
Whittle-Indexability of the Cow Path Problem

Tom Temple Emilio Frazzoli

Abstract— In this paper we consider the well-studied Cow
Path Problem (CPP), an on-line search problem that is typically
treated with competitive analysis. This paper uses an alternative
approach, posing the problem as a Markov Decision Problem
(MDP). Our technical contribution is to prove that when posed
as an MDP, a slightly relaxed version of the problem is Whittle-
indexable, and we present the corresponding index heuristic.
This result also provides an insight: theoretical properties that
have been empirically vetted (such as the Whittle index) are a
means to bridge the gap between theory and practice in on-line
decision-making problems.

I. INTRODUCTION

The Cow Path Problem (CPP), is an on-line search prob-
lem in which k short-sighted cows search for a reward (say,
a patch of clover) on m paths which diverge from a single
origin and never cross. The cows would like to find the
reward while minimizing the time spent searching.

In on-line search problems such as the CPP, the most
widely accepted theoretical framework is competitive analy-
sis (see [1], [11] for surveys). In this framework, the goal is
to determine a search strategy that minimizes the competitive
ratio, which, informally, can be thought of as a worst-case
constant-factor guarantee. Since it focuses on the worst-case,
such a guarantee can lead to overly conservative strategies.

On the other hand, as was pointed out in [12], if we
have (or assume) a prior distribution over the goal loca-
tion, it is quite natural to pose search as a path planning
problem. Typically, the path planning problem is treated
as a Markov Decision Problem (MDP) in which agents
sequentially choose actions in order to minimize expected
cumulative cost. In continuous domains, solving the MDP to
optimality is undecidable, in fact, it is PSPACE-hard even
to approximate[13]. In particular, if the state space includes
belief about hidden variables (i.e., probabilities), then the
problem is said to be a Partially Observable Markov Decision
Problem (POMDP). Despite its difficulty, the POMDP has
been extensively studied, widely used, and as a result, has
had numerous practical successes. In light of these successes,
this paper re-examines the CPP from the MDP framework.

The motivation for this paper comes from one such
success: the Coastal Navigation Problem (CNP) presented
in [14]. Those authors posed a path planning methodology
that could intelligently exploit landmarks in order to reliably
reach a goal location without solving a POMDP for the entire
belief space. They did this by adding a single additional state
variable that encapsulated the uncertainty, and then solving
an MDP with the new joint state.

Consider, for example, the problem of returning to Ont’s
car, which is parked on a road, from the middle of the woods.
Non-expert orienteers might be surprised that it is not optimal

to aim straight for the goal, but rather to choose one side and
deliberately overshoot. This is because it is more costly to
have a ∼ 0.5 probability of having to double back than it is
to increase the length of the initial path. For each possible
initial path, we must solve an CPP to determine the search
policy once we reach the shore. Having done this, we can
determine by how much the agent should initially overshoot.

If the CPP is a sub-problem of the CNP, and the MDP
formulation of the CNP is practically effective, then it can
be expected that such a formulation must also be effective
on the CPP. This paper establishes the correctness of this
intuition by formally proving that the CPP has a particular
property, called Whittle-indexability, leading to the existence
of a strong heuristic.

As a result we believe that the CPP provides an insightful
example. It shows that properties like Whittle-indexability
can be used to bridge the gap between the theoretical results
in on-line search problems and the practical successes of
on-line path planning.

A. Problem Statement

In the CPP, k agents are searching for a unique goal that
lies on one of m rays diverging from a single origin (with
k < m). We will call this set of locations the “region,” R =
{1 . . .m} × R+. The agents know their positions, and each
has a sensor that can detect the goal only if the agent is at the
location of the goal; otherwise it gives no information.1 We
would like to determine a search policy that finds the goal
while minimizing the distance that the agents must travel.

In the usual formulation of the problem (see, e.g., [7]
and the references therein), the objective is to minimize the
competitive ratio, Cr, of the search strategy. The competitive
ratio of an on-line algorithm A is given by

CrA = sup
θ∈Θ

c(A(θ))
c∗(θ)

, (I.1)

where Θ denotes the set of all problem realizations, c(A(θ))
is the cost of the solution returned by A applied to realization
θ, and c∗(θ) is the cost that could be found by an optimal
offline algorithm with full knowledge of θ in advance.

