
A Work-Efficient Parallel Scan Kernel
Lecture 10.3 – Parallel Computation Patterns (scan)

GPU Teaching Kit
Accelerated Computing

2

Objective
– To learn to write a work-efficient scan kernel

– Two-phased balanced tree traversal
– Aggressive re-use of intermediate results
– Reducing control divergence with more complex thread index to data index

mapping

3

Improving Efficiency
– Balanced Trees

– Form a balanced binary tree on the input data and sweep it to
and from the root

– Tree is not an actual data structure, but a concept to
determine what each thread does at each step

– For scan:
– Traverse down from leaves to the root building partial sums at

internal nodes in the tree
– The root holds the sum of all leaves

– Traverse back up the tree building the output from the partial
sums

3

4

Parallel Scan - Reduction Phase

+

+

+ + +

+

+

x0 x3 x4 x5 x6 x7x1 x2

∑x0..x1 ∑x2..x3 ∑x4..x5 ∑x6..x7

∑x0..x3
∑x4..x7

∑x0..x7

Time

In-place calculation

Value after reduce

5

Reduction Phase Kernel Code

5

// XY[2*BLOCK_SIZE] is in shared memory

for (unsigned int stride = 1;stride <= BLOCK_SIZE; stride *= 2)
{

int index = (threadIdx.x+1)*stride*2 - 1;
if(index < 2*BLOCK_SIZE)

XY[index] += XY[index-stride];
__syncthreads();

}

threadIdx.x+1 = 1, 2, 3, 4….
stride = 1,

index = 1, 3, 5, 7, …

6

Parallel Scan - Post Reduction Reverse Phase

+

x0 x4 x6x2∑x0..x1 ∑x4..x5∑x0..x3 ∑x0..x7

∑x0..x5

Move (add) a critical value to a central
location where it is needed

7

Parallel Scan - Post Reduction Reverse Phase

+

x0 x4 x6x2∑x0..x1 ∑x4..x5∑x0..x3 ∑x0..x7

∑x0..x5

+ +

∑x0..x2 ∑x0..x4

+

∑x0..x6

8

Putting it Together

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg
http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg

9

Post Reduction Reverse Phase Kernel Code

for (unsigned int stride = BLOCK_SIZE/2; stride > 0; stride /= 2) {
__syncthreads();
int index = (threadIdx.x+1)*stride*2 - 1;
if(index+stride < 2*BLOCK_SIZE) {

XY[index + stride] += XY[index];
}

}
__syncthreads();

if (i < InputSize) Y[i] = XY[threadIdx.x];

First iteration for 16-element section
threadIdx.x = 0
stride = BLOCK_SIZE/2 = 8/2 = 4
index = 8-1 = 7

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Lecture 10.3 – Parallel Computation Patterns (scan)
	Objective
	Improving Efficiency
	Parallel Scan - Reduction Phase
	Reduction Phase Kernel Code
	Parallel Scan - Post Reduction Reverse Phase
	Parallel Scan - Post Reduction Reverse Phase
	Putting it Together
	Post Reduction Reverse Phase Kernel Code
	Slide Number 10

