
Accelerated Computing

GPU Teaching Kit

Threads and Kernel Functions

Lecture 2.3 – Introduction to CUDA C

GPU Teaching Kit

2

Objective
– To learn about CUDA threads, the main mechanism for exploiting of

data parallelism
– Hierarchical thread organization
– Launching parallel execution
– Thread index to data index mapping

2

3

A[0]vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

4

CUDA Execution Model
– Heterogeneous host (CPU) + device (GPU) application C program

– Serial parts in host C code
– Parallel parts in device SPMD kernel code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)
KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBlk, nTid >>>(args);

5

From Natural Language to Electrons

Natural Language (e.g, English)
Algorithm

High-Level Language (C/C++…)
Instruction Set Architecture

Microarchitecture
Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates and beyond

Compiler

6

A program at the ISA level
– A program is a set of instructions stored in memory that can be read,

interpreted, and executed by the hardware.
– Both CPUs and GPUs are designed based on (different) instruction sets

– Program instructions operate on data stored in memory and/or
registers.

6

7

A Thread as a Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg
File

PC IR

Processing Unit

A thread is a “virtualized” or
“abstracted”
Von-Neumann Processor

8

Arrays of Parallel Threads
• A CUDA kernel is executed by a grid (array) of threads

– All threads in a grid run the same kernel code (Single Program Multiple Data)
– Each thread has indexes that it uses to compute memory addresses and make

control decisions

i = blockIdx.x * blockDim.x + threadIdx.x;
C[i] = A[i] + B[i];

…
0 1 2 254 255

…

9

Thread Blocks: Scalable Cooperation

– Divide thread array into multiple blocks
– Threads within a block cooperate via shared memory, atomic operations and

barrier synchronization
– Threads in different blocks do not interact

9

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
0 1 2 254 255

Thread Block 0

…
1 2 254 255

Thread Block 1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…
1 2 254 255

Thread Block N-1
0

i = blockIdx.x * blockDim.x +
threadIdx.x;

C[i] = A[i] + B[i];

…

…… …

10

blockIdx and threadIdx

• Each thread uses indices to decide what data to work
on
– blockIdx: 1D, 2D, or 3D (CUDA 4.0)
– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing
– Solving PDEs on volumes
– …

10

device

Grid Block (0,
0)

Block (1,
1)

Block (1,
0)

Block (0,
1)

Block (1,1)

Thread
(0,0,0)Thread

(0,1,3)
Thread
(0,1,0)

Thread
(0,1,1)

Thread
(0,1,2)

Thread
(0,0,0)

Thread
(0,0,1)

Thread
(0,0,2)

Thread
(0,0,3)

(1,0,0) (1,0,1) (1,0,2) (1,0,3)

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Lecture 2.3 – Introduction to CUDA C
	Objective
	Data Parallelism - Vector Addition Example
	CUDA Execution Model
	From Natural Language to Electrons
	A program at the ISA level
	A Thread as a Von-Neumann Processor
	Arrays of Parallel Threads
	Thread Blocks: Scalable Cooperation
	blockIdx and threadIdx
	Slide Number 11

