we need b1 bits:

• After the first message, some confusion about the outcome remains, but
this confusion is reduced by the amount of information already sent about
the parity of the outcome.

b = dlog2 6e = d2.58e = 3

b1 = dlog2 2e = 1

Example 2
• There are 3 possible outcomes for each odd or even output of a die

• We need b2 bits to represent it:

• This measures the amount of confusion remaining about the outcome
and it is the amount of information that we still need to communicate,
given the already released information (parity)

• The gained information by the first message is:  
Gained information=initial amount of confusion – remaining amount of
confusion

b2 = dlog2 3e = d1.58e = 2

b2 = b� b1 = log2 6� log2 2 = 2.58� 1 = 1.58

b1 = b� b2 = log2 6� log2 3 = 2.58� 1.58 = 1

Information (1)

• If an event E has probability p to occur, the information gained when
we observe it is:

• In an event E is highly probable (p~1) the amount of information that
we gain from the observation of E is low

• If an event E is not probable (p~0) the amount of information that we
gain from E is high

I(E) = log2(
1
p
) = � log2 p

Information plot (0≤x≤1)
y

Information (2)

• If an experiment has n outcomes (E1, .. En), each with
probability p1, p2,…, pn then the average amount of information
we gain when we observe a generic outcome of the
experiment is the expected information or entropy: 
 
 

H(E) =
nX

i=1

pi · log2(
1
pi

) = �
nX

i=1

pi · log2(pi)

Entropy H(X) of a binary output X=1/X=0

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

4. Concept learning 4.2 Paths through the hypothesis space

Example 4.4, p.115 Data that is not conjunctively separable I

Suppose we have the following five positive examples (the first three are the
same as in Example 4.1):

p1: Length= 3 ^ Gills= no ^ Beak= yes ^ Teeth=many

p2: Length= 4 ^ Gills= no ^ Beak= yes ^ Teeth=many

p3: Length= 3 ^ Gills= no ^ Beak= yes ^ Teeth= few

p4: Length= 5 ^ Gills= no ^ Beak= yes ^ Teeth=many

p5: Length= 5 ^ Gills= no ^ Beak= yes ^ Teeth= few

and the following negatives (the first one is the same as in Example 4.2):

n1: Length= 5 ^ Gills= yes ^ Beak= yes ^ Teeth=many

n2: Length= 4 ^ Gills= yes ^ Beak= yes ^ Teeth=many

n3: Length= 5 ^ Gills= yes ^ Beak= no ^ Teeth=many

n4: Length= 4 ^ Gills= yes ^ Beak= no ^ Teeth=many

n5: Length= 4 ^ Gills= no ^ Beak= yes ^ Teeth= few

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 159 / 540

The dataset

5. Tree models 5.1 Decision trees

Example 5.1, p.135 Calculating impurity I

Consider again the data in Example 4.4. We want to find the best feature to put
at the root of the decision tree. The four features available result in the following
splits:

Length= [3,4,5] [2+,0°][1+,3°][2+,2°]
Gills= [yes,no] [0+,4°][5+,1°]
Beak= [yes,no] [5+,3°][0+,2°]
Teeth= [many, few] [3+,4°][2+,1°]

Let’s calculate the impurity of the first split. We have three segments: the first
one is pure and so has entropy 0; the second one has entropy
°(1/4) log2(1/4)° (3/4) log2(3/4) = 0.5+0.31 = 0.81; the third one has entropy
1. The total entropy is then the weighted average of these, which is
2/10 ·0+4/10 ·0.81+4/10 ·1 = 0.72.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 182 / 540

5. Tree models 5.1 Decision trees

Example 5.1, p.135 Calculating impurity I

Consider again the data in Example 4.4. We want to find the best feature to put
at the root of the decision tree. The four features available result in the following
splits:

Length= [3,4,5] [2+,0°][1+,3°][2+,2°]
Gills= [yes,no] [0+,4°][5+,1°]
Beak= [yes,no] [5+,3°][0+,2°]
Teeth= [many, few] [3+,4°][2+,1°]

Let’s calculate the impurity of the first split. We have three segments: the first
one is pure and so has entropy 0; the second one has entropy
°(1/4) log2(1/4)° (3/4) log2(3/4) = 0.5+0.31 = 0.81; the third one has entropy
1. The total entropy is then the weighted average of these, which is
2/10 ·0+4/10 ·0.81+4/10 ·1 = 0.72.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 182 / 540

Let us calculate the expected impurity obtained after the split on Length.  
We will consider first entropy and then Gini index and we will compare. them.

