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First topic: formalisms 

Check the kind of 
system to analyze. 

Choose formalisms, 
methods and tools. 

Express system 
properties. 

Model the system. 

Apply methods. 

Obtain verification 
results. 

Analyze results. 

Identify errors. 

Suggest correction. 
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Concurrent Systems 

Involve several computation agents. 

Interaction through global, common 
variables or through message exchange 
(memoria condivisa vs scambio di 
messaggi) 

Global state or distributed state 

May involve remote components. 

May interact with users (Reactive). 

May involve hardware components 
(Embedded). 
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Problems in modeling  
concurrent systems 

 Representing concurrency: 
- Allow one transition at a time, or 
- Allow coinciding transitions. 

 Granularity of transitions. 

 Assignments and checks? 

 Application of methods? 

 Global (all the system) or local (one 
thread at a time) states. 
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Formalisms 

 Formal. Unique interpretation. 
 Intuitive. Simple to understand (visual). 
 Succinct. Spec. of reasonable size. 
 Effective. 

 Check that there are no contradictions. 
 Check that the spec. is implementable. 
 Check that the implementation satisfies spec. 

 Expressive. 
 May be used to generate initial code. 

 

Specifying the implementation or its properties? 
or both? 
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Formalisms considered 

 Petri nets (reti di Petri).  
 Process algebra. (algebra dei processi)  
 LTL (Logica temporale lineare) 
 CTL (Logica temporale branching) 
 Language of guarded commands (nusmv 

modelling language) 
 Timed automata  (automi temporizzati o 

tempificati) 
 

Specifying the system or its properties? 



9 

Petri nets 

Formalism to describe  

Discrete Events Dynamic Systems (DEDS)  

Dynamic: the system is described through its 
evolution 

Event: what cause a change of state 

Discrete: system state described by discrete 
variables (or variables that are considered discrete 
(discretization). A discrete variable takes its value 
over natural numbers or over finite sets of element  
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Petri nets  

 Formal. yes 
 Intuitive. Simple to understand (visual). 
 Succinct. it depends on the class chosen and 

on the type of system 
 Effective.  - Rich set of solution methods 
 Expressive. - very expressive for concurrency 
 May be used to generate initial code. - yes 

 
Specifying the implementation or its properties? 
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Type of systems which are easily 
modelled with Petri Nets 

FMS (sistemi flessibili di produzione). 

Distributed algorithms of various sorts (per 
esempio i dining philosophers, e vari 
algoritmi di mutua esclusione) 

Control system (per esempio di un ascensore). 

Workflows  

Protocols. 

Any finite state automata 
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Petri nets - applets  

 GreatSPN editor 
 www.di.unito.it/~greatSPN/index.html 
 www.di.unito.it/~amparore/mc4cslta/editor.html 

 
 

 Give a look at the site  http://www.informatik.uni-
hamburg.de/TGI/PetriNets/tools/java/ 

http://www.di.unito.it/~greatSPN/index.html
http://www.di.unito.it/~amparore/mc4cslta/editor.html
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools
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 Petri Nets (PN) definition 

Petri nets + initial state = PN system 

 

Definition 1: a Petri Net N is a 4-tuple 

N = (P, T, F, W) 

where  

 P, set of places and T, set of transitions,  are finite and non 
empty set and   P T =  

 The flow  relation F  PxT  TxP              

 The weight  function W: F --> N+  
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 Petri Nets (PN) definition 

 

 Places: state variables 

 

 Transitions: change of state 

 

 Marking: evaluation of the state variables 
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 Petri Nets (PN) definition 

Petri nets have an easy visualization as bipartite graph  

 

inscripciones
en los arcos

N = < P,   T,   F,   W >

PRE POST

Iscrizioni sugli archi 

Pre e post sono definiti rispetto alle transizioni 

Posti: stato transizioni: eventi 



16 

 A first example of a PN 

1

2 4

53

d

b c e

f

6

a

Any choice for names 
and transitions: it helps 
if names are distinct 

In the example W is 
equal to the constant 1 
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 Other examples of a PN 

1. Disegnare una rete di Petri 

2. Disegnare una rete di Petri con un solo posto e 
una sola transizione 

3. Disegnare una rete di Petri con un solo posto e 
una sola transizione, aggiungendo alla definizione 
di PN la condizione: 

           dom(F)   range(F) = P  T 
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 Esercizio 

