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l  Traditional data is one dimensional. 
l  Multimedia data is multi dimensional. 

–  Ex. Maps are 2D 

–  In general, if a given information has k features, it 
can be represented by a k-dimensional space 

Challenge.... 

A 

Maria Luisa Sapino (BDM 2018) 

l  Given a set of point in k-dimensional space 
–  Exact match: 

l  find if a given point is in the set or not 

–  Nearest neihgbor: 
l  find the closest point to a given point 

–  Range search: 
l   Given a region (rectangle or circle), find all the points in the 

given region 

What kind of queries we can 
expect? 
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General approach 

l  Divide the space into regions 

l  Insert the new object into the corresponding region 

l  If the region is full, split the region 

l  retrieval: determine which regions are required to 
answer a given query and limit the search to these 
regions 
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Is there an alternative to multi-
dimensional space 
decomposition? 

l  YES! 
–  Convert a given k-D space to 1D space 
–  We know how to handle 1D space!! 

l  Don’t we loose information?? 
–  Yes, but if we are careful, we can minimize the 

information loss. 
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Space filling curves 

l  Convert a k-D space into 1D space such that 
points that are close  to each other in k-D 
space are also close to each other in 1-D 
space 
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Row order/column order 

0    1    2    3   4    5   6   7  

0    1    2    3   4    5   6   7  

0    1       2      3       4       5      6     7  

8    9       10     11    12    13     14    15  
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Row order/column order 

0    1    2    3   4    5   6   7  

0    1    2    3   4    5   6   7  

0    1       2      3       4       5      6     7  

8    9       10     11    12    13     14    15  

N 
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Row order/column order 

0    1    2    3   4    5   6   7  
0    1    2    3   4    5   6   7  

0    1       2      3       4       5      6     7  

8    9       10     11    12    13     14    15  
Problems:  

0-8 
7-8 
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Row prime order/column prime 
order 

0    1    2    3   4    5   6   7  

0    1    2    3   4    5   6   7  

0    1       2      3       4       5      6     7  

15    14    13     12    11    10     9      8  
Problems:  

0-15 
Not a 

problem:  
7-8 
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Cantor diagonal order 

0    1    2    3   4    5   6   7  

0    1    2    3   4    5   6   7  

0 5 1 

2

3 

4 
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Z-order curve (hilbert curve) 

0    1    2    3   4    5   6   7  
0    1    2    3   4    5   6   7  
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Z-order curve (hilbert curve) 

0    1    2    3   4    5   6   7  

0    1    2    3   4    5   6   7  

0 5 1 

2 3 

4 

Easy to compute (bit-shuffling):  1(001) X 2 (010) = 6 (000110) 

6 
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Z-order curve (hilbert curve) 

0    1    2    3   4    5   6   7  

0    1    2    3   4    5   6   7  
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Z-order curve (hilbert curve) 

0    1    2    3   4    5   6   7  
0    1    2    3   4    5   6   7  

01001X 

0110XX 

Range search can be implemented using tries… 
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Peano-hilbert curve 

0    1    2    3   4    5   6   7  

0    1    2    3   4    5   6   7  

0 

5 

1 

2

3 

4 

6 
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Indexing 

l  What are we indexing??? 
–  Text à tries 
–  Numbers, text à B-trees, B+ trees, B*trees 
–  Imagesà??????????? 

l  Which feature are we going to index on? 
–  Color? Texture? Time? (image series) 

l  What do we need to specify? 
–  Lines? Points? Space? 
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How do we index points? 

l  Given 
–  a space of N-dimensions 
–  M points 
–  a distance function between points 

l  we can use multidimensional index structures 
–  k-d trees 
–  point quadtrees 
–  MX quadtrees 
–  R-trees 
–  TV-trees 
–  X-trees 
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So… 

l  we can answer queries of the form 
–  Given  

l  a point X in N-dimensional space 
 Find  

l  all points Y that are in its proximity (d(X,Y) < ε) 
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…thus… 

l  If  
–  we represent any feature as a point in N-dimensional space 

(color, texture, shape, etc.) 
–  we define a distance function between those points  

l  (larger distanceàlower similarity) 

l  Then  
–  we can find media object with similar properties. 
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Populate database 

ImgA 

ImgB 
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Populate database 

ImgA 

ImgB 
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Map query image 

ImgA 

ImgB 

query 
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Range search 

δ 

ImgA 

ImgB 

query 

A match 
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Grid File 

l  Every cell is  one disk page 

1/2 

1/2 3/4 1 
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Wasted directory space!!!! 