[2+,0-] is pure ➞ entropy([2+,0-])=0
[1+,3-] ➞ entropy([1+,3-])=
[2+,2-] ➞ maximum impurity = entropy([2+,2-])=1 = �0.75

log10(0.75)
log10(2)

= 0.31

= �0.25
log10(0.25)
log10(2)

= 0.5

The expected entropy is:

using entropy (1)

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.1 Decision trees

Example 5.1, p.135 Calculating impurity II

Similar calculations for the other three features give the following entropies:

Gills 4/10 ·0+6/10 ·
°
°(5/6) log2(5/6)° (1/6) log2(1/6)

¢
= 0.39;

Beak 8/10 ·
°
°(5/8) log2(5/8)° (3/8) log2(3/8)

¢
+2/10 ·0 = 0.76;

Teeth 7/10 ·
°
°(3/7) log2(3/7)° (4/7) log2(4/7)

¢

+3/10·
°
°(2/3) log2(2/3)° (1/3) log2(1/3)

¢
= 0.97.

We thus clearly see that ‘Gills’ is an excellent feature to split on; ‘Teeth’ is poor;
and the other two are somewhere in between.
The calculations for the Gini index are as follows (notice that these are on a scale
from 0 to 0.5):

Length 2/10 ·2 · (2/2 ·0/2)+4/10 ·2 · (1/4 ·3/4)+4/10 ·2 · (2/4 ·2/4) = 0.35;
Gills 4/10 ·0+6/10 ·2 · (5/6 ·1/6) = 0.17;
Beak 8/10 ·2 · (5/8 ·3/8)+2/10 ·0 = 0.38;
Teeth 7/10 ·2 · (3/7 ·4/7)+3/10 ·2 · (2/3 ·1/3) = 0.48.

As expected, the two impurity measures are in close agreement. See Figure 5.2
(right) for a geometric illustration of the last calculation concerning ‘Teeth’.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 183 / 540

2ṗ(1� ṗ)
ṗ1 · (1� ṗ1)

|D1|
|D|

|D2|
|D|

|D3|
|D|ṗ2 · (1� ṗ2) ṗ3 · (1� ṗ3)

3 4 5

using entropy (2)

Calculation of the index index
• The Gini Index is on the scale from (0-0.5)

The expected gini index is:

ṗ1 · (1� ṗ1)|D1|
|D|

|D2|
|D|

ṗ2 · (1� ṗ2) |D3|
|D|

ṗ3 · (1� ṗ3)

[2+,0-] [1+,3-] [2+,2-]

The expected gini index values are:

• As regards the remaining splits:

Conclusion: 
The best gini index (lowest) is for Gills. 
The worst is Teeth (almost the maximum). 
Results are in agreement with entropy.

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.1 Decision trees

Algorithm 5.2, p.137 Finding the best split for a decision tree

Algorithm BestSplit-Class(D,F) – find the best split for a decision tree.

Input : data D ; set of features F .
Output : feature f to split on.

1 Imin √1;
2 for each f 2 F do
3 split D into subsets D1, . . . ,Dl according to the values v j of f ;
4 if Imp({D1, . . . ,Dl }) < Imin then
5 Imin √Imp({D1, . . . ,Dl });
6 fbest √ f ;
7 end
8 end
9 return fbest

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 184 / 540

The best split will minimise the impurity of the subsets D1,..,Dl

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.1 Decision trees

Figure 5.3, p.137 Decision tree for dolphins

D: [2+, 0!]

A: Gills

B: Length

=no

C: [0+, 4!]

 =yes

E: Teeth

G: [0+, 1!]

=few

H: [1+, 0!]

=many

=3 =4

F: [2+, 0!]

 =5

Negatives
P
o
s
it
iv
e
s

p
1
,p
3

p
4
-5

p
1

n5 n1-4

AB

C

D

E

F

G

H

(left) Decision tree learned from the data in Example 4.4. (right) Each internal and leaf
node of the tree corresponds to a line segment in coverage space: vertical segments for
pure positive nodes, horizontal segments for pure negative nodes, and diagonal
segments for impure nodes.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 185 / 540

This tree assigns a class also to 14 instances of the search space that were not part of the training set (10).
This is why it generalizes! The negative class has been assigned to most of them because of the leaf C, the
closest to the root. It corresponds to a strong observed regularity (4/5 of negative examples have gills).

The ordering of the coverage
curves does not depend on
the tree structure but on the

class distribution in the leaves
˙pD = 2/2 = 1 ˙pF = 2/2 = 1

˙pH = 1/1 = 1˙pG = 0/1 = 0

˙pC = 0/4 = 0

 24=3 (Length values) *2 (Gills)*2 (Beak) *2 (Teeth) possible instances in instance space

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

What’s next?

5 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 186 / 540

Ranking trees
• Tree models divide the instance space into segments.

• They can be turned into rankers by learning an ordering on
those segments.

• Tree models have access to the local distribution of classes in
leaves (given by the empirical probabilities) which can be used
to construct a leaf ordering which is optimal for the training set

• The optimal ordering for the model tree is:  
[D-F],H,G,C  
obtained ordering the leaves in a non-increasing  
order by the empirical probabilities in the leaves,  
and breaking ties by giving precedence to  
leaves covering a larger number of positives

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Important point to remember

The ranking obtained from the empirical probabilities in the leaves of a decision
tree yields a convex ROC curve on the training data.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 187 / 540

• The slope of the coverage curve segment with empirical  
probability p is p/(1-p). It is a monotonic transformation:  
p↦p/(1-p): if p’>p then p’/(1-p’)>p/(1-p).  
Thus the ordering on non-increasing p will produce a  
coverage curve made by segments with non-increasing  
slope which means that the curve is convex.