1. Disegnare una rete di Petri 

 

 

 

 

 

2. Disegnare una rete di Petri con un solo posto e una sola transizione 

 

 

3. Come 2, ma aggiungendo alla definizione di PN la condizione: 

           dom(F)   range(F) = P  T 
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 Petri Nets (PN) definition  
in matrix form 

Definition 2: a Petri Net N is a 4-tuple  N = (P, T, Pre, Post) 

where:  

 P, set of places, and T, set of transitions,  are finite and non 
empty set and   P T =  

 The Pre-function Pre:   PxT --> N  

 Pre(p,t) = W(p,t)         if (p,t)  F  

             = 0                if (p,t)  F        

 The Post-function Post:   PxT --> N  

 Post(p,t) = W(t,p)       if (t,p)  F 

              = 0               if (t,p)  F           

Alternative definition as vectors:  

 Pre  NPxT  

 Post  NPxT 

 

Input of  the 
transition 

Output of  the 
transition 
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 Petri Nets (PN) definition  
in matrix form 

Based on the matrix representation of bipartite graph 
with weighted arcs: 

 

 P: rows 

 T: columns 

 How many matrix do I need?  

1. one for Pre and one for Post? 

2. can I use a single one? 

 incidence matrix C:PxT --> Z,  C = Post- Pre 
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A simple PN in matrix form 
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p2 

t2 
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Esercizio: scrivere direttamente  C 










??

??

2

1

21

p

p

tt

PrePostC



22 

A simple PN in matrix form 
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A simple PN in matrix form 

 

p1 

p2 

t1 









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
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1
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
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





?

?

2

1

1

p

p

t

C

C, Pre e Post hanno lo stesso contenuto informativo? 
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A PN in matrix form 
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 Another example 

p1

p4

p3

p2

p6

p5

t5

t1

t6

t2

t3

t4

3
3

 1 0 0 0 1 0 
 0 1 0 0 0 0 

 0 0 1 0 0 0 
 0 1 0 0 0 0 
 0 0 0 1 0 0 
 0 0 0 0 0 3

Pre =

 0 0 0 0 0 3 
 1 0 0 0 0 0 

 0 1 0 0 0 0 
 0 0 0 1 0 0 
 0 0 1 0 0 0 
 0 0 0 0 1 0

Post =

 -1 0 0 0 -1 3 
 1 -1 0 0 0 0 

 0 1 -1 0 0 0 
 0 -1 0 1 0 0 
 0 0 1 -1 0 0 
 0 0 0 0 1 -3

C =
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 Marking 

Petri nets + initial state = PN system 

 

Definition: the marking (marcatura, stato) of  a Petri Net N = (P, 
T, F, W) is a function 

                 m: P --> N 

Definition: the marking of  a Petri Net N = (P, T, F, W) is a vector 
m  NP  

 

Graphical representation: black dots (tokens) in places  

 

m(p) = n  is read as "there are n tokens in place p" 
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 PN system 

Petri nets + initial state = PN system 

 

Definition: a PN system  is a pair S = (N,m0) where 

 N=(P, T, F, W) is a PN 

 m0 is a marking (initial marking)  

 

Note: PN have a notion of "composite state": the state of the PN 
system is the union of the  states of the single places 
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 PN evolution  

The evolution of the system is due to the firing of transitions 

The firing of a transition change the marking in a formally 
defined manner 

A transition can fire only if it is enabled 

 

Definition: tT is enabled in marking m iff  

         m  Pre[-,t]                (also written as Pre[P,t]) 

 

Definition: tT  enabled in marking m can fire, and its firing 
produce the marking m', with  

m' = m + C[P,t] 

m' = m + Post[P,t] - Pre[P,t] 
State equation 
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 PN evolution  

 

Definition: tT is enabled in marking m iff  (use F and W) 

         m  Pre[-,t] ~~~~ 

 

 

Definition: tT  enabled in marking m can fire, and its firing 
produce the marking m', with (use F and W) 

 m' = m + Post[P,t] - Pre[P,t] 
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 PN evolution - postset and preset  

 

Definition: for a transition tT the preset •t is defined as 

•t = {pP: (p,t)  F} 

 

