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ABSTRACT

We present improvements to the baktraking tehnique of

pattern-mathing ompilation. Several optimizations are in-

trodued, suh as ommutation of patterns, use of exhaus-

tiveness information, and ontrol ow optimization through

the use of labeled stati exeptions and ontext information.

These optimizations have been integrated in the Objetive-

Caml ompiler. They have shown good results in inreasing

the speed of pattern-mathing intensive programs, without

inreasing �nal ode size.

1. INTRODUCTION
Pattern-mathing is a key feature of funtional languages.

It allows to disriminate between the values of a deeply

strutured type, binding subparts of the value to variables

at the same time. ML users now routinely rely on their om-

piler for suh a task; they write ompliated, nested, pat-

terns. And indeed, transforming high-level pattern-mathing

into elementary tests is a ompiler job. Moreover, beause

it onsiders the mathing as a whole and that it knows some

intimate details of runtime issues suh as the representation

of values, ompiler ode is often better than human ode,

both as regards ompatness and eÆieny.

There are two approahes to pattern-mathing ompila-

tion, the underlying model being either deision trees [5℄ or

baktraking automata [1℄. Using deision trees, one pro-

dues a priori faster ode (beause eah position in a term

is tested at most one), while using baktraking automata,

one produes a priori less ode (beause patterns never get

opied, hene never get ompiled more than one). The prie

paid in eah ase is losing the advantage given by the other

tehnique.

This paper mostly fouses on produing faster ode in the

baktraking framework. Examining the ode generated by

the Objetive-Caml ompiler [11℄, whih basially used the

Augustsson's original algorithm, on small frequently found

programs, suh as a list-merge funtion, or on large exam-

ples [14℄, we found that the baktraking sheme ould still
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be improved.

Our optimizations improve the produed baktraking au-

tomaton by grouping elementary tests more often, removing

useless tests and avoiding the blind baktraking behavior

of previous shemes. To do so, the ompiler uses new in-

formation and outputs a new onstrut. New information

inlude inompatibility between patterns, exhaustiveness in-

formation and ontextual information at the time of bak-

traking. As to the new onstrut, previous shemes used a

lone \exit" onstrut whose e�et is to jump to the nearest

enlosing \trap-handler" ; we enrih both exits and traps-

handlers with labels, resulting in �ner ontrol of exeution

ow.

Our optimizations also apply to or-patterns, a onvenient

feature to group lauses with idential ations. Unsharing

of ations is avoided by using our labelled exit onstrut. As

or-patterns may ontain variables, the exit onstrut is also

extended to take arguments.

All our optimizations are now implemented in the latest

version of the Objetive-Caml ompiler, whose language of

aepted patterns has been extended by allowing variables

in or-patterns.

The struture of this artile is the following: we �rst in-

trodue some theoretial basis on pattern-mathing in se-

tion 2 and desribe the ompilation sheme to baktraking

automata in setion 3. Then, we briey introdue our op-

timizations and or-pattern ompilation in an intuitive way

in setions 4 and 5, while setion 6 is a formalization of our

omplete ompilation sheme. Finally, some experimental

results are shown in setion 7, and a omparison with other

approahes is disussed in setion 8.

2. BASICS
In this setion, we introdue some notations and de�ni-

tions. Most of the material here is folklore, save, perhaps,

or-patterns.

2.1 Patterns and Values
ML is a typed language, where new types of values an be

introdued using type de�nitions suh as:

type t = Nil | One of int | Cons of int * t

This de�nition introdues a type t, with three onstrutors

that build values of type t. These three onstrutors de�ne

the omplete signature of type t. Every onstrutor has

an arity, i.e. the number of arguments it takes. Here arity

of Nil is zero, while the arities of One and Cons are one

and two respetively. A onstrutor of arity zero is alled



a onstant onstrutor, while other onstrutors are non-

onstant onstrutors.

Most native data types in ML { suh as integers, reords,

arrays, tuples { an be seen as partiular instanes of suh

type de�nitions. For example, in the following we will on-

sider lists (nil being the onstant onstrutor [℄ and ons

the in�x onstrutor ::), and tuples (the type of n-tuples

de�nes one onstrutor of arity n, pairs being written with

the in�x onstrutor \,"). For our purpose, integers are

onstant onstrutors, and the signature of the integer type

is in�nite.

More formally, patterns and values are de�ned as follows:

p ::= Patterns

wildard

x variable

(p

1

; p

2

; : : : ; p

a

) onstrutor pattern

(p

1

j p

2

) or-pattern

v ::= Values

(v

1

; v

2

; : : : ; v

a

) onstrutor value

In the following, we freely replae variables by wild-ards \ "

when their names are irrelevant. While desribing ompila-

tion, onvenient tools are vetors of values (~v = (v

1

v

2

: : : v

n

)

and ~v

n$m

= (v

n

:::v

m

)), vetors of patterns (~p = (p

1

p

2

: : : p

n

)

and ~p

n$m

= (p

n

:::p

m

)) and matries of patterns (P = (p

i

j

)).

In this paper, we present pattern-mathing ompilation as

a transformation on an intermediate ode in the ompiler,

alled lambda-ode. Here, another useful objet is the lause

matrix (P ! L):

(P ! L) =

0

B

B

B
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A lause matrix assoiates rows of patterns (p

i

1

p

i

2

: : : p

i

n

) to

lambda-ode ations l

i

.

2.2 Pattern Matching in ML
A pattern an be seen as representing a set of values shar-

ing a ommon pre�x.

Definition 1 (Instane). Let p be a pattern and v be

a value belonging to a ommon type. The value v is an

instane of the pattern p or p mathes v, written p � v

when one of the following rules apply:

� v

x � v

(p

1

j p

2

) � v i� p

1

� v or p

2

� v

(p

1

; : : : ; p

a

) � (v

1

; : : : ; v

a

) i� (p

1

: : : p

a

) � (v

1

: : : v

a

)

(p
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a

) � (v

1

: : : v

a

) i� p

i

� v

i

; 8i 2 [1::a℄

Seeing a pattern as the set of its instanes, it is lear that

or-patterns express set union.

In ML, patterns are a binding onstrut, more spei�ally,

a suessful math p � v, binds the variables of p to some

sub-terms of v. Suh bindings an be omputed while hek-

ing that p mathes v, provided that the following set V(p)

of variables de�ned by p is well-de�ned:

V( ) = ;

V(x) = fxg

V((p

1

; : : : ; p

a

)) = V(p

1

: : : p

a

)

V(p

1

: : : p

a

) = V(p

1

) [ : : : [ V(p

a

)

if for all i 6= j;V(p

i

) \ V(p

j

) = ;

V(p

1

j p

2

) = V(p

1

); if V(p

1

) = V(p

2

)

The �rst \if" ondition above is the linearity of patterns.

The seond ondition is spei� to or-patterns, it means

that mathing by either side of the or-pattern binds the

same variables (additionally, homonymous variables should

possess the same type).