For example, consider the case with one agent and two
paths and assume that the goal location is known to be
integer. From [1], the best-possible2 schedule of turn-around

1While this sensor model might seem overly restrictive, solving problems
using multiple agents and “minimalist” sensors is a topic of recent interest
in robotics (see e.g., [16], [15]).

2An on-line algorithm with the minimum achievable competitive ratio is
called “best-possible” rather than “optimal” to avoid confusion with c∗, in
Equation I.1.

2010 American Control Conference
Marriott Waterfront, Baltimore, MD, USA
June 30-July 02, 2010

ThC07.3

978-1-4244-7425-7/10/$26.00 ©2010 AACC 4152

points, z(i), is z(i) = (−2)i. If the goal is at distance n from
the origin, the search takes 2(

∑blg nc
i=0 2i) + n. The optimal

offline algorithm would be able to travel straight there, so
c∗ = n. The competitive ratio is therefore

sup
n

2(
∑blg nc+1

i=1 2i) + n

n
= 9.

In contrast, in this paper we will try to minimize the expected
distance travelled before reaching the goal. To do this we
must have a probability distribution, f : R → R≥0, for the
goal location. Given a prior distribution, it is straightforward
to pose the CPP as a path planning problem that roboticists
will find familiar.

One of the main arguments in favor of competitive anal-
ysis is that it does not have the requirement of a prior.
However, from a Bayesian perspective, requiring a prior is
not an unreasonable demand—there is nothing to prevent
us from using an uninformative distribution. Furthermore,
minimizing the expectation for the uninformative distribution
is seldom equivalent to minimizing the competitive ratio.
Regardless of how informative this prior distribution may
be, this formulation is meaningfully distinct from that in
Equation I.1.

We illustrate this difference by example. Consider the
uniform distribution over the integers −n, . . . , n. In the limit
of n → ∞ we have already discussed the best-possible
competitive strategy, which turns around at z(i) = −2i. This
strategy searches for an expected distance of 33/8n. The
policy that simply searches each direction to the end, only
searches for an expected distance of n—less than a quarter
as far. As it happens, in the framework of expected distance,
this policy is optimal and is returned by the algorithms we
will subsequently develop.

Before we elaborate on this formulation, we make the
following remark.

Remark 1.1: For algorithm A, with competitive ratio CrA,
there is a probability measure over Θ such that E

Θ
[c(A)]

is arbitrarily close to CrA×c∗. This is accomplished by
assigning probability one to the instance (or an instance in
the sequence) that maximizes Equation I.1. In other words,
the competitive ratio provides a tight bound on performance
in the worst-case over probability distributions.

B. Belief–state representation

The problem of path planning in the presence of uncer-
tainty can be posed as a POMDP, which would require
solving Bellman’s Equation, shown in discounted, discrete
form in Equation I.2.

V ∗(s, b) = max
a∈A

∑
(s′,b′)

T (s′, b′|s, b, a)(βV ∗(s′, b′)+R(s, a, s′)).

(I.2)
for actions A observed state s, belief state b, transition
dynamics T , rewards R, and discount factor β.

The difficulty stems from the fact that the belief, b, lives
in the space of all probability measures over R. In the
CPP however, the belief has a special structure that can be

exploited in the solution of the problem. Due to the limited
sensor model, either the goal is found or the posterior belief
is the prior distribution with explored regions zeroed-out
(and re-normalized). Hence for a given prior distribution,
the belief can be represented by the limits of the explored
regions, which we will refer to as the “frontier” z, which is
simply a vector in Rm

+ .
This state representation is analogous to that used in [12]

which showed that for one agent on two paths with finitely
many discrete locations, the problem can be posed as a
quadratic program and solved in time polynomial in the
number of locations. However, if we were to extend this
approach to m paths (while maintaining finitely many dis-
crete locations), the time requirement would be exponential
in m.

In the continuous, k-agent, m-path version examined here,
the value function will not be the solution to a quadratic
program, but rather a general non-linear partial differential
equation, which is still quite difficult. At this point we
could resort to approximation techniques but to do so will
still be intractable; from [13] we know that any non-trivial
approximation can still require time exponential in the size
of our representation of the problem.