Definition: for a transition tT the postset t• is defined as 

t• = {pP: (t,p)  F} 

 

Definition: for a place pP the preset •p is defined as 

•p = {tT: (t,p)  F} 

 

Definition: for a place pP the postset p• is defined as 

p• = {tT: (p,t)  F} 

 

Examples:…. 
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Definition: for a transition tT the preset •t is defined as 

•t = Pre[P,t] 

 

Definition: for a transition tT the postset t• is defined as 

t• = Post[P,t] 

 

Definition: for a place pP the preset •p is defined as 

•p = Pre[p,T] 

 

Definition: for a place pP the postset p• is defined as 

p• = Post[p,T] 

 

Examples:…. 

 PN evolution - postset and preset  
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 PN evolution - postset and preset  

Definition: tT is enabled in marking m iff  

         p•t: m(p)   W(p,t)  

 

Definition: tT  enabled in marking m can fire, and its firing 
produce the marking m', where,  pP,  

m'(p) = m(p) - W(p,t) + W(t,p)  

 

When the firing of t in marking m produces m', we write 

m[t>m'      or      m--t-->m' 

and we say that m' is reachable from m in one step 
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 PN and concurrency structures 

Fork: a task Tk activates two of more tasks Tk1, …, Tkn. 

Join: two or more tasks synchronize into a single task 
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 PN and concurrency structures 

Choice (distribution): in a given (local) state there is a choice 
between executing event e1 or event e2 or …..event en  

Collection: event e1, e2 , …..and en lead to the same local state 
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 PN and concurrency structures 

An event causing another event 

Two concurrent events 
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 PN and concurrency structures 

Flow-chart 
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 PN and concurrency structures 
exercises: 

Esempio dei produttori e consumatori visto a sistemi operativi: 
fare un modello della specifica del sistema, non della sua 
implementazione. 
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 Produttore-consumatore (da S.O.) 
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 Produttore-consumatore: la rete 
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 Produttore-consumatore (da S.O.) 
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 Produttore-consumatore (da S.O.) 
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 Produttore-consumatore (da S.O.) 
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 Produttore-consumatore (da S.O.) 
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 Produttore-consumatore : la rete 
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 I 5 filosofi (da S.O.) 
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 I 5 filosofi (da S.O.) 
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 I 5 filosofi (da S.O.) 
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 I 5 filosofi (da S.O.) 

Vedi modello dei filosofi nella distribuzione  di GreatSPN 

Per accedere alla libreria dei modelli: 

• attivate l’interfaccia grafica di GreatSPN 

• create un progetto (se non ne avete già  uno aperto) 

• cliccate sull’icona  ``add a new page page to the active 
project’’ 

• scegliete ``add a library model’’ 

• selezionate il modello dei filosofi (attenzione, ce ne sono 
due, uno colorato e uno con le reti P/T, che è  quello da 
usare in questa fase) 
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 I 3 filosofi (rete costruita a lezione) 
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 Lettori e scrittori (da S.O.) 
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 Lettori e scrittori (da S.O.) 
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 Lettori e scrittori (da S.O.) 
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 PN evolution  
through a firing sequence 

Definition: s [t1,..,tk], with tiT, is a  firing sequence in marking 
m, and we write m [s >m'  iff  a set of marking  

{m0,.., mk}: i[1..k],  mi-1[ti>mi   
 

Definition: the firing vector s of the firing sequence  s is the 

characteristic vector of the sequence s. 
 

If s is firable in m, by  taking the integral of C over the sequence 

we get  

m' = m + C • s  

       and we say that m' is reachable from m through s.           

      

State equation 
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 Example of PN evolution  
through a firing sequence 

 

p1 

p2 

t2 

t1 














11

01

2

1

21

p

p

tt

PrePostC

m= 5•p1 

s = [t1, t1, t2, t1, t1, t2]  (sequenza e non vettore) 

Esercizio: calcolare la marcatura raggiunta da m attraverso s 
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 Example of PN evolution  
through a firing sequence 

 

p1 

p2 

t2 

t1 














11

01

2

1

21

p

p

tt

PrePostC
m= 5•p1 

s = [t1, t1, t2, t1, t1, t2]  
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 Example of PN evolution  
through a firing sequence 

m= 2•p1      s = [a, e, b, a, f] 

Esercizio: calcolare la marcatura raggiunta attraverso s e 
dire come si modifica tale marcatura aggiungendo coppie e, 
f 

 

1 

2 4 

5 3 

d 

b c e 

f 

6 

a 
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 Example of PN evolution  
through a firing sequence 

m= 2•p1      s = [a, e, b, a, f]  m --s-> m’   
m’=? 