Grid File 

l  Every cell is  one disk page 

1/2 

1/2 3/4 1 

Point Trees 
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How can we divide space? 

l  Let us assume that the space is 2-d 
l  There are many ways to divide the space 

–  Fixed size squares 
–  Triangles 
–  Rectangles 
–  Arbitrary space decomposition 

•   Each line divides the space into two 
•   Line: n1x+n2y =c 
•   Regions:   n1x+n2y >=c 

                            n1x+n2y < c 

A 

B 

C 
D 

E 
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Point quadtrees (Finkel and Bentley 74) 

l  Key features: 
–  Every node in a point quadtree implicitly represents a 

rectangular region. 
–  Each node contains an explicit point labeling it. 
–  Root represents the whole region. 
–  Each node’s region is split into 4 parts (“quadrants”) by 

drawing a vertical and a horizontal line through the point 
labeling the node.  

–  Each node has 4 children corresponding to the 4 
“quadrants” above. 
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Point quadtrees: example 

(15,10) 

Represents whole region 

(15,10) 

0,0 
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Point quadtrees: example 

(10,14) 

(10,14) 
NW 

(15,10) 

(15,10) 

0,0 
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Point quadtrees: example 

(10,14) 

(10,14) 
NW 

(15,10) 

(15,10) (15,10) 

(18,5) 

(18,5) 
SE 

0,0 
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Point quadtrees: example 

(10,14) 

(10,14) 
NW 

(15,10) 

(15,10) (15,10) 

(18,5) 

(18,5) 
SE 

(2,12) 

(2,12) 

SW 

0,0 
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Observation 

l  The structure of the tree depends on the insertion 
order!!!! 

l  Exercise: try to insert nodes in the following order       
 (18,5)  (15,10), (2,12)  (10,14)           

 and compare the resulting tree with the previous one. 



12 

Maria Luisa Sapino (BDM 2018) 

Key Points 

l  Suppose a point quadtree has N nodes in it. 
l  Worst case height = N. 
l  Worst case insertion time = N. 
l  Other operations are: 

–  Deletion: delete a point 
–  Range query: find all points within a given region 
–  NN query: find the nearest neighbor (or M nearest 

neighbors) of a given point. 
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Deletion 

l  Suppose T is the root of a point quadtree and 
you want to delete (x,y). 

l  Steps: 
–  Find (x,y) by doing a search. 
–  If it is a leaf node, then simply set the appropriate 

link field of its parent to nil (and return the node to 
available storage). 

–  What if it is not a leaf ? 
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Delete (15,10) 

(10,14) 

(10,14) 
NW 

(15,10) 

(15,10) (15,10) 

(18,5) 

(18,5) 
SE 

(2,12) 

(2,12) 

SW 

0,0 



13 

Maria Luisa Sapino (BDM 2018) 

Delete (15,10) 

(10,14) 

(10,14) 
NW 

(15,10) 

(18,5) 

(18,5) 
SE 

(2,12) 

(2,12) 

SW 

0,0 

Maria Luisa Sapino (BDM 2018) 

Delete (15,10) 

(10,14) 

(10,14) 
NW 

(15,10) 

(18,5) 

(18,5) 
SE 

(2,12) 

(2,12) 

SW 

0,0 

? 

? ? 
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Let us choose  (2,12) 

(10,14) 

(10,14) 
NE 

(18,5) 

(18,5) 
SE 

(2,12) 

(2,12) 

0,0 
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K-Nearest Neighbor Search 

l  This is the most important operation. 
l  Given a query point Q, find the K closest (to 

Q) points in the point quadtree. 
l  For simplicity, we will focus on K=1. Easy to 

generalize to K > 1. 

Maria Luisa Sapino 
(BDM 2018) 

K-NN Search 

l  S – a set 
l  A metric d: S x S -> N is a mapping s.t. 

–  d(x,x) = 0 
–  d(x,y) = d(y,x) 
–  d(x,y) + d(y,z) >= d(x,z) 

l  We extend d to a function from S x2S -> N as 
follows: 
–  d(x,R) = MIN{d(x,y) | y is in R } 

Maria Luisa Sapino 
(BDM 2018) 

K-NN Search 

l  Each node N implicitly represents a region N.reg. 
l  Algorithm for NN search works as follows. 