II. BANDIT PROBLEMS

If we neglect to include the time taken moving through
previously explored territory and pretend that success rates
along different paths are independent, the CPP is equivalent
to a Multi-Armed Bandit Problem (MABP). In the MABP, a
single server must choose from between m processes exactly
one on which to work. This problem is referred to as the
“Multi-Armed Bandit” problem because of it’s relevance to a
gambler in front of a bloc of slot machines. Gittins famously
showed in [8] that there exists an “index function,” depending
only on the state of a single process, which can be used to
greedily solve the problem to optimality. Furthermore in the
case of multiple agents, it is shown in [5] that it is optimal
to pursue the k processes with the highest indices.

In this framework, the “state” is that of the processes, as
opposed to that of the agents. In the CPP, “paths” naturally
correspond to processes and we define the state of path i as
the pair (ai, zi) ∈ {0, 1}×R+ where ai indicates whether the
path is being actively searched, and z denotes the “frontier”
of the path. This lets us define the state of the entire problem
as (a, z) ∈ {0, 1}m × Rm

+ . For the treatment that follows,
we will not explicitly track the locations of the agents and
instead assume that there is an agent at frontier of path i if
and only if ai = 1.

The Multi-Armed Bandit problem has some relevant lim-
itations. First, the state of unplayed “arms” (i.e., processes)
only changes when they are played. Secondly, there is no
cost associated with switching between arms. If either of
these features are present, the problem is called a Restless
Bandit Problem (RBP) and Gittins’ indexing policy is no
longer optimal [4].

Nonetheless, Whittle in [18] used a a linear programming
relaxation to derive an index heuristic that is available

4153

if the problem has a property that is dubbed “(Whittle)
indexability.” There is a large and growing body of research
that suggests that RBPs with this property are apparently
easier than the general POMDP. Specifically, this property
gives rise to a relatively simple policy which, in practice,
often has a small optimality gap

The above discussion is an instance of a theoretically
provable property of a problem being used to predict the
performance of a heuristic. Such an approach could provide
attractive ways for tackling problems in PSPACE-hard.

A. Whittle’s index heuristic

For a single process let us define the subsidy-γ problem
as the following MDP. The state space is the state of the
process and there are two actions: the active and passive
actions. For the active action, the transition function is that
of the original process and for the passive action, the state
does not evolve. The rewards are augmented by adding γ to
the reward for the active action (from any state to any state).

Definition 2.1: Let Πi(γ) denote the set of states of
the process for which the active action is optimal in the
subsidy-γ problem. Process i is indexable if Πi(γ) increases
monotonically from the empty set to the entire state space
as subsidy, γ, increases from −∞ to ∞. An RBP is said to
be indexable if each process is indexable.

The Whittle index, γ∗i of an indexable process i in state x
is given by

γ∗i (x) = inf
x∈Πi(γi)

γi. (II.1)

Whittle’s index policy is to always pursue the process for
which γ∗i is minimum. While non-optimal in general, this
heuristic has been extensively examined and has been shown
to perform very well empirically, i.e., within a few percent
of optimal (see e.g., [2], [6], [9]). Furthermore, the heuristic
is asymptotically optimal as m goes to infinity [17]. As a
result, there has been much recent effort into establishing
the indexability of classes of problems.

One of the broadest such results is [10], which considers
the case with discounted rewards and countably many states.
Those authors showed that there exists an equivalent formu-
lation that is indexable if the cost of switching between two
processes can be decoupled into separate “tear-down” and
“set-up” costs, depending only on the state of the processes
being switched from and to, respectively. Although the CPP
is continuous and undiscounted, the switching costs are of
this form: They consist of the distance from the frontier being
left to the origin (a tear-down cost) and the distance from
the origin to the frontier to be explored (a set-up cost).

B. Relaxation

Results establishing indexability, while not requiring that
unplayed arms do not evolve, universally require that the
arms evolve independently. This property is also absent
from the CPP. There is only one goal; finding it on a
particular path tells a great deal about whether it will be
found on a different path. In this paper we prove the Whittle-
indexability of a slightly relaxed problem: we do not insist
that there is exactly one goal. In particular, we assume that

the probabilities of there being a goal at any two locations is
independent. Specifically, for a given prior f(x) on the goal,
we convert the problem into one in which at any point there
is probability f(x)dx of finding a goal in a neighborhood of
dx.