Esercizio: come si modifica m aggiungendo 
coppie e, f 

 

1 

2 4 

5 3 

d 

b c e 

f 

6 

a 
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 Example of PN evolution  
through a firing sequence 

 

p1 

p2 

t2 

t1 














11

01

2

1

21

p

p

tt

PrePostC

m= 5•p1 

s = [t1, t1, t2, t1, t1, t2] 

 

Esercizio  calcolare m' = [?,?]T = [5,0]T + C•s  
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 PN evolution  
and reachability 

Observe that if  s  is a vector over transition  

m' = m + C • s  />   s: m[s>m' 

      since s may not be firable (the viceversa is true) 

      

s = [0,1,0,1,0,0]  

soddisfa l’equazione con  

m' = p5 

m = p2 

ma non esiste alcuna sequenza 
scattabile (firing sequence) per 
questa soluzione e quindi m’ non è 
raggiungibile 
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 PN evolution  
and reachability 

In generale le equazioni di stato caratterizzano un sovraspazio 
di raggiungibilità 

Reachability 
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Linear characterization of the State 
space of a Petri Net System 

The state equation m' = m + C • s  

provides a set of linear equations that characterize a superset 
of the state space (white and grey states of the previous 
example)  

 

Can be used to provide negative reachability: is state 3 • P4 

reachable from the initial marking 1 • P1 ? Since it is not in the 

set of solutions of the state equation above when m= 1 • P1 it 

is certainly not reachable. 

 

Vice versa, if a state is a solution, it is not necessarily in the  

reachability set (it may correspond to a grey state) 
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 PN evolution  
and boundednes 

      Bound of a place        ------->    LP problem 

[ 
),(.a.s

max

0mRm

pm

N

[ 

mnm

mm

pm





N),(         

.a.s

max

0

s

sC--------> 
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 The PLC example 

p1

p4

p3

p2

p6

p5

t5

t1

t6

t2

t3

t4

3
3

 1 0 0 0 1 0 
 0 1 0 0 0 0 

 0 0 1 0 0 0 
 0 1 0 0 0 0 
 0 0 0 1 0 0 
 0 0 0 0 0 3

Pre =

 0 0 0 0 0 3 
 1 0 0 0 0 0 

 0 1 0 0 0 0 
 0 0 0 1 0 0 
 0 0 1 0 0 0 
 0 0 0 0 1 0

Post =

 -1 0 0 0 -1 3 
 1 -1 0 0 0 0 

 0 1 -1 0 0 0 
 0 -1 0 1 0 0 
 0 0 1 -1 0 0 
 0 0 0 0 1 -3

C =

Programmable Logic Controller 

p4, p3 and p5 represents the 
bus (free, used by the task, not 
available) 

all the other places, plus p3, 
represents the tasks of the PLC 
that synchronize at the 
beginning of the cycle  
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 A production cell 
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Two cycles for the two 
machines 

empty and objects are the 
buffer positions  

R is the robot 
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Two cycles for the two 
machines 

empty and objects are the 
buffer positions  

R is the robot 
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Language of a PN  

Definition: Given a P/T system S=(N, m0), the language L(S) is 
defined as 

L(S) = {s (t1,..,tk), s.t.s is a firing sequence for S in  m0}     

 

Example  with m0= 2•p1, L(N, m0) ={t1, t1t2, …, t1t1t2t2, 
t1t2t1t2,..} 

 

        

 

p1 

p2 

t2 

t1 
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Language of a PN - another example  

L(N,m= 2•p1) = {a, aa, ab, ac, ae, aab, aac, ……} 

 

1 

2 4 

5 3 

d 

b c e 

f 

6 

a 
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Language of a PN -  
interleaving semantics 

The language of firing sequences as defined before ( where 
transitions fire one at a time) is called language under the 
interleaving semantics 