We then de�ne the now dominant, textual priority sheme

to disambiguate the ase when several rows in a matrix

math:

Definition 2 (Mathing prediate). Let P be a pat-

tern matrix and ~v = (v

1

: : : v

n

) be a value vetor. The value

v mathes line number i in P , if and only if the following

two onditions are satis�ed:

� (p

i

1

: : : p

i

n

) � (v

1

: : : v

n

)

� 8j < i; (p

j

1

: : : p

j

n

) 6� (v

1

: : : v

n

)

We will not give a full semantis for evaluating pattern-

mathing expressions, and more generally lambda-ode. In-

tuitively, given a lause matrix P ! L and a value ve-

tor ~v suh that line number i in P mathes ~v, evaluating

the mathing of ~v by P ! L in some environment � is eval-

uating l

i

in � extended by the bindings introdued while

mathing ~v by (p

i

1

: : : p

i

n

). If ~v is not mathed by any line in

P , we say that the pattern-mathing P fails. If no suh ~v

exists, then the pattern-mathing is said exhaustive.

Like pattern vetors, pattern matries represent sets of

value vetors. More spei�ally, when some line in P mathes

~v we simply say that P mathes ~v. This looks obvious, but

representing sets using matries is at the ore of our opti-

mizations. One easily heks that the instanes of P are

the union of the instanes of the lines of P . That is, when

onsidering a matrix globally, the seond ondition in de�-

nition 2 above is irrelevant. More important, row order is

also irrelevant.

Finally, the instane relation indues relations on the pat-

terns themselves.

Definition 3 (Relations on patterns). We de�ne the

following three relations:

1. Pattern p is less preise then pattern q, written p � q,

when all instanes of q are instanes of p.

2. Pattern p and q are equivalent, written p � q, when their

instanes are the same.

3. Patterns p and q are ompatible when p and q share a

ommon instane.

Here some remarks are to be made. Beause of typing,

heking the preision relation is neither obvious nor heap.

More preisely, there is no simple way to deide whether

p � holds or not. For instane, ([℄| :: ) � holds, while

(Nil|One ) � does not. Or-patterns are not responsi-

ble for this ompliation, sine we also have ( , ) � .

In suh ases one should \expand" p and onsider, whether



signatures are omplete or not (see [13, Setion 5.1℄). By

ontrast, ompatibility an be heked by a simple reur-

sive algorithm. When ompatible, patterns p and q admit

a least upper bound, written p " q, whih an be omputed

while heking ompatibility:

8

>

>

>

<

>

>

>

:

(p

1

: : : p

a
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1
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1
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a
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)
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(p

1
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a
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1
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a
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1
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)
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1
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a
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1
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a

) "(q

1
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a

)

With the following additional rules for or-patterns:

(p

1

j p

2

) " q =

8

<

:

p

1

" q; when p

2

and q not ompatible

p

2

" q; when p

1

and q not ompatible

(p

1

" q j p

2

" q); otherwise

p "(q

1

j q

2

) = (q

1

j q

2

) " p

Proving that p " q is indeed the least upper bound of p and

q is easy, by onsidering patterns as sets of their instanes.

Note that p " q is de�ned up to �-equivalene, and that it

enodes instane intersetion.

3. COMPILATION
In this setion, we present a ompilation sheme lose to

the one desribed in [20, 1℄, and implemented in ompilers

suh as the hb ompiler or the Objetive Caml ompiler.

This lassial sheme will be re�ned later into an optimized

sheme, using same notations and onepts.

3.1 Output of the match compiler
The ompilation of pattern-mathing is desribed by the

sheme C that maps a lause matrix to a lambda-ode expres-

sion. We now desribe the spei� lambda-ode onstruts

that the sheme C outputs while ompiling patterns.

� Let-bindings: let (x l

x

) l, nested let-bindings are abbre-

viated as:

let (x

1

l

1

) (x

2

l

2

) � � �(x

n

l

n

) l

� Stati exeptions, exit and traps, ath l

1

with l

2

. If,

when evaluating the body l

1

, exit is enountered, then

the result of evaluating ath l

1

with l

2

is ther result

evaluating the handler l

2

, otherwise it is the result of eval-

uating l

1

. By ontrast with dynami exeptions, stati

exeptions are diretly ompiled as jumps to the assoi-

ated handlers (plus some environment adjustment, suh

as stak pops), whereas traps do not generate any ode.

� Swith onstruts:

swith l with

ase 

1

: l

1

� � � ase 

k

: l

k

default: d

The result of a swith onstrut is the evaluation of the l

i

orresponding to the onstrutor 

i

appearing as the head

of the value v of l. If the head onstrutor of v doesn't

appear in the ase list, the result is the evaluation of the

default d expression.

The default lause default: d an be omitted. In suh a

ase the swith behavior is unspei�ed on non-reognized

values. Sheme C an thus omit the default lause when

it is known that ase lists will over all possibilities at

runtime. We use the keyword swith* to highlight swith

onstruts with no default lause.

Those swith onstruts are quite sophistiated, they om-

pile later into more basi onstruts: tests, branhes and

jump tables. We in fat modi�ed the Objetive Caml

ompiler to improve the ompilation of swith onstruts,

using tehniques �rst introdued in the ontext of ompil-

ing the ase statement of Pasal [3℄. The key points are

using range tests, whih an typially be performed by

one single (unsigned) test and branh plus possibly one

addition, utting sparse ase lists into denser ones, and

deiding whih of jump tables or test sequene is more ap-

propriate to eah situation. A survey of these tehniques

an be found in [19℄.

� Aessors: field n x, where x is a variable and n is an

integer o�set. By onvention, the �rst argument of non-

onstant onstrutors stands at o�set zero.

� Sequenes: l

1

; l

2

and units: ()

3.2 Initial state
Input to the pattern mathing ompiler C onsists of two

arguments: a vetor of variables ~x of size n and a lause

matrix P ! L of width n and height m.

~x = (x

1

x
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: : : x

n

); P ! L =
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The initial matrix is generated from soure input. Given

a pattern-mathing expression (in Caml syntax):

math x with | p

1

-> e

1

| p

2

-> e

2

: : : | p

m

-> e

m

The initial all to C is:

ath

C((x);

0

B

B

�

p

1

! l

1

p

2

! l

2

!

p

m

! l

m

1

C

C

A

)

with (failwith "Partial math")

Where the l

i

's are the translations to lambda-ode of the

e

i

's, and (failwith "Partial math") is a runtime failure

that ours when the whole pattern mathing fails.

3.3 Classical scheme
By ontrast with previous presentations, we assume that

matrix P ! L has at least one row (i.e. m > 0). This

ondition simpli�es our presentation, without restriting its

generality. Hene, sheme C is de�ned by ases on non-

empty lause matries:

1. If n is zero (i.e. when there are no more olumns), then

the �rst row of P mathes the empty vetor ():

C(();

0

B

B

B

�

! l

1

! l

2

.