We conjecture that this relaxation does not unduly effect
the quality of the heuristic based on the following rationale.
The search policy is to select the paths with the highest
indices. If the goal has not been found, then the dependence
between different paths can be summarized in a normaliza-
tion constant. Since this constant is shared between paths, the
ordering of the paths will not be affected. Hence the policy
will not be directly affected.

III. INDEXABILITY

We will establish indexability of the relaxed CPP by
constructing a subsidy scheme for each branch that satisfies
Definition 2.1. To do this, we assume that an agent pays a
unit cost per unit distance moved, and we determine a system
of subsidies that make it neutrally profitable for the agents
to conduct the search.

We will define our subsidy, γ, such that an agent is paid
only if it finds the goal. An equivalent formulation (which
would be more semantically consistent with [18], [10]) would
be one in which the reward is unitary and we penalize
moving. We use this definition entirely for the intuitive
appeal of agents bidding on a “search contract” in which
we “pay” the agent to search for us.

Remark 3.1: Trivially, for γ < 0 the set of states for
which it is profitable to move is surely empty since the agent
receives no other rewards.

A. Switching Costs

If an agent switches from path i (with state (1, zi)) to path
j (with state (0, zj)) the agent must move a distance zi + zj

before it can activate path j. This is problematic because
we would like the subsidy to depend only on the state of
the path being activated. We will address this problem by
changing the costs analogously to [9], which has an intuitive
interpretation in our formulation.

We change the costs as follows. For each active path the
agent must maintain a “return counter” that always contains
the cost of returning to the origin. This way when path i
is abandoned, the cost of activating path j is only zj . This
reflects the true costs assuming that the agent will eventually
return to the origin, which does not happen if the agent
finds the goal. Therefore, we also must adjust the reward
as follows. If an agent finds the goal, it gets the payment γ
plus the value in the return counter.

Lemma 3.2: Assume that there is a non-zero probability
of finding the goal on path i.3 From any state, there exists
a sufficiently large, finite subsidy γ < ∞, for which it is
profitable to explore path i.

Proof: Let fi(x) denote the probability density of
finding the goal at location x on path i. Let Fi denote the
cumulative distribution of fi.

3If the there is zero probability, we are free to ignore the path altogether.

4154

The expected cost of exploring path i to distance d is
upper-bounded by 2d. The expected reward will be (F (d)−
F (zi))γ, which is non-zero for some d > zi, by assumption.
For such a d, we can set γ > 2d/(F (d) − F (zi)) which
guarantees that it is profitable to explore path i.

B. Subsidy Scheme

We are interested in finding the minimum subsidy,
γ∗i (ai, zi), at which path i in state (ai, zi) becomes prof-
itable4. Since we will only be considering a single path at a
time, we will drop the subscripts.

For an agent exploring path with state (a, z) we can
compute the expected cost of searching to frontier z′. For
notational compactness let F (x1, x2) denote F (x1)−F (x2).

E[c((a, z), z′)] = 2(1− a)z + (III.1)

α

(∫ z′

z

χf(χ)dχ + (1− F (z′, z))2(z′ − z)

)
In the unrelaxed version of the problem, we know that there
is exactly one goal. Therefore α = (1 −

∑
j F (zj))−1

is a normalization term that depends on the the states of
other paths. For the relaxed problem, α = 1 and we will
subsequently drop it.

This lets us define the minimum subsidy under which any
search is immediately profitable

γ∗(a, z) = inf
z′>z

E[c((ai, z), z′i)]

F (z′i, zi)
. (III.2)

We now define the states, Π(γ), for which search is
immediately profitable under γ.

Π(γ) ≡ {(a, z) s.t. γ ≥ γ∗(a, z)} (III.3)

Remark 3.3: It is clear from Equation III.3 that γ0 ≤
γ1 =⇒ Πi(γ0) ⊆ Πi(γ1).