–  Maintain variable bestdist (initialized to      ) 
–  Maintain variable bestSOL (initialized to NIL) 
–  Algorithm visits nodes starting from root. 
–  Everytime it visits a node N, it examines the point labeling 

that node. If d(Q,N.point) < bestdist, it updates bestdist and 
bestSol. Otherwise it continues. 

–  Only nodes N such that d(Q,N.reg) < bestdist are visited. 
WHY? 

∞
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NN Search example 

(15,10) 

Q = (9,14) bestdist = ∞,      bestSOL = NIL 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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NN Search example 

(15,10) 

Q = (9,14) Visit root because d(Q,Root.reg) = 0 < bestDist 
Set bestdist = SQRT(52), bestSOL = (15,10) 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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NN Search example 

(15,10) 

Q = (9,14). d(Q,Root.NW.Reg) = 0 < SQRT(52). 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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NN Search example 

(15,10) 

Q = (9,14). d(Q,Root.NW.Reg) = 0 < SQRT(52). 
d(Q,Root.SE.Reg) is not less than SQRT(52) – so pruned away. 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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NN Search example 

(15,10) 

Q = (9,14). d(Q,(10,14)) = 1.  
Bestdist = 1, bestsol = (10,14) 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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NN Search example 

(15,10) 

Q = (9,14). d(Q,Root.NW.NW.reg) = 0 < bestDist. 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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NN Search example 

(15,10) 

Q = (9,14). So must search. D(Q,(2,16)) > 1. 
Algorithm terminates as no more nodes to search. 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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K-NN Search 

l  Want to find k-close points to Q. 
l  Maintain an array SOL[1,..,K] containing K 

points. Initialize all entries in array to NIL. 
l  SOL[1] is the closest point to Q found so far, 

SOL[2] is the second closest, etc. 
l  Let bestdist = dist(Q,SOL[K])). 
l  Can prune a node N if dist(Q,N.Reg) >= 

bestdist. 

Maria Luisa Sapino 
(BDM 2018) 

Range Search 

l  Done for the sake of completeness. 
l  Given query point Q and a distance R, find all points in the tree 

that are within R units of Q. 
l  The query defines a circular region, C(Q,R) of radius R 

centered at point Q.  
l  Prune node N if N.reg does not intersect C(Q,R). 
l  Sometimes, we modify the above to a weaker pruning 

condition: Prune node N if N.reg does not intersect bb(C(Q,R)) 
where bb is the bounding box operator. 

l  Second condition also yields correct answer, but may prune 
less. 



18 

Maria Luisa Sapino 
(BDM 2018) 

Range Search example 

(15,10) 

Q = (9,14), R = 3, SOL = {}. Region of root intersects 
C(Q,R) so “visit” the root. 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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Range Search example 

(15,10) 

Q = (9,14), R = 3. D(Q,(15,10)) > 3. SOL stays {}. 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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Range Search example 

(15,10) 

Q = (9,14), R = 3.  
D(Q,Root.SE) > 3 so prune SE child. 
D(Q,Root.NW) = 0. Visit NW child. 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 
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Range Search example 

(15,10) 

Q = (9,14), R = 3.  
Visit NW child. D(Q,(10,14)) < 3. SOL = {(10,14)} 
D(Q,Root.NW.NW) = 0. So visit NW child of (10,14) 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 

Maria Luisa Sapino 
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Range Search example 

(15,10) 

Q = (9,14), R = 3.  
Visit NW child. D(Q,(2,16)) > 3. SOL = {(10,14)} 
No more nodes to visit so return SOL and halt. 

(10,14) 

(10,14) 

NW 

(15,10) 

(18,5) 

(18,5) 

SE 

(2,16) 

(2,16) 

NW 

Maria Luisa Sapino 
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Problems with Point Quadtrees 

l  Deletion is slow. 
l  Tree can be highly unbalanced. 
l  Size of regions associated with nodes can 

vary dramatically. 
l  All these factors make the time taken to 

compute NN and range queries 
unpredictable. 
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MX quadtrees 

l  In point quadtrees, the region is split by 
drawing a vertical and a horizontal line 
through the point labeling node N. 

l  In MX-quadtrees,  
–  the entire space is a 2n x 2n matrix. 
–  region is split by drawing a vertical and a 

horizontal line through the center of the region.  