 

1 

2 4 

5 3 

d 

b c e 

f 

6 

a 

It is the only 
possible 
semantics? 
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State space of a PN system 

Definition: the reachability set of a PN system S=(N,m0) , 
RS(S) or RS(N,m0), or RSN(m0) is the set of all marking 
reachable from m0 through a firing sequence of L(S) 

 

RSN(m0) = { m:  s  L(N,m0) s.t. m0 [s > m } 

 
1

d

2

3

b

4

5

c

6

a

1(6)

24(6)

34(6)

35(6)

25(6)

cb

c b

a

d

 

RSN(m0) =  

{    p1+p6, 
p2+p4+p6, 
p3+p4+p6, 
p2+p5+p6, 
p3+p5+p6 } 
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State space of a PN system 

Definition: the reachability graph  of a PN system S=(N,m0), 
RG(S) or RG(N,m0), or RGN(m0) is the direct graph defined 
as follows: 

RGN(m0) = (V,E), where 

 1.  V=RSN(m0) 

 2. (v1,v2)  = (m1,m2)  E iff   t  T s.t. m1[t>m2 
1

d

2

3

b

4

5

c

6

a

1(6)

24(6)

34(6)

35(6)

25(6)

cb

c b

a

d
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State space of a PN system -  
construction algorithm 

How can we build an algorithm for RS and RG? In one pass 
or in two? 

 1.  V=RSN(m0) 

 2. (v1,v2)  = (m1,m2)  E iff   t  T s.t. m1[t>m2 

 

p1 

p2 

t2 

t1 



74 

State space of a PN system -  
another example 

Compute the RG of the following net with m0= p1+p3 

 By applying  the definition 

 There is a more efficient way? 

 

p1 

p2 

t2 

t1 

 

p3 

p4 

t4 

t3 
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State space of a PN system -  
another example 

Compute the RG of the following net with m0= p1+p3 

 Operations involved? Cost? Time or space problems or 
both? 

 

p1 

p2 

t2 

t1 

 

p3 

p4 

t4 

t3 
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State space of a PN system -  
some basic properties 

Def.: A system is finite iff the RG is finite 

The PN system below is not finite 

1

t

2
t

t t

3 4

t

3

4

2

1

5

0100

0010

1000

0011

1010

0101 0110

M

M
t

t t

t

t t t t

t

0

2

2 3

4

1
t1 1 4

4

5

5

1001

M1

M3

M6

M4

M7

M5
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State space of a PN system -  
some basic properties 

A system exhibits absence of deadlock iff it does not exist a 
reachable state that does not enable at least a transition 
(all reachable states enable at least a transition) 

The PN system below has a deadlock 
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State space of a PN system -  
some basic properties 

A PN system is live if, for all  reachable states m and for all 
transitions t, it is possible to reach a state in which t is 
enabled 

The PN system below is live, because in each BSCC of the 
RG it is possible to fire all transitions 
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State space of a PN system -  
some basic properties 

A PN system is reversible if, for all  reachable states m, it 
exists a firing sequence, firable in m, that leads to the 
initial marking  

The PN system below is not reversible (there are two SCC) 
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 Step semantics - enabling degree 

The enabling degree of tT in marking m, e(m)[t] or et(m)  is 

et(m) =def  max {kN+| m  k • Pre[-,t]} 

 

intuitively this is the "number of times a transition can fire in 
parallel" 

    
 

p1 

p2 

t2 

t1 

p3 

p4 
p5 

t3 

et1(2p1) = ……..; et3(p3+p4) = ……..;  

if W(p3,t3)=2, et3(4p3+p4) = ……..;  
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 Step semantics - step definition 

Def.: a step s is a multiset of transitions ( s:T--> N, or sM(T))  

Def: a step s is enabled in marking m if  m  Pre • s 

Def: the firing of an enabled step in marking m leads to 

m' = m + C • s 

where s is the characteristic vector of the step s. 

