
Accelerated Computing

GPU Teaching Kit

A Basic Reduction Kernel
Module 9.2 – Parallel Computation Patterns (Reduction)

2

Objective
– To learn to write a basic reduction kernel

– Thread to data mapping
– Turning off threads
– Control divergence

3

Parallel Sum Reduction
– Parallel implementation

– Recursively halve # of threads, add two values per thread in each step
– Takes log(n) steps for n elements, requires n/2 threads

– Assume an in-place reduction using shared memory
– The original vector is in device global memory
– The shared memory is used to hold a partial sum vector
– Each step brings the partial sum vector closer to the sum
– The final sum will be in element 0 of the partial sum vector
– Reduces global memory traffic due to partial sum values
– Thread block size limits n to be less than or equal to 2,048

3

4

A Parallel Sum Reduction Example

5

A Naive Thread to Data Mapping

– Each thread is responsible for an even-index location of the partial sum
vector (location of responsibility)

– After each step, half of the threads are no longer needed
– One of the inputs is always from the location of responsibility
– In each step, one of the inputs comes from an increasing distance away

5

6

A Simple Thread Block Design
– Each thread block takes 2*BlockDim.x input elements
– Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start + blockDim.x+t];

6

7

The Reduction Steps
for (unsigned int stride = 1;

stride <= blockDim.x; stride *= 2)
{

__syncthreads();
if (t % stride == 0)
partialSum[2*t]+= partialSum[2*t+stride];

}

7

Why do we need __syncthreads()?

8

Barrier Synchronization
– __syncthreads() is needed to ensure that all elements of each

version of partial sums have been generated before we proceed
to the next step

8

9

Back to the Global Picture
– At the end of the kernel, Thread 0 in each thread block

writes the sum of the thread block in partialSum[0] into a
vector indexed by the blockIdx.x

– There can be a large number of such sums if the original
vector is very large
– The host code may iterate and launch another kernel

– If there are only a small number of sums, the host can
simply transfer the data back and add them together

9

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 9.2 – Parallel Computation Patterns (Reduction)
	Objective
	Parallel Sum Reduction
	A Parallel Sum Reduction Example
	A Naive Thread to Data Mapping
	A Simple Thread Block Design
	The Reduction Steps
	Barrier Synchronization
	Back to the Global Picture
	Slide Number 10