.

.

! l

m

1

C

C

C

A

) = l

1



2. If n is not zero, then a simple ompilation is possible,

using the following four rules.

(a) If all patterns in the �rst olumn of p are variables, y

1

,

y

2

, : : : , y

m

, then:

C(~x; P ! L) = C((x

2

x

3

: : : x

n

); P

0

! L

0

)

where

P

0

! L

0

=

0

B

B

B

�

p

1

2
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1

n

! let (y

1
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) l

1

p

2

2

� � � p

2

n

! let (y
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1
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.

.

p

m
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n

! let (y

m

x

1

) l

m

1

C

C

C

A

)

We all this rule, the variable rule. This ase also han-

dles wild-ard patterns: they are treated like variables

exept that the let-binding is omitted.

(b) If all patterns in the �rst olumn of P are onstrutor

patterns (q

1

; : : : ; q

a

), then let C be the set of mathed

onstrutors, that is, the set of the head onstrutors of

the p

i

1

's.

Then, for eah onstrutor  in C, we de�ne the spe-

ialized lause matrix S(; P ! L) by mapping the fol-

lowing transformation on the rows of P .

p

i

1

S(; P ! L)

(q

i
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; : : : ; q

i

a

) q

i

1
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i

a

p

i

2
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i

n

! l

i



0

(q

i

1

; : : : ; q

i

a

0

) (

0

6= ) No row

(Matries S(; P ! L) and P ! L de�ne the same

mathing prediate when x

1

is bound to some value

(v

1

; : : : ; v

a

).) Furthermore, for a given onstrutor 

of arity a, let y

1

; : : : ; y

a

be fresh variables. Then, for

any onstrutor  in C, we de�ne the lambda-expression

r():

(let (y

1

(field 0 x

1

))

...

(y

a

(field (a�1) x

1

))

C((y

1

; : : : ; y

a

; x

2

; : : : ; x

n

);S(; P ! L)))

Finally, assuming C = f

1

; : : : ; 

k

g, the ompilation

result is:

swith x

1

with

ase 

1

: r(

1

)� � �ase 

k

: r(

k

)

default: exit

(Note that the default lause an be omitted when C

makes up a full signature.) We all this rule, the on-

strutor rule.

() If P has only one row and that this row starts with an

or-pattern:

P =

�

(q

1

j ::: j q

o

) p

2

� � � p

n

! l

�

;

Then, ompilation result is:

C((x

1

);

0

B

�

q

1

! ()

.

.

.

q

o

! ()

1

C

A

); C((x

2

: : : x

n

); (p

2

: : : p

n

! l))

This rule is the orpat rule. Observe that it does not

dupliate any pattern nor ation. However, variables in

or-patterns are not supported, sine, in lause q

i

! (),

the sope of q

i

variables is the ation \()".

(d) Finally, if none of the previous rules applies, the lause

matrix P ! L is ut in two lause matries P

1

! L

1

and P

2

! L

2

, suh that P

1

! L

1

is the largest pre�x

of P ! L for whih one of the variable, onstrutor or

orpat rule applies.

Then, ompilation result is:

ath C(~x; P

1

! L

1

) with C(~x; P

2

! L

2

)

This rule is the mixture rule.

This paper doesn't deal with optimizing let-bindings, whih

are arelessly introdued by sheme C. This job is left to a

later ompilation phase.

4. OPTIMIZATIONS
We now desribe some improvement to the lassial om-

pilation sheme. For simpliity, we present examples and

defer the full presentation of our sheme to setion 6. In

all these examples, we fous on pattern-mathing ompi-

lation, replaing potentially arbitrary ations more simple

ones, suh as integers or variables.

4.1 Optimizing the mixture rule
In this setion and in the following, our running example

is the lassial list-merge:

let merge lx ly = math lx,ly with

| [℄, _ -> 1

| _, [℄ -> 2

| x::xs, y::ys -> 3

Suh a mathing on pairs enodes mathing on two argu-

ments. As a onsequene, we onsider the following initial

all to sheme C:

C((lx ly); (P ! L))

Where (P ! L) is:

(P ! L) =

0

�

[℄ ! 1

[℄ ! 2

x::xs y::ys ! 3

1

A

Applying the mixture rule twie yields three matries:

P
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=

�

[℄ ! 1

�

P
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! L
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=
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[℄ ! 2

�

P

3
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3
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Now, onsider another lause matrix (P

0
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0
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0
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[℄ ! 1

x::xs y::ys ! 3
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1
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Both lause matries de�ne the same mathing funtion,

namely they both map ([℄ v) to 1, (v

1

::v

2

[℄) to 2 and

(v

1

::v

2

v

0

1

::v

0

2

) to 3. Furthermore, (P

0

! L

0

) an be ob-

tained from (P ! L) by swapping its seond and third row.

More generally, one easily heks that swapping two ontigu-

ous inompatible rows is legal. Then applying the mixture

rule to (P

0

! L

0

), yields two matries only:
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! L

0
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=
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x::xs y::ys ! 3
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ath

(ath

(swith lx with ase [℄: 1

default: exit)

with (ath

(swith ly with ase [℄: 2

default: exit)

with (ath

(swith lx with

ase (::):

(swith ly with

ase (::) : 3

default: exit)

default: exit))))

with (failwith "Partial math")

ath

(ath

(swith* lx with

ase [℄: 1

ase (::) :

(swith ly with

ase (::): 3

default: exit))

with

(swith ly with

ase [℄: 2

default: exit)

with (failwith "Partial math")

Figure 1: Mixture optimization

Final outputs for P ! L and P

0

! L

0

are displayed on

Figure 1. Hene, as a result of replaing P ! L by P

0

! L

0

,

the two tests on lx that were performed separately on the

left ode are now merged in a single swith in the right ode.

Also notie that one trap disappears.

More generally, an optimized mixture rule should take

advantage of pattern-mathing semantis to swap rows when

possible, so that as few uts as possible are performed.

4.2 Using exhaustiveness information
The Objetive Caml ompiler heks the exhaustiveness

of pattern mathing expressions and issues a warning be-

fore ompiling non-exhaustive pattern mathings. However,

the exhaustiveness information an also be used for avoid-

ing tests. Matrix P

0

of the previous setion is exhaus-

tive; this means that there will be no "Partial math" fail-

ure at runtime. As an immediate onsequene, the swith:

(swith ly with ase [℄: 2 default: exit) always su-

eeds (this swith is the last one performed by the optimized

ode in �gure 1). Thus, we replae it by 2. We an also sup-

press the outermost trap. Hene, applying both optimiza-

tions desribed up to now, ompilation of P ! L �nally

yields:

ath

(swith* lx with

ase [℄: 1

ase (::): (swith ly with

ase [℄: 3

default: exit))

with 2

In the general ase, exhaustiveness information is exploited

by slightly modifying sheme C. It suÆes to avoid emitting

default lauses in swith onstruts, when it is known that

no exit should esape from produed ode. This property

holds initially for exhaustive pattern mathings, and trans-

mits to all reursive alls, exept for the all on P

1

! L

1

in

the mixture rule.