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Example 5.2, p.139 Growing a tree

Consider the tree in Figure 5.4 (left). Each node is labelled with the numbers of
positive and negative examples covered by it: so, for instance, the root of the tree
is labelled with the overall class distribution (50 positives and 100 negatives),
resulting in the trivial ranking [50+,100°]. The corresponding one-segment
coverage curve is the ascending diagonal (Figure 5.4 (right)).

t Adding split (1) refines this ranking into [30+,35°][20+,65°], resulting in a
two-segment curve.

t Adding splits (2) and (3) again breaks up the segment corresponding to the
parent into two segments corresponding to the children.

t However, the ranking produced by the full tree –
[15+,3°][29+,10°][5+,62°][1+,25°] – is different from the left-to-right
ordering of its leaves, hence we need to reorder the segments of the
coverage curve, leading to the top-most, solid curve. This reordering always
leads to a convex coverage curve

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 188 / 540

ṗ1 = 15/18 = 0.83

ṗ2 = 29/39 = 0.74 ṗ4 = 1/26 = 0.0038

ṗ3 = 5/67 = 0.075

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Figure 5.4, p.140 Growing a tree

[50+, 100!]

[30+, 35!]

 (1)

[20+, 65!]

[29+, 10!]

 (2)

[1+, 25!] [15+, 3!]

 (3)

[5+, 62!]

Negatives

P
o
s
it
iv
e
s

0
5
0

0 100

(1)(2)

(3)

(left) Abstract representation of a tree with numbers of positive and negative examples
covered in each node. Binary splits are added to the tree in the order indicated. (right)
Adding a split to the tree will add new segments to the coverage curve as indicated by
the arrows. After a split is added the segments may need reordering, and so only the
solid lines represent actual coverage curves.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 189 / 540

1o2o 3o4o

1o

2o
3o 4o

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Figure 5.5, p.141 Labelling a tree

Negatives

P
o
s
it
iv
e
s

0
5
0

0 100

!!!!

+!!!

!+!!

!!+!

!!!+

++!!

+!+!

+!!+

!++!

!+!+

!!++

+++!

++!+

+!++

!+++

++++

Graphical depiction of all possible labellings and all possible rankings that can be
obtained with the four-leaf decision tree in Figure 5.4. There are 24 = 16 possible leaf
labellings; e.g., ‘+°+°’ denotes labelling the first and third leaf from the left as + and
the second and fourth leaf as °. There are 4! = 24 possible blue-violet-red-orange paths
through these points which start in °°°° and switch each leaf to + in some order;
these represent all possible four-segment coverage curves or rankings.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 190 / 540

n of classes
n of leaves

1o-3a leaf

2o-1a leaf 3o-4a leaf 4o-2a leaf

1o-1a leaf 2o-2a leaf 3o-4a leaf

4o-3a leaf

1o-2a leaf
2o-4a leaf

3o-3a leaf

4o-1a leaf

1o-4a leaf

2o-3a leaf

3o-1a leaf

4o-2a leaf

2o-2a leaf1o-3a leaf

3o-1a leaf

4o-4a leaf

ṗ1 =
29
39

= 0.74

ṗ2 =
1
26

= 0.038

ṗ3 =
15
18

= 0.83
ṗ4 =

5
67

= 0.075

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Choosing a labelling based on costs

Assume the training set class ratio clr = 50/100 is representative. We have a
choice of five labellings, depending on the expected cost ratio c = cFN/cFP of
misclassifying a positive in proportion to the cost of misclassifying a negative:

+°+° would be the labelling of choice if c = 1, or more generally if
10/29 < c < 62/5;

+°++ would be chosen if 62/5 < c < 25/1;
++++ would be chosen if 25/1 < c; i.e., we would always predict positive if

false negatives are more than 25 times as costly as false positives,
because then even predicting positive in the second leaf would reduce
cost;

°°+° would be chosen if 3/15 < c < 10/29;
°°°° would be chosen if c < 3/15; i.e., we would always predict negative if

false positives are more than 5 times as costly as false negatives,
because then even predicting negative in the third leaf would reduce
cost.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 191 / 540

Explanation of the cost limits

expected cost ratio: c=CFN/CFP

• - - - - with c<3/15=0.2

• - - + - with 3/15=0.2 ≤ c < 10/29=0.344

• + - + - with 10/29= 0.344 ≤ c < 62/5=12.4

• + - + + with 62/5=12.4 ≤ c < 25/1=25

• + + + + with c≥25

•

ṗ2 = 1/26 = 0.038 ṗ3 = 15/18 = 0.83

ṗ4 = 5/67 = 0.075

n�1
n+

1

=
10
29

n�4
n+

4

=
62
5

n�3
n+

3

=
3
15

n�2
n+

2

=
25
1

cost of misclassifying positives

cost of misclassifying negatives

ṗ1 = 29/39 = 0.74

2512.40.3440.2
c

- - - - - - + - + - + - + - + + + + + +

Misclassifying costs

real class:
positive

real class:
negative

estimated
 class:

negative

estimated
 class:
positive

TP

TN

FN
cFN

FP
cFP

Deploying a feature tree
• Exploiting the class distribution in the leaves we can turn a feature tree into:

1. a ranking tree, if we order the leaves on non-increasing empirical probabilities
(which is optimal on the training set)

2. a probability estimator, in which we predict the empirical probabilities in each
leaf, applying the Laplace or m-estimate smoothing (to make the estimate more
robust in small leaves)

3. a classifier, in which we choose the operating conditions as a consequence of the
proportion of the frequencies of the classes:  
 
 
 
and of the cost ratio (ratio of the misclassification costs):  
 
 
 
and find the optimal operating point (decision threshold) on the ROC curve at the
intersection with the isometric curve (points of equal accuracy) with a slope of  
As a result, the leaves before the operating point will predict positive; negative the
remaining ones.

c =
cFN

cFP

clr =
Pos

Neg

1
c · clr

ṗi =
ni + m · ⇡i

ntot + m
ṗ =

n+ + 1
ntot + nc

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Figure 5.6, p.143 Pruning a tree

[50+, 100!]

[30+, 35!] [20+, 65!]

[29+, 10!] [1+, 25!] [15+, 3!] [5+, 62!]

Negatives

P
o
s
it
iv
e
s

0
5
0

0 100

(left) To achieve the labelling +°++ we don’t need the right-most split, which can
therefore be pruned away. (right) Pruning doesn’t affect the chosen operating point, but
it does decrease the ranking performance of the tree.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 192 / 540

1o

1o

2o

2o

3o

3o 4o

4o1o

1o2o

2o

3o

3o

Advantage of pruning: it simplifies the model (e.g. for communication to someone) 
However, unless the tree is used for classification purposes only, the best labelling 
at leaf nodes should be chosen according to the operating conditions (classes  
prevalence and misclassification costs).

slope avg. recall isometrics=1/(c*clr)=1/(18*2)=1/36

+ class

+ class
- class

Deciding on the class according to c

• At leaf i we multiply the ratio by the factor  
obtaining:

n�1
n+

1

=
10
29

n�4
n+

4

=
62
5

n�3
n+

3

=
3
15

n�2
n+

2

=
25
1

n�i
n+

i

• In this way, we take into account the different misclassification costs as follows:  
in leaf node i, each positive example, if turned into an error, was considered equivalent to
observing a number of positive examples equal to the cost of misclassifying a positive cFN;  
each error on the negatives as if it was equivalent to observing a number of negatives equal to
cFP

• On the result we follow the majority class decision:

• If , we predict the class on the numerator (negative) because the
misclassification cost would be higher than the opposite class;  
otherwise we predict the positive class.

1
c

=
cFP

cFN

n�i
n+

i

· cFP

cFN

n�i
n+

i

· cFP

cFN

n�i
n+

i

· cFP

cFN
> 1

Exercise

• We assume c=1.20 and clr=15

• Which will be the class predicted by each leaf node?

n�1
n+

1

=
10
29

n�4
n+

4

=
62
5

n�3
n+

3

=
3
15

n�2
n+

2

=
25
1

Underfitting And Overfitting

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Algorithm 5.3, p.144 Reduced-error pruning

Algorithm PruneTree(T,D) – reduced-error pruning of a decision tree.

Input : decision tree T ; labelled data D .
Output : pruned tree T 0.

1 for every internal node N of T , starting from the bottom do
2 TN √subtree of T rooted at N ;
3 DN √ {x 2 D|x is covered by N };
4 if accuracy of TN over DN is worse than majority class in DN then
5 replace TN in T by a leaf labelled with the majority class in DN ;
6 end
7 end
8 return pruned version of T

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 193 / 540

This algorithm employs a separate data-set (pruning-set) to estimate the  
accuracy of the pruned tree

To reduce the chances of overfitting a pruned tree is suggested

Estimating Generalization Errors

• An alternative to the technique of reduced error pruning on the pruning set is the
estimation directly on the training set of the generalization error (error on the test
set) during the construction of the tree.

• We add a penalty k for any leaf node. The penalty does not allow the creation of
the leaf if it does not decrease the error of the parent node of at least k+1.

• Re-substitution errors: error on training:

• Generalization errors: error on testing:

• Without a test-set, for the estimation of the generalization error on the training set,  
we suppose: 
for each leaf node i: ei’(t) = (ei(t)+0.5)

• Total errors: e’(T) = e(T) + N *0.5 (N: number of leaf nodes)

• For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):

• Training error = 10/1000 = 1%

• Generalization error = (10 + 30*0.5)/1000 = 2.5%

NX

i=1

e0
i

NX

i=1

ei

0.5 is a penalty given to each leaf: 
The creation of a leaf is allowed as soon as
it improves the classification of the parent
node of at least a number of instances
equal to d0.5e = 1

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Example 5.3, p.144 Skew sensitivity of splitting criteria I

Suppose you have 10 positives and 10 negatives, and you need to choose
between the two splits [8+,2°][2+,8°] and [10+,6°][0+,4°].

t You duly calculate the weighted average entropy of both splits and conclude
that the first split is the better one.

t Just to be sure, you also calculate the average Gini index, and again the
first split wins.

t You then remember somebody telling you that the square root of the Gini
index was a better impurity measure, so you decide to check that one out
as well. Lo and behold, it favours the second split...! What to do?