 

    

 

p1 

p2 

t2 

t1 

{2t1,t2} is an enabled step in (2p1+p2); 
its firing leaves an empty marking 

Note: if s is an enabled  step then any s's is also an enabled  
step   
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 Step semantics -  
step firing sequence 

Definition: s (s1,..,sk), with siM(T), is a  step firing sequence 

in marking m, and we write m [s >m'  iff  a set of marking  

{m0,.., mk}: i[1..k],  mi-1[si>mi  

 

Definition: Given a P/T system S=(N, m0), the language under 
the step semantics of S, Lstep(S) is defined as 

 Lstep(S) = {s (s1,..,sk): s is a step firing sequence for S in m0} 

 

 

Note: the definitions of RS (reachability sets) and RG(reachability 
graph) still holds true     
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Step language of a PN  

Lstep(N,m= 1•p2+1•p4) = {……} 
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Wrong belief: if t can fire k times in a row, k•t is a step 

Correct: if k•t is a step, then t can fire k times   
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Step language of a PN  

Draw the RGinterleaving(N, mo)  
 

2 4 

5 3 

d 

b c 

a 

Note: step vs. interleaving = true concurrency vs. pseudo 
concurrency  
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Step language of a PN  

Draw the RGinterleaving(N, mo)  
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Note: step vs. interleaving = true concurrency vs. pseudo 
concurrency  
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Step language of a PN  

Draw the RGstep(N, mo)  
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Note: step vs. interleaving = true concurrency vs. pseudo 
concurrency  
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 Other Petri nets classes 

We distinguish subclasses (restriction of the basic PN formalism) and 
superclasses (extensions) 

 

Example of subclasses: state machines, marked graphs (no choice), free 
choice, ordinary nets 

 

Example of superclasses: nets with inhibitor arcs, nets with priorities, colored 
nets 

 

Subclass --> same enabling and firing rule 

Superclass --> modified enabling and/or firing rule 

 

Subclass --> more analysis techniques, less expressive power 

Superclass --> (usually) less analysis techniques, more  expressive power 
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Petri nets subclasses -  
preliminaries 

Definition: Structural conflict SCf:  
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Petri nets subclasses - 
preliminaries 
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Which conditions should we impose, for a net to be:  

 

 ordinary (all arcs have weight one):  

  N=(P,T,F,W)  is an ordinary nets if  W: F --> {1} 

 a state machine: an ordinary N=(P,T,F,W)  is a state machine if for all t T 

|•t| =  |t•| = 1 

  (and for a SM system it  is also required that m0P) 

 a marked graphs (no choice): an ordinary N=(P,T,F,W)  is a marked graph if 

for all p P   |•p| =  |p•| = 1 

 free choice (the preset of two transitions is either disjoint or equal) if for all   
t, t’  T 

 

 1-safe (all places have bound one) 

 

Question: this are all topological subclasses? 

Petri nets subclasses 
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Petri nets subclasses -  
ordinary vs. weighted 
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 Superclass: PN with inhibitor arcs 

Definition: a Petri Net N with inhibitor arcs is a 5-tuple   

N = (P, T, Pre, Post, Inh) 

where:  

P, set of places, and T, set of transitions,  are finite and non empty set and  P 
T =  

Pre is the Pre-function, Pre:   PxT --> N 

Post is the Post-function, Post:   PxT --> N 

Inh is the Inhibitor-function, Inh:   PxT --> N+  

 

Def: a transition t is enabled in m if  

         m  Pre[-,t]   and m < Inh[-,t] 

 

Definition:the firing of  tT in  m  produce the marking m', with  

m' = m + C[P,t] 
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 Superclass:  
example of PN with inhibitor arcs 

With inhibitor arc 
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 Superclass:  
example of PN with inhibitor arcs 

Example of the lazy lad (scapolo pigro): he prepares a number of dishes, 
and then eats everything from the fridge until it is empty. Then he starts 
cooking again 

Inhibitor arc 
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 Superclass: PN with priorities 

Definition: a Petri Net N with priorities is a 5-tuple   

N = (P, T, Pre, Post, Pri) 

where:  

P,T, Pre and Post as usual 

Pri is the priority function, Pri:T --> N  

 

Def: a transition t has concession in m if  

         m  Pre[-,t]    

Def: a transition t is enabled  in m if  

        t has concession and ,  t' with concession in m,  Pri(t)  Pri(t')    

 

Note: firing unchanged 

Note: PN and local enabling 
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 Superclass:  
example of PN with priorities 

The lazy lad with priorities 

Pri(t3) =  0 

Pri(t1) >  0 