4.3 Optimizing exits
The two previous optimizations yield optimal ode for the

merge example. Hene we ompliate the running example

by onsidering a mathing on objets of type t from se-

tion 2:

P ! L =

0

B

B

B

�

Nil ! 1

Nil ! 2

One x ! 3

One y ! 4

Cons (x,xs) Cons (y,ys) ! 5

1

C

C

C

A

The optimized mixture rule yields four matries:

P

1

! L

1

=

�

Nil ! 1

Cons (x,xs) Cons (y,ys) ! 5

�

P

2

! L

2

=

�

Nil ! 2

�

P

3

! L

3

=

�

One x ! 3

�

P

4

! L

4

=

�

One y ! 4

�

For reasons that will appear immediately, we apply the mix-

ture rule from bottom to top, thereby nesting trap handlers.

The math being exhaustive, ompilation yields the ode

displayed on the left part of Figure 2.

Now, onsider what happens at run-time when (lx ly) is

(Cons (v

1

, v

2

) One v). A �rst swith on lx leads to line 7,

where a swith on ly is performed. This swith fails, and

the default ation jumps to the nearest enlosing handler

(line 13), where ly is tested against Nil resulting in another

swith failure. Here, in our ase, ontrol goes to line 17,

where another swith on lx (against One x) fails, resulting

in �nal jump to line 20.

Hene, it would be appropriate to jump to line 20 right

from the �rst test on ys. To do so, both exits and trap

handlers are now labelled by integers. Note that this new

feature does not really ompliate the ompilation of stati

exeptions. Then, it beomes possible to jump to di�erent

trap handlers from the same point and a better ompilation

of P ! L is displayed in the right part of �gure 2.

The ode above maps vetors (Cons (v

1

, v

2

) One v) to

4 by exeuting two swithes, while previous ode needed

four swithes to perform the same task. Hene, exit opti-

mization has a notieable bene�t as regards run-time eÆ-

ieny. As regards ode size, exit optimization may inrease

it, sine some swithes may have larger ase lists. However,

ode size remains under ontrol, sine no extra swithes are

generated. Hene, �nal ode size ritially depends on how

swithes translate to mahine-level onstruts. For instane,

mahine-level ode size obviously does not inrease when



1 ath

2 (ath

3 (ath

4 (swith lx with

5 ase Nil: 1

6 ase Cons:

7 (swith ly with

8 ase Cons: 5

9 default: exit)

10

11 default: exit)

12 with

13 (swith ly with

14 ase Nil: 2

15 default: exit))

16 with

17 (swith lx with

18 ase One: 3

19 default: exit))

20 with 4

1 ath

2 (ath

3 (ath

4 (swith lx with

5 ase Nil: 1

6 ase Cons:

7 (swith* ly with

8 ase Cons: 5

9 ase Nil: (exit 2)

10 ase One: (exit 4))

11 default: (exit 2))

12 with (2)

13 (swith ly with

14 ase Nil: 2

15 default: (exit 3)))

16 with (3)

17 (swith lx with

18 ase One: 3

19 default: (exit 4)))

20 with (4) 4

Unoptimized ode Optimized ode

Figure 2: Exit optimization

swithes are translated to jump tables

1

.

Surprisingly, performing exit optimization is quite simple

and heap: the needed information is available at ompile-

time by inspeting pattern matries only. Reahable trap

handlers are de�ned as pairs (P; e) of a pattern matrix and

an integer. Reahable trap handlers originate from the di-

vision performed by the mixture rule. Here, P

1

! L

1

is

ompiled with the reahable trap-handlers (P

2

; 2), (P

3

; 3)

and (P

4

; 4). Then, the onstrutor rule speializes reahable

trap handlers. Here, in the ase where lx is Cons (v

1

, v

2

),

speializing reahable trap handlers results in ((Nil); 2) and

((One y); 4) (note that speializing P

3

yields an empty ma-

trix, whih is disarded). Hene, while generating the �rst

swith on ly (line 7), it is known that the ode produed

by ompiling trap handlers number 2 and 3 will surely exit

when ly is One v, and a jump to trap handler number 4 an

be generated by the ompiler in that ase.

4.4 Aggressive control flow optimization
The ode produed by exit optimization still ontains re-

dundant tests, some of whih an be removed without al-

tering the handler struture introdued by the mixture rule.

More spei�ally, we onsider trap handler number 3 (line 16).

It results from ompiling P

3

and is a swith of lx against

One.

The only (exit 3) lies in trap handler number 2 (line 15)

and results from ly not being Nil, this gives us no diret

information on lx. Now, looking upwards for (exit 2), we

an infer that trap handler number 2 is entered from two

di�erent points. In the �rst ase (line 9), (lx ly) is fully

known as (Cons (v

1

, v

2

) Nil), in the seond ase (line 11),

only lx is know to be One v. As (exit 3) on line 15 gets ex-

euted only when ly is not Nil, we an �nally dedue that

1

Given the Objetive Caml enoding of onstrutors, we are

here in the same desirable situation where the ompilation

of apparently larger swithes does not result in produing

more ode.

the �rst ase never results in entering trap handler num-

ber 3. As a onsequene, trap handler number 3 is exeuted

in a ontext where lx neessarily is One v, the swith it per-

forms is useless and line 16 an be simpli�ed into \3". This

elimination of useless tests[4℄ is usually performed at a lower

level by ombining dead ode elimination[9℄ and onditional

onstant propagation[21, 6℄.

Finally, after all optimizations, there remains one redun-

dant swith in produed ode, in trap-handler number 2

(line 12). As a result, vetors (Cons (v

1

, v

2

) Nil) are mapped

to 2 by testing ly twie. One should notie that this is pre-

isely the test that would get dupliated by ompilation to

deision trees.

Desribing what is known on values while entering trap

handlers is slightly involved. The key idea is representing

set of value vetors as pattern matries. We all suh a set a

ontext. Contexts for the three trap handlers of our example

are:

Trap number Context

2

�

One

Cons ( , ) Nil

�

3

�

One (One j Cons ( , ))

�

4

�

Cons ( , ) One

�

If preise enough and exploited fully, we onjeture that on-

texts subsume exhaustiveness information. However as in-

tuition suggests and experiene on�rms, ontexts get larger

while ompilation progresses, potentially reahing huge sizes

at the end of matries. We ure this by safely approximating

ontexts when they get too large, replaing some patterns in

them by wild-ards. Hene the optimizations of setion 4.2

is still worth onsidering, as being heap and always appli-

able.