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 194 / 540

This is because entropy and Gini index are sensitive  
to changes in the class frequency distribution.

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Example 5.3, p.144 Skew sensitivity of splitting criteria II

You then remember that mistakes on the positives are about ten times as costly
as mistakes on the negatives.

t You’re not quite sure how to work out the maths, and so you decide to
simply have ten copies of every positive: the splits are now
[80+,2°][20+,8°] and [100+,6°][0+,4°].

t You recalculate the three splitting criteria and now all three favour the
second split.

t Even though you’re slightly bemused by all this, you settle for the second
split since all three splitting criteria are now unanimous in their
recommendation.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 195 / 540

c=10

Inflating artificially in the training set a certain number (equal to the cost ratio c)  
of examples of the most costly class is an alternative to using the cost ratio.

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Important point to remember

Entropy and Gini index are sensitive to fluctuations in the class distribution,p
Gini isn’t.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 198 / 540

Inflation of Examples in the Training set

With the example 5.3 (p. 144) we have seen that: 

• Inflating artificially in the training set a certain number (equal to the cost
ratio c=cFN/cFP) of examples of the most costly class is an alternative to
using the cost ratio to determine the operative condition.

• Similarly, if we want to mimic an unbalanced distribution with the class
ratio equal to clr=Pos/Neg in the training set, we oversample the positive
class with a factor clr if clr>1 or oversample the negative class with a
factor equal to 1/clr if clr<1.

• As a negative effect, this oversampling will increase the training times.

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.2 Ranking and probability estimation trees

Peter’s recipe for decision tree learning

t First and foremost, I would concentrate on getting good ranking behaviour,
because from a good ranker I can get good classification and probability
estimation, but not necessarily the other way round.

t I would therefore try to use an impurity measure that is
distribution-insensitive, such as

p
Gini; if that isn’t available and I can’t hack

the code, I would resort to oversampling the minority class to achieve a
balanced class distribution.

t I would disable pruning and smooth the probability estimates by means of
the Laplace correction (or the m-estimate).

t Once I know the deployment operation conditions, I would use these to
select the best operating point on the ROC curve (i.e., a threshold on the
predicted probabilities, or a labelling of the tree).

t (optional) Finally, I would prune away any subtree whose leaves all have the
same label.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 199 / 540

ṗi
+ =

n+
i + 1

ni + 2

in order to make the estimate more robust in little leaves

ṗi
+ =

n+
i + m · ⇡+

ni + m

i indicates the i-th leaf, 
the a priori

probability of class +,
m is the number of classes

⇡+

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.3 Tree learning as variance reduction

What’s next?

5 Tree models
Decision trees
Ranking and probability estimation trees

Sensitivity to skewed class distributions

Tree learning as variance reduction
Regression trees
Clustering trees

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 200 / 540

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.3 Tree learning as variance reduction

Tree learning as variance reduction

t The variance of a Boolean (i.e., Bernoulli) variable with success probability
ṗ is ṗ(1° ṗ), which is half the Gini index. So we could interpret the goal of
tree learning as minimising the class variance (or standard deviation, in
case of

p
Gini) in the leaves.

t In regression problems we can define the variance in the usual way:

Var(Y) = 1
|Y |

X

y2Y
(y ° y)2

If a split partitions the set of target values Y into mutually exclusive sets
{Y1, . . . ,Yl }, the weighted average variance is then

Var({Y1, . . . ,Yl }) =
lX

j=1

|Y j |
|Y | Var(Y j) = . . . = 1

|Y |
X

y2Y
y2 °

lX

j=1

|Y j |
|Y | y2

j

The first term is constant for a given set Y and so we want to maximise the
weighted average of squared means in the children.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 201 / 540
(So that the partitions are well separate and distinguishable).

Regression trees
• In regression problems the target values of the set Y are continuous

• In Algorithm BestSplit we replace the measure Imp with the function Var(Y):  
therefore we identify the partitions of examples that reduce the average squared
distance around the mean  
 

• Furthermore, in Var(Y) since the first term is fixed for a given parent node,
BestSplit maximises the second term:  
 

• Function Label(Y) returns the mean value in the set of values Y that fall in the leaf.