Maria Luisa Sapino (BDM 2018) 

MX quadtrees: example 

Empty region 

Maria Luisa Sapino (BDM 2018) 

MX quadtrees: example 

Insert (1,4) 

NE 

NE 

(1,4) 
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MX quadtrees: example 

Insert (1,2) 

NE 

NE 

(1,4) 

NW 

NE 

(1,2) 
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MX quadtrees: example 

Insert (3,2) 

NE 

NE 

(1,4) 

NW 

NE 

(1,2) 

SW 

NE 

(3,2) 
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MX-quadtrees: salient features 

l  Each node represents a region. 
l  Root (level 0)  represents 2n x 2n region. 
l  Nodes at level j represent 2n-j x 2n-j region. 
l  Points label leaf nodes (at level n). 
l  Insertion takes time O(n). 
l  So does search for a point. 
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MX-Quadtrees: deletion 

l  Very easy to delete a point. 
l  First search for the point (which must be a 

leaf) and delete the leaf. 
l  If the parent now has 4 empty child fields, 

then delete the parent. And repeat as long as 
possible. This process is termed 
“collapsing”. 
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PR-quadtrees 

l  MX-quadtree works well if the data is discrete 
–  otherwise, it may need to use buckets, which may 

increase search time 
l  PR-quadtree (point region quadtree) 

assumes a continous space. 

Structure is independent of 
insertion order 
 
Deletion is easy 
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PR-quadtrees 

l  MX-quadtree works well if the data is discrete 
–  otherwise, it may need to use buckets, which may 

increase search time 
l  PR-quadtree (point region quadtree) 

assumes a continous space. 

Structure is independent of 
insertion order 
 
Deletion is easy 

BD-trees 
minimize the 

waste of 
space 



23 

Maria Luisa Sapino (BDM 2018) 

KD-trees 

l  Deficiencies of quadtree: 
–  each node requires k comparisons 
–  each leaf contains k null pointers 
–  node size gets larger as k increases 

Maria Luisa Sapino (BDM 2018) 

KD-trees 

l  Deficiencies of quadtree: 
–  each node requires passk comparisons 
–  each leaf contains k null pointers 
–  node size gets larger as k increases 

l  Solution: KD-tree 
–  the tree is binary whatever k is!!! 
–  each node has two pointers only 

Maria Luisa Sapino 
(BDM 2018) 

K-d trees 

l  Used to store K-dimensional data, I.e. points 
of the form (x0,…,xK-1) 

l  Assuming the root is a level 0 node, each 
node at level i discriminates on x i mod K. 

l  Always split region associated with a node 
into two parts. 

l  We now focus on K=2.  
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2-d-trees 

l  Structure of a node in a  2-d-tree 
–  nodetype =record 

l  INFO: infotype;   (information content. It depends on the 
application domain ) 

l  xcoord:real; ycoord:real; (coordinates of the point 
associated to the node) 

l  Llink: @nodetype; 
l  Rlink: @nodetype; 

–  end 

Maria Luisa Sapino 
(BDM 2018) 

2-d-tree  

 
l  2-d tree  is a binary tree such that: 

–  If N is a node such that level(N) is even , then for every node  
M in the subtree rooted at  N.Llink, and for every node  P in 
the subtree rooted in  N.Rlink,  
l  M.xcoord  < N.xcoord       P.xcoord>= N.xcoord 

–  If N is a node such that level(N) is odd , then for every node  
M in the subtree rooted at  N.Llink, and for every node  P in 
the subtree rooted in  N.Rlink,  
l  M.ycoord  < N.ycoord        P.ycoord>= N.ycoord 

Maria Luisa Sapino 
(BDM 2018) 

l  Every node partitions the space in 2 parts: 

–  Nodes whose level is even, implicitly draw a 
vertical line, x=xcoord, 

–  Nodes whose level is odd, implicitly draw a 
horizontal line, y=ycoord. 