5. COMPILING ORPATTERNS
Until now, the ode produed for or-patterns is ineÆient,

beause only one or-pattern an be ompiled at a time, re-



quiring multiple appliations of the mixture rule before and

after eah or-pattern. Thanks to integer labelled exits, one

easily avoids dividing matries before or-patterns. Consider

a \ar" funtion for our three-onstrutors list:

let ar list = math list with

| Nil -> -1

| (One x | Cons (x,_)) -> x

Compilation proeeds by alloating a new trap-handler

number 2 and expanding the lause \One x | Cons (x,_)"

into two lauses with patterns \One x" and \Cons (x,_)".

Ations for the new lauses are exits to 2:

ath

C((list);

0

�

Nil ! -1

One x' ! (exit 2 x')

Cons (x', ) ! (exit 2 x')

1

A

)

with (2 x) C(();

�

! x

�

)

Note that both exits and trap handlers now take yet an-

other extra argument, the ourrenes of x' in exits are

non-binding and refer to pattern variables, while the our-

rene of x in handler is binding. This new onstrut allows

the ompilation of or-patterns with variables. Implemen-

tation is not very triky: the ath : : : with (2 x) : : :

onstrut alloates one mutable variable; an exit updates

this variable, whih is read before entering the handler. In

a native ode ompiler, suh a variable is a temporary and

ultimately a mahine register. The generated lambda-ode

is as follow:

ath

swith* list with

ase Nil: -1

ase One: (exit 2 (field 0 list))

ase Cons: (exit 2 (field 0 list))

with (2 x) x

Moreover, by the semantis of pattern-mathing, uts af-

ter or-patterns an also be avoided in many situations. In

the ase of one olumn matries, where the expanded or-

patterns express the full mathing performed, all uts an

be avoided. Things get a bit more ompliated when ma-

tries have more than one olumn. Consider the following

lause matrix,

P ! L =

�

(1|2) p

2

! l

1

(3|4) q

2

! l

2

�

We further assume a math on (x y) and that math fail-

ure should result in (exit 1) (the stati exeption label

orresponding to math failure an be given as a third argu-

ment to the ompilation sheme). Writing p

1

= (1|2) and

q

1

= (3|4), there are obviously no value vetors (v

1

v

2

) suh

that v

1

is an instane of both p

1

and q

1

. As a onsequene,

the following ompilation is orret:

ath

(ath

(swith x with

ase 1: (exit 2) ase 2: (exit 2)

ase 3: (exit 3) ase 4: (exit 3)

default: (exit 1))

with (2) C((y);

�

p

2

! l

1

�

; 1))

with (3) C((y);

�

q

2

! l

2

�

; 1)

Intuitively, one x is heked, the hoie between �rst and

seond row is made. Depending on the value of y, mathing

may still fail, but then, the whole mathing fails.

Conversely, matrix division annot be avoided when math-

ing by p

1

does not exlude mathing by q

1

, that is, when p

1

and q

1

are ompatible. This is the ase, for instane, when

p

1

= (1|2) and q

1

= (2|3). Then, a orret ompilation is:

ath

(ath

(swith x with

ase 1: (exit 2) ase 2: (exit 2)

default: (exit 3))

with (2) C((y);

�

p

2

! l

1

�

; 3))

with (3)

(ath

(swith x with

ase 2: (exit 4) ase 3: (exit 4)

default: (exit 1))

with (4) C((y);

�

q

2

! l

2

�

; 1))

Note that the third argument to the �rst reursive all to

the ompilation sheme is \3" and not \1". As a onse-

quene, vetors (2 v

2

) suh that p

2

does not math v

2

while

q

2

mathes v

2

get mapped orretly to l

2

. A slight inne�eny

shows up, sine x is tested twie. More striking, perhaps,

vetors (1 v

2

) suh that p

2

does not math v

2

also lead to

testing x twie.

An alternative ompilation rule for or-pattern would sim-

ply expand or-patterns in a pre-proessing phase, yielding

the matrix:

0

B

B

�

1 p

2

! l

1

2 p

2

! l

1

2 q

2

! l

2

3 q

2

! l

2

1

C

C

A

Then, there are no extra run-time tests on x, sine the on-

strutor rule applies. However, patterns p

2

and q

2

are now

ompiled twie. Note that there is no simple solution for

avoiding this dupliation of e�ort, sine, one the onstru-

tor rule is applied, the two ourenes of these patterns our

in di�erent ontexts. More generally, ode size is now out of

ontrol, a lear ontradition with the spirit of batraking

automata.

6. OUR COMPILATION SCHEME
The new sheme C

�

takes �ve arguments and a typial

all is C

�

(~x; P ! L; ex; def; tx), where ~x = (x

1

: : : x

n

) and

P ! L is a lause matrix of width n:

P ! L =

0

B

B

B

�

p

1

1

� � � p

1

n

! l

1

p

2

1

� � � p

2

n

! l

2

.

.

.

p

m

1

� � � p

m

n

! l

m

1

C

C

C

A

Extra arguments are:

� The exhaustiveness argument ex is either partial or total

depending on whether ompilation an produe esaping

exit onstruts or not.

� Reahable trap handlers def are sequenes (P

1

; e

1

); � � � ;

(P

t

; e

t

), where the e

i

's are integers (trap handler numbers)

and the P

i

's are pattern matries of width n.



Figure 3: Operations on ontexts

(a) Context speialization
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(b) Context olletion

P �Q row COL(P �Q) row

p

i

1
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() Context pushing and popping

P �Q row +(P �Q) row *(P �Q) row

p

i

1

� � � p

i

k

� q

i

1

� � � q

i

n

p

i

1

� � � p

i

k

q

i

1

� q

i

2

� � � q

i

n

p

i

1

� � � p

i

k�1

� p

i

k

q

i

1

� � � q

i

n

� The ontext tx is a pattern matrix of width k+n, equiva-

lent to a pair of matrixes P �Q, where eah row is divided

into a pre�x (in P ) of width k and a fringe (in Q) of

width n.

P �Q =

0

B

B

B

�

p

1

1

� � � p

1

k

� q

1

1

� � � q

1

n

p

2

1

� � � p

2

k

� q

2

1

� � � q

2

n

.

.

.

p

m

1

� � � p

m

k

� q

m

1

� � � q

m

n

1

C

C

C

A

Informally, at any point in ompilation, ontexts are pre-

order representations of what is known about mathed

values. The fringe reords the possible values for ~x, while

the pre�x reords the same information for other sub-

terms whih are relevant to pending alls to C

�

. Transfers

of patterns from fringe to pre�x are performed on the ar-

guments of reursive alls, while transfers in the opposite

diretion are performed as results are olleted.

The initial all to C

�

for an exhaustive math is:

C

�

((x);

0

B

B

B

�

p

1

! l

1

p

2

! l

2

.

.

.

p

m

! l

m

1

C

C

C

A

; total ; ;; (� ))

For a non-exhaustive math, ex is partial , def is the one-

element sequene (( ); 1) and a trap handler is added as in

setion 3.3. The ontext argument remains the same: it

expresses that nothing is known yet about the value of ~x.