• Function Homogeneous(Y) returns true if the variance of the target values in Y is
below a certain threshold

• Regression trees are susceptible to overfitting (due to the leaves with few
examples)

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.3 Tree learning as variance reduction

Example 5.4, p.150 Learning a regression tree I

Imagine you are a collector of vintage Hammond tonewheel organs. You have
been monitoring an online auction site, from which you collected some data
about interesting transactions:

Model Condition Leslie Price

1. B3 excellent no 4513
2. T202 fair yes 625
3. A100 good no 1051
4. T202 good no 270
5. M102 good yes 870
6. A100 excellent no 1770
7. T202 fair no 99
8. A100 good yes 1900
9. E112 fair no 77

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 202 / 540

Hammond  
organ with  

Leslie speaker

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.3 Tree learning as variance reduction

Example 5.4, p.150 Learning a regression tree II

From this data, you want to construct a regression tree that will help you
determine a reasonable price for your next purchase.
There are three features, hence three possible splits:

Model= [A100,B3,E112,M102,T202]
[1051,1770,1900][4513][77][870][99,270,625]

Condition= [excellent,good, fair]
[1770,4513][270,870,1051,1900][77,99,625]

Leslie= [yes,no] [625,870,1900][77,99,270,1051,1770,4513]

The means of the first split are 1574, 4513, 77, 870 and 331, and the weighted
average of squared means is 3.21 ·106. The means of the second split are 3142,
1023 and 267, with weighted average of squared means 2.68 ·106; for the third
split the means are 1132 and 1297, with weighted average of squared means
1.55 ·106. We therefore branch on Model at the top level. This gives us three
single-instance leaves, as well as three A100s and three T202s.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 203 / 540

=
1051 + 1770 + 1900

3
=

4721
3

= 1574 =
99 + 270 + 625

3
=

994
3

= 331

=
1
3
(1574)2 +

1
9
(4513)2 +

1
9
(77)2 +

1
9
(870)2 +

1
3
(331)2 = 3.21 · 106

(The target is the attribute price).

Let us determine the best feature to split on, based on variance of the  
target feature y (price) of examples in the partitions Yj. 
As said, we will maximise the objective function:

Exercise solution on regression tree for auctions
(1)

• Partition on Model 
 Model=A100 y=[1051,1770,1900]  

y =
1051 + 1770 + 1900

3
=

4721
3

= 1574

y=[4513] y = 4513

y=[77] y = 77

y = 870y=[870]
y=[99,270,625]

=
1
3
(1574)2 +

1
9
(4513)2 +

1
9
(77)2 +

1
9
(870)2 +

1
3
(331)2 = 3.21 · 106

y =
99 + 270 + 625

3
=

994
3

= 331

Model=B3
Model=E112
Model=M102
Model=T202

Exercise solution on regression tree for auctions
(2)

• Partition on Condition 
 Condition=excellent y=[1770,4513]  

Condition=good

Condition=fair

y =
270 + 870 + 1051 + 1900

4
=

4091
4

= 1023

y=[270,870,1051,1900]

y =
1770 + 4513

2
=

6283
2

= 3142

y=[77,99,625]
y =

77 + 99 + 625
3

=
801
3

= 267

=
2
9
(3142)2 +

4
9
(1023)2 +

3
9
(267)2 = 2.68 ⇤ 106

• Partition on Leslie  
 Leslie=yes y=[625,870,1900]  

Exercise solution on regression tree for auctions
(3)

Leslie=no y=[77,99,270,1051,1770,4513]

y =
625 + 870 + 1900

3
=

3395
3

= 1132

y =
77 + 99 + 270 + 1051 + 1770 + 4513

6
=

7780
6

= 1297

=
3
9
(1132)2 +

6
9
(1297)2 = 1.55 ⇤ 106

Conclusion: the highest is obtained with partition on Model
(3.21*106)

Regression tree after first partition  
(on Model)

[1051,1770,1900] [99,270,625]

Partition on Condition

[1051,1770,1900] [99,270,625]

[1770]

Condition

[1051,1900] []

=Good =Fair=Excellent

[1900]

Leslie

[1051,1770]
=no=yes

=
1
4
(1770)2 +

2
4
(
1051 + 1900

2
)2 +

1
4
(1574)2 = 2.4 ⇤ 106 =

1
3
(1900)2 +

2
3
(
1051 + 1770

2
)2 = 2.5 ⇤ 106

Partition on Condition

[1051,1770,1900] [99,270,625]

[]

Condition

[270] [99,625]

=Good =Fair=Excellent

[625]

Leslie

[99,270]
=no=yes

=
1
3
(625)2 +

2
3
(
99 + 270

2
)2 = 153 ⇤ 103=

1
4
(331)2 +

1
4
(270)2 +

2
4
(
99 + 625

2
)2 = 111 ⇤ 103

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.3 Tree learning as variance reduction

Figure 5.8, p.150 A regression tree

Model

Leslie

=A100

f!(x)=4513

=B3

f!(x)=77

 =E122

f!(x)=870

 =M102

Leslie

=T202

f!(x)=1900

=yes

f!(x)=1411

 =no

f!(x)=625

 =yes

f!(x)=185

 =no

A regression tree learned from the data in Example 5.4.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 205 / 540

270 + 99
2

= 1851770 + 1501
2

= 1411

Clustering trees

• We introduce an abstract function  
that measures the dissimilarity of two instances x1 and x2 in X.

