
Accelerated Computing

GPU Teaching Kit

Tiled Matrix Multiplication Kernel

Module 4.4 - Memory and Data Locality

2

Objective
– To learn to write a tiled matrix-multiplication kernel

– Loading and using tiles for matrix multiplication
– Barrier synchronization, shared memory
– Resource Considerations
– Assume that Width is a multiple of tile size for simplicity

2

3

M

N

P

TILE_WIDTH

WIDTHWIDTH

T
IL

E
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Loading Input Tile 0 of M (Phase 0)
– Have each thread load an M

element and an N element at the
same relative position as its P
element.

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]

4

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Loading Input Tile 0 of N (Phase 0)
– Have each thread load an M

element and an N element at the
same relative position as its P
element.

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]

5

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Loading Input Tile 1 of M (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]

6

M

N

P

BLOCK_WIDTH

WIDTHWIDTH

B
L

O
C

K
_W

ID
T

H
E

W
ID

T
H

W
ID

T
H

Row

Col

Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]

7

M[Row][p*TILE_WIDTH+tx]
M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH+ty][Col]
N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

M and N are dynamically allocated - use 1D indexing

8

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_A[ty][i] * ds_B[i][tx];
__synchthreads();

}
P[Row*Width+Col] = Pvalue;

}

9

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_A[ty][i] * ds_B[i][tx];
__synchthreads();

}
P[Row*Width+Col] = Pvalue;

}

10

Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];
__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory
ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];
ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];
__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];
__synchthreads();

}
P[Row*Width+Col] = Pvalue;

}

11

Tile (Thread Block) Size Considerations
– Each thread block should have many threads

– TILE_WIDTH of 16 gives 16*16 = 256 threads
– TILE_WIDTH of 32 gives 32*32 = 1024 threads

– For 16, in each phase, each block performs 2*256 = 512 float
loads from global memory for 256 * (2*16) = 8,192 mul/add
operations. (16 floating-point operations for each memory load)

– For 32, in each phase, each block performs 2*1024 = 2048 float
loads from global memory for 1024 * (2*32) = 65,536 mul/add
operations. (32 floating-point operation for each memory load)

11

12

Shared Memory and Threading
– For an SM with 16KB shared memory

– Shared memory size is implementation dependent!
– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared

memory.
– For 16KB shared memory, one can potentially have up to 8 thread blocks

executing
– This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared
memory usage per thread block, allowing 2 thread blocks active at the same time
– However, the thread count limitation of 1536 threads per SM in current

generation GPUs will reduce the number of blocks per SM to one!
– Each __syncthread() can reduce the number of active threads for a

block
– More thread blocks can be advantageous

12

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 4.4 - Memory and Data Locality
	Objective
	Loading Input Tile 0 of M (Phase 0)
	Loading Input Tile 0 of N (Phase 0)
	Loading Input Tile 1 of M (Phase 1)
	Loading Input Tile 1 of N (Phase 1)
	M and N are dynamically allocated - use 1D indexing
	Tiled Matrix Multiplication Kernel
	Tiled Matrix Multiplication Kernel
	Tiled Matrix Multiplication Kernel
	Tile (Thread Block) Size Considerations
	Shared Memory and Threading
	Slide Number 13

