

GPU Teaching Kit

Accelerated Computing

Module 4.4 - Memory and Data Locality Tiled Matrix Multiplication Kernel

Objective

- To learn to write a tiled matrix-multiplication kernel
 - Loading and using tiles for matrix multiplication
 - Barrier synchronization, shared memory
 - Resource Considerations
 - Assume that Width is a multiple of tile size for simplicity

Loading Input Tile 0 of M (Phase 0)

Loading Input Tile 0 of N (Phase 0)

Loading Input Tile 1 of M (Phase 1)

Loading Input Tile 1 of N (Phase 1)

 M and N are dynamically allocated - use 1D indexing

M[Row][p*TILE_WIDTH+tx] M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH+ty][Col]

N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

Tiled Matrix Multiplication Kernel

```
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
    __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
    int bx = blockIdx.x; int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;
    int Row = by * blockDim.y + ty;
    int Col = bx * blockDim.x + tx;
    float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
    // Collaborative loading of M and N tiles into shared memory
}
</pre>
```

```
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
```

```
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
```

____syncthreads();

```
for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_A[ty][i] * ds_B[i][tx];
__synchthreads();
}
P[Row*Width+Col] = Pvalue;</pre>
```

}

Tiled Matrix Multiplication Kernel

```
global void MatrixMulKernel(float* M, float* N, float* P, Int Width)
 __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
 shared float ds N[TILE WIDTH][TILE WIDTH];
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;
int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
  // Collaborative loading of M and N tiles into shared memory
  ds M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
  ds N[ty][tx] = N[(t*TILE WIDTH+ty)*Width + Col];
   ____syncthreads();
```

```
for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_A[ty][i] * ds_B[i][tx];
__synchthreads();
}
P[Row*Width+Col] = Pvalue;</pre>
```

Tiled Matrix Multiplication Kernel

```
global void MatrixMulKernel(float* M, float* N, float* P, Int Width)
 __shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
 shared float ds N[TILE WIDTH][TILE WIDTH];
 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;
 int Row = by * blockDim.y + ty;
 int Col = bx * blockDim.x + tx;
 float Pvalue = 0;
// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {
   // Collaborative loading of M and N tiles into shared memory
  ds M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
  ds N[ty][tx] = N[(t*TILE WIDTH+ty)*Width + Col];
  _____syncthreads();
```

```
for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
__synchthreads();</pre>
```

```
P[Row*Width+Col] = Pvalue;
```

}

Tile (Thread Block) Size Considerations

- Each thread block should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads
 - TILE_WIDTH of 32 gives 32*32 = 1024 threads
- For 16, in each phase, each block performs 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations. (16 floating-point operations for each memory load)
- For 32, in each phase, each block performs 2*1024 = 2048 float loads from global memory for 1024 * (2*32) = 65,536 mul/add operations. (32 floating-point operation for each memory load)

Shared Memory and Threading

- For an SM with 16KB shared memory
 - Shared memory size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.
 - For 16KB shared memory, one can potentially have up to 8 thread blocks executing
 - This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)
 - The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared memory usage per thread block, allowing 2 thread blocks active at the same time
 - However, the thread count limitation of 1536 threads per SM in current generation GPUs will reduce the number of blocks per SM to one!
- Each ____syncthread() can reduce the number of active threads for a block
 - More thread blocks can be advantageous

GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under the <u>Creative Commons Attribution-NonCommercial 4.0 International License.</u>