• The higher Dis(x1, x2) the less similar x1 and x2 are.

• The dissimilarity of a set (or cluster) of instances in D can be measured by:  
 

• The lower Dis(D) the better will be the cluster of instances in D.

• BestSplit(D,F) is implemented with a weighted average of Dis(Dj), where Dj is
one of the partitions obtained after the split at the parent node:

Dis(D) =
1

|D|2
X

x12D

X

x22D

Dis(x1, x2)

Dis({D1, ...,Dl}) =
lX

j=1

|Dj |
|D| · Dis(Dj)

Dis : X ⇥X 7! R

Dissimilarity with Euclidean Distance
• If an object xj is described by d numerical features in a

space , each object can be described by a
vector of d components,  
where xji represents the value of the feature i in object j.

• The dissimilarity Dis(x1,x2) can be computed by a function
of their distance: 

• The variance of the feature i in a set of N objects is:

• The sum of the variances of all the features, can be interpreted
as the average squared euclidean distance between vectors in
a d-dimensional space.

X ✓ Rd

~xj = hxj1, xj2, · · · , xjdi

Dis(x1, x2) = (~x1 � ~x2)2 =
dX

i=1

(x1i � x2i)2

dX

i=1

V ari(X) =
1
N

dX

i=1

NX

j=1

[xji � x̄·i]2 =
1
N

NX

j=1

(~xj � ~̄x)2

V ari(X) =
1
N

NX

j=1

[xji � x̄·i]2

Smart Computation of the Dissimilarity of a
Dataset

• Since the average squared distance between any pairs of objects is
twice the variance: 
 

• and variance Var(X) can be computed as a sum of all Vari(X):

 

• In order to compute the dissimilarity of a dataset X all we need is the
average vector instance and the computation of Vari(X), both of
which can be computed in O(|D|).

~̄x

Dis(X) =
1

N2

X

~x02X

X

~x002X

(~x0 � ~x00)2 = 2 · V ar(X)

V ar(X) =
dX

i=1

V ari(X)

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.3 Tree learning as variance reduction

Example 5.5, p.152 Learning a clustering tree I

Assessing the nine transactions on the online auction site from Example 5.4,
using some additional features such as reserve price and number of bids, you
come up with the following dissimilarity matrix:

0 11 6 13 10 3 13 3 12
11 0 1 1 1 3 0 4 0
6 1 0 2 1 1 2 2 1

13 1 2 0 0 4 0 4 0
10 1 1 0 0 3 0 2 0
3 3 1 4 3 0 4 1 3

13 0 2 0 0 4 0 4 0
3 4 2 4 2 1 4 0 4

12 0 1 0 0 3 0 4 0

This shows, for instance, that the first transaction is very different from the other
eight. The average pairwise dissimilarity over all nine transactions is 2.94.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 206 / 540

(we suppose  
this matrix 
is given by

external  
advice)

(between any transactions pairs)

T1
T1 T2 T3 T4 T5 T6 T7 T8 T9

T2
T3
T4
T5
T6
T7
T8
T9

(see Ex. 5.6, p.154)

Dis(X) =
1

N2

X

~x02X

X

~x002X

(~x0 � ~x00)2 = 2 · V ar(X)

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.3 Tree learning as variance reduction

Example 5.6, p.154 Clustering with Euclidean distance I

We extend our Hammond organ data with two new numerical features, one
indicating the reserve price and the other the number of bids made in the auction.

Model Condition Leslie Price Reserve Bids

B3 excellent no 45 30 22
T202 fair yes 6 0 9
A100 good no 11 8 13
T202 good no 3 0 1
M102 good yes 9 5 2
A100 excellent no 18 15 15
T202 fair no 1 0 3
A100 good yes 19 19 1
E112 fair no 1 0 5

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 208 / 540

T1
T2
T3
T4
T5
T6
T7
T8
T9

Learning a clustering tree (1)

• We will learn a clustering tree by allowing feature with discrete
values to be considered for the split conditions in the tree

• Instead, we will use continuous features (like bid, reserve and price)  
to evaluate the variance of the examples in the partitions

[T3,T6,T8] [T1][T9] [T5][T2,T4,T7]
[T1,T6][T3,T4,T5,T8][T2,T7,T9]

[T2,T5,T8] [T1,T3,T4,T6,T7,T9]

• In this first example,  
we apply  
 
 
on the basis of dissimilarity  
matrix, to evaluate the dis-  
similarity of each partition

Dis(D) =
1

|D|2
X

x12D

X

x22D

Dis(x1, x2)

Learning a clustering tree (2)
[T3,T6,T8] [T1][T9] [T5][T2,T4,T7]

[T1,T6] [T3,T4,T5,T8][T2,T7,T9]
[T2,T5,T8] [T1,T3,T4,T6,T7,T9]