We proceed by deriving the optimal policy in the subsidy-
γ problem. We can write Bellman’s equation for the the
expected reward of the optimal policy, V ∗

γ , when started
from state (a, z). Unlike Equation I.2, Equation III.4 uses the
non-discounted form, which is well-defined since the optimal
policy must find the goal with probability one.

V ∗
γ (a, z) = max

(
0, sup

z′>z

(
γF (z′, z)− E[c((a, z), z′)]+

(1− F (z′, z))V ∗
γ (1, z′)

))
(III.4)

Lemma 3.4: Assume V ∗
γ (a, z) > 0. For the frontier, z′,

that maximizes Equation III.4, V ∗
γ (1, z′) = 0, i.e.,

V ∗
γ (a, z) = max

(
0, sup

z′>z

(
γF (z′, z)− E[c((a, z), z′)]

))
.

(III.5)

4We will use the word “profitable” to explicitly include the case in which
the expected profit is zero.

Proof: Suppose to the contrary that V ∗
γ (1, z′) > 0

which is maximized by z′′ > z′, i.e.,

V ∗
γ (1, z′) = γF (z′′, z′)−

∫ z′′

z′
χf(χ)dχ +

(1− F (z′′, z′))(2(z′ − z′′) + V ∗
γ (1, z′′))

Expanding Equation III.4 and collecting terms we have

V ∗
γ (a, z) = γF (z′′, z)− 2(1− a)z −

∫ z′′

z

χf(χ)dχ +

(1− F (z′′, z))(2(z − z′′) + V ∗
γ (1, z′′))−

F (z′, z)

(
γF (z′′, z′)−

∫ z′′

z

χf(χ)dχ

)
+

F (z′′, z′)(1− F (z, z′))2(z′ − z′′)

From our assumption that V ∗
γ (a, z′) > 0, the second to last

term must be negative. The last term is non-positive and zero
only if there is no probability of finding the goal between z′

and z′′. We remove these terms and arrive at the inequality:

V ∗
γ (a, z) < 2(1− a)z + γF (z′′, z)−

∫ z′′

z

χf(χ)dχ +

(1− F (z′′, z))(2(z − z′′) + V ∗
γ (1, z′′)).

Since z′, rather than z′′, maximizes Equation III.4, we have
the following contradiction

V ∗
γ (a, z) < γF (z′′, z)− E[c((a, z), z′′)] + V ∗

γ (1, z′′)

V ∗
γ (a, z) ≥ γF (z′′, z)− E[c((a, z), z′′)] + V ∗

γ (1, z′′)

Lemma 3.5: The optimal policy in the subsidy-γ problem
is to search if and only if (a, z) ∈ Π(γ).

Proof: [⇐=] We begin by proving that it is optimal
not to search if (a, z) /∈ Π(γ)

Substituting Equation III.2 into Equation III.5 and letting
γ = γ∗ + δγ ,

V ∗
γ (a, z) = max

(
0, sup

z′>z

(
δγF (z′, z)− E[c((ai, z), z′i)]+

inf
z′′>z

E[c((a, z), z′′)]

F (z′′, z)
F (z′, z)

))
(III.6)

Noting

inf
z′′>z

E[c((a, z), z′′)]

F (z′′, z)
≤

E[c((a, z), z′)]

F (z′, z)
, (III.7)

we can conclude that

V ∗
γ (a, z) ≤ max

(
0, sup

z′>z
(δγF (z′, z))

)
. (III.8)

Since (a, z) /∈ Π(γ) implies δγ < 0, we can conclude that
V ∗

γ (a, z) = 0. Therefore the passive action is optimal.
Proof: [=⇒] We now prove that for (a, z) ∈ Π(γ) it

is optimal to search. We divide this into two cases.

4155

Case 5.1: Let (a, z) ∈ Π(γ) and assume that the infimum
in Equation III.2 is achieved by some z′′ > z

Proof: [Proof of Case 5.1] By assumption,

γ∗(a, z) =
E[c((a, z), z′′)]

F (z′′, z)
.

The supremum in Equation III.6 is over z′ rather than z′′;
hence

V ∗
γ (a, z) ≥ max (0, (δγF (z′′, z))) .

