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Objective
– To learn to write a work-efficient scan kernel

– Two-phased balanced tree traversal
– Aggressive re-use of intermediate results
– Reducing control divergence with more complex thread index to data index 

mapping
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Improving Efficiency
– Balanced Trees

– Form a balanced binary tree on the input data and sweep it to 
and from the root

– Tree is not an actual data structure, but a concept to 
determine what each thread does at each step

– For scan:
– Traverse down from leaves to the root building partial sums at 

internal nodes in the tree
– The root holds the sum of all leaves

– Traverse back up the tree building the output from the partial 
sums
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Parallel Scan - Reduction Phase
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Reduction Phase Kernel Code
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// XY[2*BLOCK_SIZE] is in shared memory

for (unsigned int stride = 1;stride <= BLOCK_SIZE; stride *= 2) 
{

int index = (threadIdx.x+1)*stride*2 - 1;
if(index < 2*BLOCK_SIZE)

XY[index] += XY[index-stride];
__syncthreads();

}

threadIdx.x+1    = 1, 2, 3, 4….
stride = 1,

index = 1, 3, 5, 7, …
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Parallel Scan - Post Reduction Reverse Phase
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Parallel Scan - Post Reduction Reverse Phase
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Putting it Together

http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg
http://upload.wikimedia.org/wikipedia/commons/8/81/Prefix_sum_16.svg
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Post Reduction Reverse Phase Kernel Code 

for (unsigned int stride = BLOCK_SIZE/2; stride > 0; stride /= 2) {
__syncthreads();
int index = (threadIdx.x+1)*stride*2 - 1;
if(index+stride < 2*BLOCK_SIZE) {

XY[index + stride] += XY[index];
}

}
__syncthreads();

if (i < InputSize) Y[i] = XY[threadIdx.x];

First iteration for 16-element section
threadIdx.x = 0
stride = BLOCK_SIZE/2 = 8/2 = 4
index = 8-1 = 7
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