The new sheme returns a lambda-ode l and a jump

summary, � = f: : : ; i 7! tx; : : : g, whih is a mapping

from trap numbers to ontexts. Jump summaries desribe

what is known about mathed values at the plaes where

(exit i : : :) our in l.

6.1 Operations on contexts
We de�ne the following four operations on ontexts :

(a) Context speialization, S, by a onstrutor  of arity a is

de�ned by mapping the transformation of �gure 3-(a) on

ontext rows.

(b) Context olletion, COL, is the reverse of speialization.

It ombines the the last element of the pre�x with the

appropriate number of arguments standing at beginning

of the fringe (see �gure 3-(b)).

() Context pushing + and popping * move the fringe limit

one step forward and bakward, without examining any

pattern (see �gure 3-()).

As ontexts are used to represent set of values, we natu-

rally de�ne union and intersetion over ontexts. Context

union P�Q[P

0

�Q

0

yields a new matrix whose rows are the

rows of P �Q and P

0

�Q

0

. Row order is not relevant. Con-

text intersetion P�Q\P

0

�Q

0

is de�ned as a ontext whose

rows are the least upper bounds of the ompatible rows of

P � Q and P

0

� Q

0

. Context extration EX is a partiular

ase of ontext intersetion.

EX (p; P

0

�Q

0

) = ( : : : � p : : : ) \ P

0

�Q

0

For example, when p is ( ; : : : ; ), ontext extration re-

tains those value vetors represented by P

0

�Q

0

whose k+1

th

omponents admit  as head onstrutor. Observe that suh

a omputation involves extrating or-pattern arguments and

making wild-ards more preise.

Exept for olletion and popping, whih onsume pre-

�x elements, all these operations an be extended to simple

matries, by using an empty pre�x in input, and taking the

fringe for output. Doing so, we obtain exatly the operations

of setion 3.3 used to ompute pattern matries (speializa-

tion S in partiular).

Operations on ontexts are extended to jump summaries

in the natural manner. For instane, the union of � and �

0

is de�ned as:

� [ �

0

= f: : : ; i 7! �(i) [ �

0

(i); : : : g

Operations on matries are extended to reahable trap

handlers in a similar manner: for instane, pushing trap

handlers is de�ned as pushing all matries in them :

+((P

1

; e

1

); : : : ; (P

t

; e

t

)) = (+(P

1

); e

1

); : : : ; (+(P

t

); e

t

)



6.2 Compilation scheme
We now desribe sheme C

�

by onsidering ases over the

typial all.

1. If n is zero. then we have:

C

�

(();

0

B

B

B

�

! l

1

! l

2

.

.

.

! l

m

1

C

C

C

A

; ex; def; tx) = l

1

; ;

Observe that the jump summary is empty sine no exit is

outputed.

2. With respet to setion 3.3, the variable rule only hanges

as regards the extra arguments ex, def and tx. We only

desribe these hanges. The performed reursive all re-

turns ode l and jump summary � :

l; � = C

�

(: : : ; : : : ; ex;+(def);+(tx))

Exhaustiveness information ex does not hange, while def

and tx are pushed.

The variable rule returns l unhanged and � popped.

3. In the onstrutor rule, let C = f

1

; : : : ; 

k

g be the mathed

onstrutors, let also � be the signature of their type. For

a given onstrutor  2 C, the performed reursive all is:

C

�

(: : : ; : : : ; ex;S(; def);S(; tx))

Exhaustiveness information ex is passed unhanged, while

the other two extra arguments are speialized (speializa-

tion of trap handlers being the natural extension of matrix

speialization).

Eah reursive all returns a lambda-ode l() and a jump

summary �



. Lambda-ode l() gets wrapped into let-

bindings like in setion 3.3, yielding the �nal lambda-ode

r(). We then de�ne a ase list L and a jump summary

�

re

as follows:

L = ase 

1

: r(

1

) � � � ase 

k

: r(

k

)

�

re

= f : : : ; i 7!

[

2C

COL(�



(i)); : : : g

The ase list is as before, while the jump summary is the

union of the the jump summaries produed by reursive

alls, one olleted.

Optimizations are then performed. For larity, optimiza-

tions are desribed as a two phase proess: �rst, extend

(or not extend) the ase list L with onstrutors taken

from � n C, and add (or not add) a default ase; then,

ompute the �nal jump summary.

A �rst easy ase is when � n C is empty or when ex is

total . Then, the ase list L is not augmented. Otherwise,

we distinguish two ases :

(a) If � n C is �nite, then for all onstrutors  in this set

we onsider the ontext

Q



�Q

0



= EX (( ; : : : ; ); tx)

Then, trap handlers (P

1

; e

1

); : : : ; (P

t

; e

t

) are sanned

left-to-right, stopping at the smallest i, suh that the

intersetion Q

0



\ P

i

is not empty. That is, we �nd the

trap handler where to jump to when the head onstru-

tor of x

1

is , in order to extend the ase list as follows :

L = L ase : (exit e

i

)

It is possible that e

i

does not exist (when Q

0



is empty).

This means that x

1

head onstrutor will never be  at

runtime.

(b) If � nC is in�nite (as in the ase of integers) or onsid-

ered too large (as it might be in the ase of haraters),

then, a default ase is added to the ase list :

L = L default: (exit e

1

)

That is, all non-reognized onstrutors lead to a jump

the nearest enlosing reahable trap-handler.

However it is still possible to extend the ase list for

partiular onstrutors, applying the previous proe-

dure (a) to the onstrutors that appear in the �rst

olumn of reahable trap handler matries and not in C.

The �nal jump summary is omputed by onsidering the

�nal ase list L. For a given trap handler number e

i

let

f

0

1

; : : : ; 

0

k

0

g be the set of onstrutors suh that ase 

0

j

:

(exit e

i

) appears in L. Then the jump summary �

e

i

is

de�ned as:

�

e

i

= f e

i

7! EX (

0

1

( ; : : : ; ) j � � � j 

0

k

0( ; : : : ; )); tx) g

Moreover, if there is a default lause, the jump sum-

mary �

d

is de�ned as:

�

d

= f e

1

7! txg

Finally the onstrutor rule returns a swith on ase list L

and the jump summary built by performing the union of

�

re

, of all �

e

i

's and, when appropriate, of �

d

.

The onstrutor rule performs many ontext unions, so

that ontexts may beome huge. Fortunately, ontexts

an be made smaller using a simple observation. Namely,

let ~p and ~q be two rows in a ontext, suh that ~p is less

preise than ~q (i.e., all instanes of ~q are instanes of ~p).

Then, row ~q an be removed from the ontext, without

modifying its meaning as a set of value vetors. Hene,

while performing ontext union, one an leave aside some

pattern rows. If the produed ontext is still too large,

then ontexts are safely approximated by �rst replaing

some patterns in them by wild-ards (typially all the pat-

tern in a given olumn) and then removing rows using the

previous remark. Rough experiments lead us to set the

maximal admissible ontext size to 32 rows, yielding sat-

isfatory ompilation time in pathologial examples and

exat ontexts in pratial examples.