Since (a, z) ∈ Π(γ) implies δγ ≥ 0, we can conclude that
the active action is optimal.

Case 5.2: Let (a, z) ∈ Π(γ) and assume that the infimum
in Equation III.2 is achieved by the limit of some sequence
zi = z∞. We divide this into three sub-cases.

Case 2.1: z∞ = ∞. In this limit, the cost of searching
to zi is unbounded, therefore γ∗ must be unbounded and δγ

cannot be positive. This case cannot occur.
Case 2.2: z < z∞ < ∞

Proof: The expected cost of searching from z to z′ > z
is continuous in z′. Hence the cost of searching the open
interval [z, z∞) is equal to that of searching its closure. At
the same time, the expected reward is non-decreasing in z′.
Therefore this case entails Case 5.1.

Case 2.3: z∞ = z

Proof: We rewrite Equation III.7, with limi→∞ zi =
limdz→0+ z + dz

γ∗(a, z) = lim
dz→0+

E[c((a, z), z + dz)]

f(z)dz

Since supx>0 g(x) ≥ limx→0 g(x) we can rewrite Equa-
tion III.6 as

V ∗
γ (a, z) ≥ max

(
0, lim

dz→0+

(
δγf(z)dz + γ∗(a, z)f(z)dz−

E[c((a, z), z + dz)]

f(z)dz

))
≥ max

(
0, lim

dz→0+
δγf(z)dz

)
.

Since f and dz are non-negative, δγ ≥ 0 implies that it is
optimal to search.
Since these cases are exhaustive, this concludes the proof of
Lemma 3.5

Theorem 3.6: The relaxed CPP is indexable.
Proof: Lemma 3.5 proves that Π(γ) is exactly the set of

states for which the active action is optimal in the subsidy-γ
problem. From Remark 3.1, Lemma 3.2, and Remark 3.3 we
have established that Π(γ) increases monotonically from the
empty set to the entire state space as γ goes from −∞ to
∞, satisfying Definition 2.1.

Corollary 3.7: The Whittle index (defined in Equa-
tion II.1) is exactly γ∗(a, z), given by Equation III.2. This
follows directly from the definition of Π(γ) given by Equa-
tion III.3.

1− pa − pb

pa pb

xa xb1
Path 1 Path 2

Fig. 1. Prior belief for three impulses on two paths.

IV. EXAMPLES

A. Toy example

From the nature of PSPACE-hard problems, any numerical
evaluation is going to be essentially anecdotal. This is
precisely why we have embraced the literature on Whittle
indexability. Nonetheless, we think the following example
provides an intuition while examining an interesting portion
of the problem space. This example will show the heuristic’s
non-optimality, but will also demonstrate that it is a good
approximation.

Suppose that there are two paths and the prior belief
consists of three impulses, as shown in Figure 1. Note
that one impulse is placed at unit distance without loss of
generality.

First, for simplicity, we let pa = pb = 0.25 and let xb =
2 − xa. Let π12, π21, π212 denote the three possible search
policies that search according to the order of their subscripts.
We compute the expected costs5

c12 = (1− pa − pb) + pa(2 + xa) + pb(2 + xb) = 2
c21 = pa(xa) + pb(xb) + (1− pa − pb)(2xb + 1)

= 3− xa

c212 = pa(xa) + (1− pa − pb)(2xa + 1) +
pb(2xa + 2 + xb)

= 1.5 + 1.5xa.

We compute the minimum subsidies

γ∗1 =
(1− pa − pb) + (pa + pb)2

1− pa − pb
= 3

γ∗2 = min
(paxa + (1− pa)2xa

pa
, (IV.1)

paxa + pbxb + (1− pa − pb)2xb

pa + pb

)
= min (7xa, 5.5− 2xa) .

We will later refer to the left and right terms of Equation IV.1
as γ2a and γ2b, respectively.

If we explore path 2 to xa, γ∗2 will change to

γ2ab =
pb(xb − xa) + (1− pb)2(xb − xa)

pb
= 14(1− xa).

Comparing the costs, we can see that policy π212 is
optimal for 0 ≤ xa ≤ 1/3 and policy π12 is optimal for
1/3 ≤ xa ≤ 1. Comparing the subsidies we see that the

5Note that the expected costs are those from the original, unrelaxed
problem.