2-d-tree (notes) 
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KD-trees 

Maria Luisa Sapino (BDM 2018) 

KD-trees 

Maria Luisa Sapino (BDM 2018) 

KD-trees 
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KD-trees 

Maria Luisa Sapino (BDM 2018) 

KD-trees 

Maria Luisa Sapino (BDM 2018) 

KD-trees 
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KD-trees 

NW 

            

SE 

SW 

            

            

            

                        

SW NE 
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KD-trees 

NW 

            

SE 

SW 

            

            

            

                        

SW NE 

Maria Luisa Sapino 
(BDM 2018) 

2-d-tree (example) 

A( 19, 45) 

S (4,4) D(40, 50) 

M(38,38) 

T(54,40
) 

level 0 

level 1 

level 2 

level 3 
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range-queries 
 

l  Given a point (xc, yc) and a distance d, find the set of 
all points (x,y) such that (x,y) lies within distance d of 
(xc, yc). 

–  Each node N implicitly represents a region RN , constrained 
by N’s coordinates and its parent’s coordinates. 

–   If the circle specified in the query has no intersection with 
RN ,then there is no point searching the subtree rooted at N. 

–  example: search for the circle with center (35,46)and  radius  
9.5    (returned: M(38, 38)) 

Maria Luisa Sapino 
(BDM 2018) 

K-d-tree,  k>2 

l  Extensions of  2-d trees, in which 
–  Fields xcoord and ycoord in the definition of the 

node are replaced by a single field COORD, a 
vector of k elements. 
l  For every node N, let i=level(N) mod k. 
l  For every node M in N’s left subtree: 

–  M.VAL[i] < N.val[i] 
l  For every node M in N’s right  subtree: 

–  M.VAL[i] >= N.val[i] 

Maria Luisa Sapino 
(BDM 2018) 

…notes 

l   k-d trees are easy to implement 
l  A tree with  k nodes can have height k 

–  --> insertion and deletion can be expensive 

l   range searching costs, in the worst case, 
O(k  n 1-1/k) 
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R-trees 

l  R-trees are used to store two dimensional 
rectangle data. 

l  They can be easily generalized to higher 
dimensions. 

l  R-trees themselves generalize the well 
known B-trees. 
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Node capacity 

l  Each node in a R-tree can contain upto N 
rectangles. 

l  But in addition, each node must contain at 
least N/2 rectangles.   

l  We will assume henceforth that N >= 4. 

Maria Luisa Sapino (BDM 2018) 

Node structure 

l  Each node has between N/2 and N 
rectangles. 

l  Like a B-tree: 
–  All leaves are at the same level 
–  Root has at least two children unless it’s a leaf 
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Node properties 

l  Each node implicitly represents a region. 
l  Root represents the whole space. 
l  The region of a node N, N.reg, is the 

bounding box of the rectangles stored at that 
node. 

l  Unlike quadtrees, it is possible for regions of 
siblings to intersect. 
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Example R-tree 

a 
a 

b 

b 
c 

c 
d 

d 

Maria Luisa Sapino (BDM 2018) 

Example R-tree 

a 
a 

b 

b 
c 

c 
d 

d 

e 

No space in root ! Must split 
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Example R-tree 

a 

b 

c 

d 

e 

Minimize the sum of the areas of the two BRs. 

g1 g2 

c d e a b 
g1 

g2 

Maria Luisa Sapino (BDM 2018) 

Example: Let max size be 3 

Maria Luisa Sapino (BDM 2018) 

How do we split??? 
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How do we split??? 

Minimize overlap of the BRs 

Maria Luisa Sapino (BDM 2018) 

How do we split??? 

Minimize overlap of the BRs 

This search 
range can not 
be quickly 
pruned 

Maria Luisa Sapino (BDM 2018) 

How do we split??? 

Minimize total area 
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How do we split??? 

Minimize total area 

This search 
range requires 
access to two 
pages!!!! 

Maria Luisa Sapino (BDM 2018) 

Insertion (similar to B-trees) 

PAGE 

Step 1: search 
the appropriate 
page 

Maria Luisa Sapino (BDM 2018) 

Insertion (similar to B-trees) 

PAGE 

Step 1: search 
the appropriate 
page 

Step 2: if  the 
page is full 
split and push-
up  
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Insertion (similar to B-trees) 

PAGE 

Step 1: search 
the appropriate 
page How about deletion?? 