4. Or-pattern ompilation operates on matries whose �rst

olumn ontains at least one or-pattern. Additionally,

when p

i

1

is a or-pattern, then for all j, i < j � m one of

the following, mutually exlusive, onditions must hold:

(a) p

i

1

and p

j

1

are not ompatible.

(b) p

i

1

and p

j

1

are ompatible, and (p

i

2

: : : p

i

n

) is less preise

than (p

j

2

: : : p

j

n

)

Conditions (a) and (b) guarantee that, whenever p

i

1

mathes

the �rst value vetor v

1

of a value ~v, but row i does not

math ~v, then no further row in P mathes ~v either. This



is neessary sine further rows of P won't be reahable in

ase of failure in the or-pattern trap handler.

Now, onsider one row number i, suh that p

i

1

is the or-

pattern q

1

j � � � j q

o

. Further assume that this or-pattern

binds the variables y

1

; : : : ; y

v

. First, we alloate a fresh

trap number e and divide P ! L into the following or-

body P

0

! L

0

and or-trap P

00

! L

00

lauses:

P

0

! L

0

=

0

B

B

B

B

B

B

B

B

B

B

B

B

�

.

.

.

p

i�1

1

: : : p

i�1

n

! l

i�1

q

1

: : : ! (exit e y

1

... y

v

)

.

.

.

q

o

: : : ! (exit e y

1

... y

v

)

p

i+1

1

: : : p

i+1

n

! l

j+1

.

.

.

1

C

C

C

C

C

C

C

C

C

C

C

C

A

P

00

! L

00

=

�

p

i

2

: : : p

i

m

! l

i

�

In the or-body matrix, observe that the or-pattern is ex-

panded, while the other patterns in row number i are

replaed by wild-ards and the ation is replaed by exits.

Reursive alls are performed as follows:

l

0

; �

0

= C

�

(~x; P

0

! L

0

; ex; def; tx)

l

00

; �

00

= : : :

: : : C

�

(~x

2$n

; P

00

! L

00

; ex;+(EX (p; def));+(EX (p; tx)))

Outputed ode �nally is ath l

0

with (e y

1

... y

v

) l

00

and the returned jump summary is � = �

0

[ *(�

00

).

5. The mixture rule is responsible for feeding the other rules

with appropriate lause matries. We �rst onsider the

ase of a random division. Hene let us ut P ! L into

Q!M and R! N at some row. Then a fresh trap num-

ber e is alloated and a �rst reursive all is performed:

l

q

; �

q

= C

�

(~x;Q!M; partial ; (R; e); def; tx)

The exhaustiveness information is partial , sine nothing

about the exhaustiveness of Q derives from the exhaus-

tiveness of P . Reahable trap handlers are extended.

Then, a seond reursive all is performed:

l

r

; �

r

= C

�

(~x;R! N; ex; def; �

q

(e))

It is no surprise that the ontext argument to the new all

is extrated from the jump summary of the previous all.

Argument ex does not hange. Indeed, if mathing by P

annot fail, then mathing by R neither an.

Then, the sheme an output the ode

l = ath l

q

with (e) l

r

and return the jump summary (�

q

nfeg)[�

r

, where �

q

nfeg

stands for �

q

with the binding for e removed.

Of ourse, our optimizing ompiler does not perform a

random division into two matries. It instead divides

P ! L right away into several sub-matries. This an

be desribed formally as several, lever, appliations of

the random mixture rule, so that one of the three previ-

ous rules apply to eah matrix in the division. The aim of

the optimizing mixture rule is thus to perform a division

of P into as few sub-matries as possible. We present a

simple, greedy, approah that sans P downwards.

We only desribe the ase when p

1

1

is a onstrutor pat-

tern. Thus, having performed the lassial mixture rule,

we are in a situation where the i topmost rows of P have

a onstrutor pattern in �rst position (i.e. are onstru-

tor rows for short) and where p

i+1

1

is not a onstrutor

pattern. At that point, a matrix C has been built, whih

enompasses all the rows of P from 1 to i. Let us fur-

ther write P

0

for what remains of P , and let O and R

be two new, initially empty matries. We then san the

rows of P

0

from top to bottom, appending them at the

end of C, O or R. That is, given row number j in P

0

:

(a) If p

0

j

1

is a variable, then append row j at the end of R.

(b) If p

0

j

1

is a onstrutor pattern, then : : :

i. If row j is not ompatible with all the rows of both R

and O, then append row j at the end of C (i.e., move

row j above all the rows that have been extrated

from P

0

at previous stages).

ii. If row j is not ompatible with all the rows of R and

that one of onditions (a) or (b) for applying the or-

pattern rule are met by O with row j appended at

the end, then do suh an append.

iii. Otherwise, append row j at the end of R.

() If p

0

j

1

is a or-pattern, then onsider ases (ii) and (iii).

When the san of P

0

is over, three matries, C, O and R

have been built. In the ase where O is empty, matrix C is

valid input to the onstrutor rule; otherwise, appending

the rows of O at the end of C yields valid input for ap-

plying (maybe more than one) the or-pattern rule, whih

will in turn yield valid input to the onstrutor rule (pro-

vided that (_ | : : : ) or patterns have been replaed by

semantially equivalent wild-ards in a previous phase).

Thus, the matrix built by appending O at the end of C is

reorded into the overall division and the division proess

is restarted with input R, unless R is empty.

Finally, the full proess divides the input matrix P into

several matries, eah of whih is valid input to the other

rules of the ompilation sheme.

7. EXPERIMENTAL RESULTS
We ompare the performane of the ode generated by

the Objetive-Caml ompilers version 3.00 and 3.01, where

the former implements the sheme of setion 3.3 and the

latter implements our new optimizing sheme (there are

other di�erenes of minor relevane to our purpose). For

most programs there is little di�erene; this is natural sine

pattern-mathing usually aounts for a small fration of

most programs running time. A full analysis of the eÆ-

ieny of our optimizations would in fat require ounting

relevant instrutions (test, branhes and indiret branhes

through jump tables), both statially and dynamially. By

lak of time, we only present some programs that demon-

strate signi�ant improvement.

Our �rst benhmark is the traditionnal fib, that we write

using a or-pattern.

let re fib n = math n with

| (0|1) -> 1 | _ -> fib (n-1) + fib (n-2)

Here, we simply measure the exeution time of omputing

fib 38. Our seond benhmark, pf, is a byte-ode om-

piler and interpreter for PCF. We ompute the geometri



mean of the exeution time for a set of �ve di�erent PCF

programs. The time-onsuming part of this program is the

byte-ode mahine whih we oded in the style of the byte-

ode mahine inluded in [14℄, the winning entry of the

2000 ICFP programming ontest. (we also give �gures for

this program under the name raytrae).