4156

index policy is optimal except for 1/3 < xa < 3/7. In this
range the worst case is 15/14 of optimal, a sub-optimality
of about 7%.

We now remove the restrictions on pa, pb and xb and
consider all possible priors over three discrete locations on
two paths. We will optimize over the locations and priors in
order to find the greatest sub-optimality.

From this we construct six optimization problems: one for
each possible ratio of the costs. Each problem is subject to
constraints on γ1, γ2a, γ2b, and γ2ab such that the numerator
is the strategy chosen by the index policy. By way of
example, Problem IV.2 assumes that policy π21 is optimal,
but the index policy instead pursues π12.

max
xa,xb,pa,pb≥0

c12

c21
s.t. γ1 < γ2a, γ1 < γ2b,

xa ≤ xb, pa + pb ≤ 1 (IV.2)

To solve these problems we used Matlab’s FMINCON search
using the “active-set” algorithm, with 400 random restarts.
These were divided into four sets of one-hundred cases,
where xa, xb were chosen from an exponential distribution
with scale parameters of 10, 100, 1000, or 10000. The
largest sub-optimality was 38% which occurs at xa = 7.2,
xb = 23.2, pa = 0.56, and pb = 0.33 and when the index
policy chooses strategy π212 although π12 is optimal. Of
course, this does not prove a lower-bound. However, it does
show that if it is possible to achieve greater than 38% sub-
optimality, such cases must be rare if we are unable to find
them using this search technique.

We compare this to the worst-case sub-optimality (over
xa, xb, pa, pb) of the best-possible competitive algorithm. It’s
easy to show that for xa = xb = 1, the best-possible
competitive ratio is three. From Remark 1.1, pa, pb can be
chosen such that this algorithm will be a factor of three from
optimal. Therefore the worst-case is at least this great.

Compared to a factor of three, we can interpret a 38% sub-
optimality as strong performance. Notably however, it a sub-
stantially greater level of sub-optimality than is commonly
reported in numerical studies on indexable problems[2], [6],
[9]. This suggests that the relaxation described in Section II-
B is playing a non-negligible role. Future work will attempt
to characterize this role.

B. Larger example

In this section we compare the best-possible competitive
policy to the index policy for distributions with continuous
support. It is clear that the index policy stands to benefit from
knowledge of the prior. To provide the most fair comparison,
therefore, we will use the least informative distributions:
uniform and exponential.

Since these distributions are continuous at zero we must
modify our definition of the competitive ratio. If we dis-
cretize the region with fidelity ε, the best-possible determin-
istic policy (from [3]) turns at(

m

m− 1

)i

ε. (IV.3)

E
xp

ec
te

d
w

ai
t/

!m

m

Fig. 2. Expected wait times for the uniform prior

E
xp

ec
te

d
w

ai
t/

m

m

Fig. 3. Expected wait times for the exponential prior

For the analysis here we consider the limit of ε → 0, in
which the agent travels a distance of 2m|x| before turning
at x.

The uniform prior with infinite support is improper. In-
stead, we consider uniform probability over finite support `
while taking the limit

lim
`→∞

Ex∼U(0,`)m [w(x)]
`

For the index policy, this evaluates to (m−1/2). For the best-
competitive policy this limit evaluates to 47/18 at m = 2.
For higher values of m we resort to numerical simulation,
the results of which are presented in Figure 2.

Figure 3, shows simulation results for the exponential
prior. In this case we immediately resort to simulation, using
importance sampling to improve the estimate.

4157

In both cases, the index policy significantly outperforms
the competitive policy. This is notable because we selected
priors that we expected to most favor the competitive policy.
These results illustrate the fact that, even with uninformative
priors, minimizing the competitive ratio does not minimize
the expected wait time.

V. CONCLUSION

This paper formulates the Cow Path Problem (CPP) within
the MDP framework and describes an algorithm for finding
policies that minimize the expected search time. While this
algorithm is non-optimal we have proved that the relaxed
CPP is Whittle-indexable, which suggests that the optimality
gap is small. This is in contrast to existing work on the CPP
which predominantly seeks policies with minimal competi-
tive ratios. While these ratios are guarantees, the resulting
algorithms are very conservative. In particular we show that
even with uninformative priors, the policies that minimize
the competitive ratio provide poorer average service than the
index policy developed here.

