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Objective
– To learn about CUDA threads, the main mechanism for exploiting of 

data parallelism
– Hierarchical thread organization
– Launching parallel execution
– Thread index to data index mapping

2



3

A[0]vector  A

vector  B

vector  C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example



4

CUDA Execution Model
– Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code
– Parallel parts in device SPMD kernel code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);
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From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm

High-Level Language (C/C++…)
Instruction Set Architecture

Microarchitecture
Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler
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A program at the ISA level
– A program is a set of instructions stored in memory that can be read, 

interpreted, and executed by the hardware.
– Both CPUs and GPUs are designed based on (different) instruction sets

– Program instructions operate on data stored in memory and/or 
registers.
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A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or 
“abstracted” 
Von-Neumann Processor
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Arrays of Parallel Threads
• A CUDA kernel is executed by a grid (array) of threads 

– All threads in a grid run the same kernel code (Single Program Multiple Data)
– Each thread has indexes that it uses to compute memory addresses and make 

control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…
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Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations and 

barrier synchronization
– Threads in different blocks do not interact

9

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x + 
threadIdx.x;

C[i] = A[i] + B[i];

…

…… …
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blockIdx and threadIdx

• Each thread uses indices to decide what data to work 
on
– blockIdx: 1D, 2D, or 3D (CUDA 4.0)
– threadIdx: 1D, 2D, or 3D 

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …
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