Step 2: if  the 
page is full 
split and push-
up  

Maria Luisa Sapino (BDM 2018) 

R+-tree 

l  Overlaps are bad….. 

l  ..so, let’s eliminate overlaps 

Maria Luisa Sapino (BDM 2018) 

Overlap in R-tree 

a 

b 

c 

d 

e 

The two BRs are overlapping. 

g1 g2 

c d e a b 

g1 

g2 

f f 
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No-overlap in R+-tree 

a 

b 

c 

d 

e 

The two BRs are not-overlapping. 

g1 g2 

c d e a b 

g2 

f2 f2 

g1 

f1 f1 

Maria Luisa Sapino (BDM 2018) 

Other range/region index 
structures 

l  Range-tree, 2D-range tree 
–  Precise, too much overhead 

l  MX-CIF quadtree 
–  Regular division 
–  Each rectangle is associated with the quadtree-page which 

covers it entirely 

Nearest neighbor search 

l  ..no range given 
–  first pick a (random) object o ∈ D and compute the distance 

dist(q, o)….this is the first nearest neighbor candidate. 
–  start a range search on the hierarchy using the range, r = 

dist(q, o). 
–  whenever you find a data object o such that dist(q, o) < r, 

where r is the current nearest neighbor range, pick o is as 
the new nearest neighbor candidate 

l  Set dist(q, o) as the new range, r’ 

Maria Luisa Sapino (BDM 2018) 
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Nearest neighbor search 

l  ..great, but in which order do we visit the 
pages? 

l  ..how can we prune the pages that we have 
not visited yet most effectively?? 

Maria Luisa Sapino (BDM 2018) 

Nearest neighbor search 

l  Given q and MBR M 
–  minDist(q,M) 
–  minimum possible distance between the query and the objects 

contained within the MBR 
–  minimum distance between q and any of the faces of M 

l  optimistic; yet minDist based ordering of the MBRs 
provides good pruning opportunities. 

Maria Luisa Sapino (BDM 2018) 

minDist based ordering 

MBR1 
MBR3 

MBR2 

q 

1 
2 3 

Maria Luisa Sapino (BDM 2018) 
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minDist based ordering 

MBR1 
MBR3 

MBR2 

q 

1 

Maria Luisa Sapino (BDM 2018) 

minDist based pruning 

MBR1 
MBR3 

MBR2 

q 

1 

Maria Luisa Sapino (BDM 2018) 

minMaxDist based pruning 

l  Given q and MBR M 
–  minMaxDist(q,M) 
–  upperbound on the distances  
–  minimum among 

l  maximum distances  
–  on the closest faces of M on each dimension 

Maria Luisa Sapino (BDM 2018) 
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minMaxDist based pruning 

MBR2 

q 

minDist(q,MBR2) 

MBR1 
MBR3 

Maria Luisa Sapino (BDM 2018) 

minMaxDist based pruning 

MBR2 

q 

minMaxDist(q, MBR2) 

minDist(q,MBR2) 

MBR1 
MBR3 

Maria Luisa Sapino (BDM 2018) 

minMaxDist based pruning 

MBR2 

q 

minDist(q,MBR2) 

We know that there is a data 
point somewhere on this edge, 
but we don’t know where 

MBR1 
MBR3 

minMaxDist(q, MBR2) 

Maria Luisa Sapino (BDM 2018) 
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minMaxDist based pruning 

MBR2 

q 

minDist(q,MBR2) 

We know that there is a data 
point somewhere on this edge, 
but we don’t know where 

MBR1 
MBR3 

minMaxDist(q, MBR2) 

Maria Luisa Sapino (BDM 2018) 

MBR2 

Case 1: 
r < minDist(q,M) ----- prune MBR 

MBR2 

q 

minDist(q,MBR2) 

minMaxDist(q, MBR2) 

Maria Luisa Sapino (BDM 2018) 

Case 2: r > minMaxDist(q,M)  
--- guaranteed a nearest neighbor! 

MBR2 

q 

minDist(q,MBR2) 

We know that there is a data 
point somewhere on this edge, 
but we don’t know where 

minMaxDist(q, MBR2) 

Maria Luisa Sapino (BDM 2018) 
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Case 2: r > minMaxDist(q,M)  
--- tighten the search range! 

MBR2 

q 

minDist(q,MBR2) 

We know that there is a data 
point somewhere on this edge, 
but we don’t know where 

minMaxDist(q, MBR2) 

Maria Luisa Sapino (BDM 2018) 

Case 3:  
minDist(q,M) <= r <= minMaxDist(q,M) 
maybe….we need to look into the 
MBR! 