Experiments were performed on a lightly loaded 366Mhz

Pentium Pro Linux PC. The tables show wall-lok times

(in seonds) and ratios:

fib raytrae pf

V 3.00 5.36 100 1.69 100 8.12 100

V 3.01 3.74 71 1.62 96 5.08 63

Obviously, as demonstrated by the fib example, ompila-

tion of or-patterns has muh improved. Testing similar ex-

amples on�rms that fat. Improvements also omes from

the better ompilation of swithes. The pf example is

more interesting, it shows that our optimizations yield a 37%

speed-up, in the ase of a typial ML appliation (a quikly

written, ompat, prototype implementation of some pro-

gramming language). The raytrae example exhibits less

important improvements on the whole test suite of the on-

test; however, improvements are notieable for some inputs.

It should also be notied that the new ompiler somehow

equates the runtime performane of various oding styles, a

feature that is important for a high-level onstrut suh as

pattern-mathing. Variations in oding style inlude the rel-

ative ordering of non-overlapping patterns and on the order

of arguments in pairs.

We also performed measurements on a 500Mhz De Alpha

server. They suggest that the e�ets of our optimization do

not depend on the targeted arhiteture.

fib pf

V 3.00 3.4 100 4.13 100

V 3.01 2.5 74 2.86 69

The raytrae example is is omitted beause it relies on

IEEE oating point arithmeti, whih is not implemented

in the Objetive Caml ompiler for this arhiteture.

More detailed information on these benhmarks is avail-

able at http://aml.inria.fr/pattern/speed.html.

8. RELATED WORK

8.1 Decision Trees vs Backtracking
Compiling to deision trees is the original approah to

pattern mathing ompilation; it �rst appeared in the Hope

ompiler and is desribed in [5℄. It is urrently used in the

SML-NJ ompiler [7℄.

In this approah, there is no mixture rule: instead, the

onstrutor rule applies as soon as there is at least one on-

strutor in the �rst olumn, and a speialization matrix is

reated for eah mathed onstrutor, plus one additional

matrix for the remaining onstrutors in the signature of

the types of mathed values, if any. Speialization is done

by following the rules of setion 6.1. This means that rows

whose �rst pattern is a variable get opied several times.

On the one hand, this approah guarantees that one on-

strutor test is never performed twie. On the other hand,

opied pattern rows are ompiled independently and this

result in potentially large ode size. Namely, examples ex-

ist that make the SML-NJ ompiler produe exponential

ode [12℄.

Compilation to baktraking automata is the lassial sheme

of setion 3.3 (see also [1, 20℄). It is urrently in use in the

Haskell-HBC and Objetive-Caml ompiler [11℄. As we al-

ready argued, its main advantage is that patterns are never

opied, yielding linear output size. Of ourse, the prie paid

is potentially testing the same sub-term several times, re-

sulting in potentially poor runtime performane. In that

aspet, our new ompilation sheme shows that this prie

an be redued signi�antly.

Compilation to deision trees easily detets unused math

ases and non-exhaustive mathings, sine there is no dead

ode in a deision tree. Deteting these situations is impor-

tant, as programmers should be warned about them. How-

ever, those problems are NP-omplete [17℄ and this gives

us a hint about the potential size of deision trees. More

onretely, a deision tree may have many leafs orrespond-

ing to non-mathed values, whereas knowing that one suh

values exist is the needed information. Rather, we hek

unused math ases and exhaustiveness before ompilation

with a simple algorithm [13℄ that solves the used mathed

ase problem by basially traversing the deision tree with-

out generating it. Advantages are not generating the tree,

stopping searh as soon as used math ases are found and

applying various heuristis and matrix simpli�ations whih

are not relevant to diret ompilation. Then, one of our

optimizations uses exhaustiveness information.

8.2 Compiling orpatterns
From available ML or Haskell ompilers, we only found

two ompilers dealing with or-patterns: the (old) Objetive-

Caml ompiler and the SML-NJ ompiler. Our tehnique

makes the old Objetive-Caml sheme (see setion 3.3) ob-

solete, by both produing more eÆient ode and allowing

variables in or-patterns.

The SML-NJ approah is very simple to understand and

implement: or-patterns are expanded during a pre-proessing

phase. However, as we already disussed at the end of se-

tion 5, this may lead to many dupliations of patterns. Suh

a risk is ompatible with the very philosophy of ompilation

to deision trees and is natural in that ontext.

8.3 Optimizations
Most optimizations dealing with pattern-mathing in the

literature try to improve the order in whih tests are per-

formed. In the matrix-based desription, one onsiders al-

ternatives to systematially hoosing the �rst olumn of ma-

tries in the onstrutor rule. Hene, suh an approah an

be haraterized as \olumn optimization", while our ap-

proah would rather be \row optimization". Sine hoos-

ing the best olumn is thought to be NP-omplete (to our

knowledge, there is no published proof), most approahes

desribe heuristis. A typial and early work on suh heuris-

tis is [2℄, a more reent and thorough study is [16℄. Another,

related in pratie, approah relies on sequentiality theory

to identify diretions that are olumns that must be tested

by all possible mathers [10, 15, 17, 13℄. However, omput-

ing diretions is expansive, and one an onsider relying on

heaper heuristis.

These works rather apply to the deision trees, with a

primary fous on reduing ode size. It is unlear to us how

to ombine olumn and row optimization in pratie and

whether this would yield notieable improvements or not.

There also exists a partial-evaluation based approah to



pattern-mathing optimization. [8℄ and later [18℄ speialize

an ultra-naive pattern-mathing interpreter to reate an eÆ-

ient pattern-mathing ompiler. Both authors use ontext

information as we do. By ontrast, their target is deision

trees. In the end, the automati proess of partial evaluation

does not �nd as many optimizations as we do.

9. CONCLUSION
This paper ontribution is twofold. First, we propose an

improvement on the lassial tehnique of ompiling pattern-

mathing expressions into baktraking automata, a teh-

nique that has remained virtually the same for about 15 years.

Our improvements yield automata whih run faster, thereby

alleviating the disadvantage of baktraking automata in

pratial ases. Moreover the very struture of the produed

automata is not altered and hene the highly desirable prop-

erty that output size is linear in the input size is preserved.

As a seond ontribution, we propose a tehnique for eÆ-

iently ompiling or-patterns with variables, still preserv-

ing the linearity of output size. Using or-patterns in plae

of \ath-all" wild-ards results in more robust programs,

while using one lause with a or-pattern in plae of sev-

eral lauses with idential ations results in more ompat,

sometime learer, programs. ML programmers an now en-

joy these bene�ts, without being afraid of degraded runtime

eÆieny or ode size explosion.

We would have wished to make a lear statement on om-

paring batraking automata and deision trees. However,

sophistiated ompilation tehniques exist that minimize the

drawbaks of both approahes. Those are our tehniques for

baktraking automata, and hash-onsing and olumn opti-

mizations for deision trees. In the absene of a pratial

omparison of full-eged algorithms, hoosing one tehnique

or the other reets one's ommitment to guaranteed ode

size or guaranteed runtime performane.
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