Dis([T1]) = Dis([Ti]) = 0

Dis([T3, T6, T8]) =
1
9
{0 + 1 + 2 + 1 + 0 + 1 + 2 + 1 + 0} = 0.89

Dis([T3, T6, T8]) =
1
32

{Dis(T3, T3) + Dis(T3, T6) + Dis(T3, T8) + · · · +
Dis(T3, T8) + Dis(T6, T8) + Dis(T8, T8)}

Learning a clustering tree (3)
[T3,T6,T8] [T1][T9] [T5][T2,T4,T7]

[T1,T6] [T3,T4,T5,T8][T2,T7,T9]
[T2,T5,T8] [T1,T3,T4,T6,T7,T9]

Dis([T1]) = Dis([Ti]) = 0

Dis([T2, T4, T7]) =
1
32

{Dis(T2, T2) + Dis(T2, T4) + Dis(T2, T7) + · · · +
Dis(T3, T7) + Dis(T4, T7) + Dis(T7, T7)}

Dis([T2, T4, T7]) =
1
9
{0 + 1 + 0 + 1 + 0 + 0 + 0 + 0 + 0} = 0.22

Dis({D1, ...,Dl}) =
lX

j=1

|Dj |
|D| · Dis(Dj)

Dis(Split on Model) =
3
9
0.89 +

1
9
0 +

1
9
0 +

1
9
0 +

3
9
0.22 = 0.37

Learning a clustering tree (4)
[T3,T6,T8] [T1][T9] [T5][T2,T4,T7]

[T1,T6][T3,T4,T5,T8][T2,T7,T9]
[T2,T5,T8] [T1,T3,T4,T6,T7,T9]

Dis(Split on Condition) =
2
9
1.5 +

4
9
1.19 +

3
9
0 = 0.86

Dis(Split on Leslie) =
3
9
1.56 +

6
9
3.56 = 2.89

As a conclusion, the best split is  
on Model which reduces the most  
the objective function

Instead Leslie is virtually unrelated  
with the value of price because the
obtained dissimilarity (2.89) is com- 
parable to the dissimilarity in the ori- 
ginal values (overall dataset) (2.94)

The resulting tree

Evaluating the resulting tree

avg=12.6
var=171.1

avg=8.6
var=101.8

avg=7.9
var=48.8avg=16

var=12.7

avg=14
var=20.7

avg=9.7
var=38.2

avg=3.3
var=4.2

avg=0
var=0

avg=4.3
var=11.6

overall var=12.7+20.7+38.2=61.6 overall var=4.2+11.6=15.8

Thus clustering reduced the average squared distance between the objects w.r.t. the beginning.

We compare the variance in  
the clusters with the overall
dataset using the last three
numerical features

overall var=321.7= 
171.1+101.8+48.8

Title Text

• Body Level One

• Body Level Two

• Body Level Three

• Body Level Four

• Body Level Five

5. Tree models 5.3 Tree learning as variance reduction

Figure 5.9, p.154 A clustering tree

Model

(16, 14, 9.7)

=A100

(45, 30, 22)

=B3

(1, 0, 5)

 =E122

(9, 5, 2)

 =M102

(3.3, 0, 4.3)

 =T202

A clustering tree learned from the data in Example 5.6 using Euclidean distance on the
numerical features.

cs.bris.ac.uk/ flach/mlbook/ Machine Learning: Making Sense of Data December 29, 2013 210 / 540

cluster mean vector composed of the  
mean of the 3 numerical features

Observations on Clustering Trees

• Smaller clusters tend to have a lower dissimilarity and provoke
overfitting.

• It is recommended setting aside a pruning set to remove the splits (in
lower levels of the tree) if they do not improve the cluster cohesion
(dissimilarity does not decrease) on the pruning set.

• Furthermore, single examples (outliers) can dominate in the
computation of the dissimilarity.  
It might be beneficial to remove them and recompute the measure Dis.

• How do we label each cluster?

• We choose the best representative instance

• It might be that instance that has the lowest total dissimilarity with all
the other instances of the same cluster (called the medoid).

Relationship between dissimilarity,  
cluster cohesion and cluster separation

• Given a dataset D, its variance (and Dis(D)) are constant

• Consider a set of k clusters (Dk, …, Dk) of D

• Let us evaluate the total sum of errors (between each data point
and the overall centroid, c).  
Let us call it TSSE.

• We can see that:

TSSE =
X

~x2D

(~x� ~c)2 = |D| · V ar(D) =
|D|
2

Dis(D)

TSSE = WSSE + BSSE

~c =
1

|D|
X

~x2D

~x

BSSE =
X

i=1..k

|Di|(~ci � ~c)2

WSSE =
X

i=1..k

X

~x2Di

(~x� ~ci)2 ~ci =
1

|Di|
X

~x2Di

~x

cluster cohesion
(related to the weighted  

average variance)

cluster separation

Splitting with Numerical Features

• In these examples, we used categorical features for splitting and
numerical features (defined as features whose values can be ordered) for
dissimilarity calculations

• In practice, also numerical features could be used also for splitting.

• A condition for the split would be the following:

with t a value of f.

• Function BestSplit would need to find the optimal value t. This task is
strictly related to discretization (see cap. 10).

f � t or f < t