MBR2 

q 

minDist(q,MBR2) 

We know that there is a data 
point somewhere on this edge, 
but we don’t know where 

minMaxDist(q, MBR2) 

Maria Luisa Sapino (BDM 2018) 

Nearest neighbor search 

l  Cannot prune an MBR as long as 
 minDist(q,M) <= r <= minMaxDist(q,M) 

 
l  downward pruning: discard M if there exists M’ s.t. 

  minDist(q,M) > minMaxDist(q,M’) 
l  downward pruning: prune candidate object o if there exists  M s.t. 

  dist(q,o) =r > minMaxDist(q,M) 
l  upward pruning: M is discarded if the current candidate is s.t. 

  minDist(q,M) > r = dist(q,o) 

Maria Luisa Sapino (BDM 2018) 
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Nearest neighbor search 

l  What is we are looking for more than one, 
say k,  nearest neighbors? 
–  Maintain a list of k candidates in the memory 
–  Always prune the search space using the current 

kth best candidate 
–  When you find an object better than the current kth 

best candidate 
l  Drop the current kth best candidate 
l  Include the new object in the list of k candidates  
l  Identify the new kth best candidate 

Maria Luisa Sapino (BDM 2018) 

Other range/region index 
structures 

l  Range-tree, 2D-range tree 
–  Precise, too much overhead 

l  MX-CIF quadtree 
–  Regular division 
–  Each rectangle is associated with the quadtree-page which 

covers it entirely 

Maria Luisa Sapino (BDM 2018) 

X-tree 

l  Like R-trees, but 
–  change the page size based on the depth to 

ensure that there is larger fanout higher in the 
tree structure 

l  A larger page size means multiple disk pages 
that are consecutively stored  
–  so, no “page seek” penalty during disk access.  

Maria Luisa Sapino (BDM 2018) 
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Dimensionality curse 

l  Exponential growth in the number of pointers 
needed, wasted storage,  

l  Exponential suqueries (quadtrees) 
l   Larger MBRs means smaller fanout in trees 

and this is bad 

Maria Luisa Sapino (BDM 2018) 

Pyramid tree 

l  If data is uniformly distributed, pages are likely to be 
of the same volume  

. 
Maria Luisa Sapino (BDM 2018) 

Pyramid tree 

l  If data is uniformly distributed, queries likely to avoid 
thin pages, reducing the average access time 

good 

bad 

. 
Maria Luisa Sapino (BDM 2018) 
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TV trees (telescopic vector trees) 
(Lin, Jagadish, Faloutsos, VLDB Journal, 1994) 

l  Based on classification idea 
l  Dimensionality curse: R-trees do not work for large 

numbers of dimensions 
l  Idea: 

–  not all features are equally important 
–  order  features based on importance (discrimination power) 
–  use as little features as possible 
–  “contract” and “extend” feature vectors based on need 

 

Maria Luisa Sapino (BDM 2018) 

Intuition 

Classification requires less features at the higher levels than it 
 uses at the lower levels 

Transportation vehicle 

Air  Sea Land 

  jet-engine     propeller road land 

0-features 

1-feature 

2-features 

Maria Luisa Sapino (BDM 2018) 

Cost of a dimension 

l  Every rectangle has to have values 
describing all its dimensions  
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Cost of a dimension 

l  Every rectangle has to have values 
describing all its dimensions  

Disk Page 

Disk Page 

vs. 

Maria Luisa Sapino (BDM 2018) 

TV-trees 

l  Hierarchical 
–  Leaves: objects (documents) 
–  Internal nodes: Minimum Bounding Regions 

l  Higher fan-out at the root 
l  Lower fan-out at the leaves (or lower levels) 

Maria Luisa Sapino (BDM 2018) 

Node structure in TV-trees 

l  In R-trees, every node is a hyper-rectangle 

l  In TV-trees, every node has  
–  a center (in k-dimensions) 
–  a radius (defined in n-dimensions) 

f1 f2 … fk fk+1 … fk+n … …. …. 

Feature importance 

center radius unused 
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Node structure in TV-trees 

l  In R-trees, every node is a hyper-rectangle 

l  In TV-trees, every node has  
–  a center (in k-dimensions) 
–  a radius (defined in n-dimensions) 

f1 f2 … fk fk+1 … fk+n … …. …. 

center radius unused 

contract extend 

n stays 
constant!!! 