This paper leverages a growing body of work that identi-
fies sub-classes of the POMDP that, empirically, are not as
hard as the general case. In addition, we contribute to this
body by proving the Whittle-indexability of a
• transition system with terminal states and non-

discounted rewards, and with
• set-up and tear-down costs in a continuous domain.
Although it is a difficult path planning problem, the CPP

is not a particularly dynamic problem. Future work will
consider a larger class of stochastic dynamic programming
problems that arise in on-line decision-making. In particular,
we hope to demonstrate the applicability of Whittle’s index
and other well-studied heuristics to more general Dynamic
Vehicle Routing Problems.

ACKNOWLEDGMENTS

This research was done with support from the Michi-
gan/AFRL Collaborative Center on Control Sciences,
AFOSR grant no. FA 8650-07-2-3744. Any opinions, find-
ings, and conclusions or recommendations expressed in this
publication are those of the authors and do not necessarily
reflect the views of the supporting organizations.

REFERENCES

[1] S. Albers. Online algorithms: a survey. Mathematical Programming,
97(1):3–26, 2003.

[2] P. S. Ansell, K. D. Glazebrook, J. Niño-Mora, and M. O’Keeffe.
Whittle’s index policy for a multi-class queueing system with con-
vex holding costs. Mathematical Methods of Operations Research,
57(1):21–39, 2003.

[3] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching
in the plane. Information and Computation, 106(2):234–252, October
1993.

[4] J. S. Banks and R. K. Sundaram. Switching costs and the gittins index.
Econometrica, 62(3):687–94, 1994.

[5] D. Bertsimas and J. Niño-Mora. Conservation laws, extended poly-
matroids and multiarmed bandit problems; a polyhedral approach to
indexable systems. Mathematics of Operations Research, pages 257–
306, 1996.

[6] D. Bertsimas and J. Niño-Mora. Restless bandits, linear programming
relaxations, and a primal-dual index heuristic. Operations Research,
pages 80–90, 2000.

[7] Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and
Gerhard Trippen. Competitive online approximation of the optimal
search ratio. The 12th Annual European Symposium on Algorithms,
pages 335—346, 2004.

[8] J. C. Gittins. Bandit processes and dynamic allocation indices. Journal
of the Royal Statistical Society, Series B, 41(2):148–177, 1979.

[9] K. D. Glazebrook, H. M. Mitchell, and P. S. Ansell. Index policies
for the maintenance of a collection of machines by a set of repairmen.
European Journal of Operational Research, 165(1):267–284, August
2005.

[10] K. D. Glazebrook, D. Ruiz-Hernandez, and C. Kirkbride. Some
indexable families of restless bandit problems. Advances in Applied
Probability, 38(3):643, 2006.

[11] P. Jaillet and M. R. Wagner. The Vehicle Routing Problem: Latest
Advances and New Challenges, chapter Online Vehicle Routing Prob-
lems: A Survey. Operations Research Computer Science Interfaces.
Springer, 2008.

[12] M. Y. Kao and M. L. Littman. Algorithms for informed cows. In
AAAI-97 Workshop on On-Line Search, 1997.

[13] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of markov
decision processes. Mathematics of operations research, pages 441–
450, 1987.

[14] N. Roy and S. Thrun. Coastal navigation with mobile robots. Advances
in Neural Processing Systems, 12:1043–1049, 1999.

[15] S. Suri, E. Vicari, and P. Widmayer. Simple robots with minimal
sensing: From local visibility to global geometry. The International
Journal of Robotics Research, 27(9):1055, 2008.

[16] B. Tovar, L. Freda, and S. M. LaValle. Using a robot to learn
geometric information from permutations of landmarks. Contemporary
Mathematics, 438:33–45, July 2007.

[17] R. Weber and G. Weiss. On an index policy for restless bandits.
Journal of applied probability, 27(3):637–648, 1990.

[18] P. Whittle. Restless bandits: Activity allocation in a changing world.
Journal of Applied Probability, 25:287–298, 1988.

4158