Maria Luisa Sapino (BDM 2018) 

TV trees: example 

• C, the center, has only one dimension, x 
• Radius has only one dimension, y  

C 

r 

r 

Maria Luisa Sapino (BDM 2018) 

TV trees: example 

• C, the center, has only one dimension, x 
• Radius has only one dimension, y  
• .....any z is okay 

C 

r 

r 
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TV trees: extension example 

• C, the center, has only two dimensions, x,y 
• Radius has only one dimension, z  

C 
r 

r 

Maria Luisa Sapino (BDM 2018) 

TV trees: extension example 

• C, the center, has only two dimensions, x,y 
• Radius has only one dimension, z  
• ....any z is not okay!!!!! 

C 
r 

r 

Maria Luisa Sapino (BDM 2018) 

Drawback 

l  Information about the behaviour of single 
attributes, e.g., their selectivity,  is required 
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X-tree 

l  Like R-trees, but 
–  change the page size based on the depth to 

ensure that there is larger fanout higher in the 
tree structure 

l  A larger page size means multiple disk pages 
that are consecutively stored  
–  so, no “page seek” penalty during disk access.  

Maria Luisa Sapino (BDM 2018) 

Dimensionality curse 

l  Exponential growth in the number of pointers 
needed, wasted storage, exponential 
subqueries (quadtrees) 

l   Larger MBRs means smaller fanout in trees 
and this is bad 

l  …and… 

Maria Luisa Sapino (BDM 2018) 

Dimensionality Curse 

l  Consider a query point and three alternative 
ranges: 
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Dimensionality Curse 

l  Consider a query point and three alternative 
ranges: 

Volume of the  
innermost sphere: 

(4/3)πr3  

Volume of the  
second slice: 
(4/3)π((2r)3 –r3) 

Volume of the  
third slice: 
(4/3)π((3r)3 –(2r)3) 

Maria Luisa Sapino (BDM 2018) 

Dimensionality Curse 

l  In n-dimensional space, if the number of 
points in the inner most sphere is I, then 
–  number of points in the second slice is O(2n-1 I) 
–  number of points in the third slice is O(3n-1 I) 
–  number of points in the fourth slice is O(4n-1 I) 

l  This means that most of the points lie in the 
outermost slice!!!! 

Maria Luisa Sapino (BDM 2018) 

Pyramid trees (Berchtold, Bohm, Kriegel, SIGMOD98) 

l  Motivation: drawbacks of already existing 
multidimensional index structures 
–  Querying and indexing techniques which provide 

good results on  
l  low-dimensional data do not perform sufficiently well on 

multi-dimensional data (curse of dimensionality) 

–   high cost for insert/delete operations 
–  Poor support for concurrency control/recovery 
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Pyramid tree 

l  Space-filling curves were using B-trees 
l  Pyramid trees also do the same..without space filling 

curves 

Maria Luisa Sapino (BDM 2018) 

Pyramid tree 

l  Space-filling curves were using B-trees 
l  Pyramid trees also do the same..without space filling 

curves 

Maria Luisa Sapino (BDM 2018) 

Pyramid tree 

l  Space-filling curves were using B-trees 
l  Pyramid trees also do the same..without space filling 

curves 
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Pyramid tree 

l  Space-filling curves were using B-trees 
l  Pyramid trees also do the same..without space filling 

curves 
1 

4 
3 

2 
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Pyramid tree 

l  Space-filling curves were using B-trees 
l  Pyramid trees also do the same..without space filling 

curves 
1 

4 
3 

2 

h1 

h2 

Maria Luisa Sapino (BDM 2018) 

Pyramid tree 

l  Space-filling curves were using B-trees 
l  Pyramid trees also do the same..without space filling 

curves 
1 

4 
3 

2 

h1 

h2 key=(3,h1) 
key=(4,h2) 

This keys can be used  
as inputs to a B-tree!!! 
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Pyramid tree 

l  If data is uniformly distributed, pages are likely to be 
of the same volume  

Maria Luisa Sapino (BDM 2018) 

Pyramid tree 

l  If data is uniformly distributed, queries likely to avoid 
thin pages, reducing the average access time 

good 

bad 

Maria Luisa Sapino (BDM 2018) 

Other index structures 

l  Grids 
l  VA-files 

–  extension of the grid idea.. 

l  SR-, SS-trees 
–  like R-trees 
–  use spheres instead of rectangles 

l  X-trees 
–  like R-trees 
–  change the page size based on the depth   


