The Triumph of Randomization

The Big Picture

- Does randomization make for more powerful algorithms?
	- \Box Does randomization expand the class of problems solvable in polynomial time?
	- Does randomization help compute problems fast in parallel in the PRAM model?

You tell me!

The Triumph of Randomization?

- Well, at least for distributed computations!
- no deterministic 1-crash-resilient solution to Consensus
- f -resilient randomized solution to consensus $\overline{(f \! < \! n/2)}$ for crash failures
- randomized solution for Consensus exists even for Byzantine failures!

A simple randomized algorithm

M. Ben Or. "Another advantage of free choice: completely asynchronous agreement protocols" (PODC 1983, pp. 27-30) exponential number of operations per process BUT more practical protocols exist down to $O(n\,log^2 n)$ expected operations/process $n-1$ resilient

The protocol's structure

An infinite repetition of asynchronous rounds

- in round r , \bar{p} only handles messages with timestamp r
- \odot each round has two phases
- in the first, each \emph{p} broadcasts an a-value which is a function of the b-values collected in the previous round (the first a-value is the input bit)
- in the second, each p broadcasts a b–value which is a function of the collected a-values decide stutters

Ben Or's Algorithm

1: a_p := input bit; $r := 1$; 2: repeat forever 3: {phase 1} 4: send $\left(a_p, r\right)$ to all 5: Let A be the multiset of the first $n-f$ a-values with timestamp received 6: if $(\exists v \in \{0, 1\} : \forall a \in A : a = v)$ then $b_p := v$ 7: else $b_p := \perp$ 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first $n-f$ b-values with timestamp r received 11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then decide(v); $a_p = v$ 12:else if $(\exists b \in B : b \neq \bot)$ then $a_p = b$ 13: else a_p := $\frac{6}{5}$ { $\frac{6}{5}$ is chosen uniformly at random to be 0 or 1} 14: $r := r + 1$

Validity

1: a_p := input bit; r := 1; 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first $n-f$ a-values with t imestamp r received 7: else b_p := \perp 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first $n-f$ b-values with timestamp r received 11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then $\mathsf{decide}(v)$; $a_p = v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p = b$ 13: else $a_p :=$ \$ {\$ is chosen uniformly at random to be 0 or 1 }

14: $r := r+1$

Validity

- 1: a_p := input bit; r := 1; 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first $n-f$ a-values with t imestamp r received 7: else b_p := \perp 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first $n-f$ b-values with timestamp r received 11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then $\mathsf{decide}(v)$; $a_p = v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p = b$ 13: else $a_p :=$ \$ {\$ is chosen uniformly at random to be 0 or 1 } 14: $r := r+1$
- All identical inputs $\left(i\right)$
- Each process set a-value := i and broadcasts it to all
- Since at most f faulty, every correct process receives at least $n-f$ identical a-values in round 1
- **Every correct process sets** b-value $\coloneqq i$ and broadcasts it to all
- \odot Again, every correct process receives at least $n{-}f$ identical i b-values in round 1 and decides

A useful observation

1: a_p := input bit; r := 1; 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first $n-f$ a-values with t imestamp r received 7: else b_p := \perp 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first $n-f$ b-values with timestamp r received 11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then $\mathsf{decide}(v)$; $a_p = v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p = b$ 13: else $a_p :=$ \$ {\$ is chosen uniformly at random to be 0 or 1}

14: $r := r+1$

Lemma $\,$ For all $\,r$, either $\,$ $b_{p,r} \in \{1, \perp\}$ for all p or $b_{p,r} \in \{0, \perp\}$ for all $b_{n,r} \in \{1, \perp\}$ for all p

A useful observation

Agreement

1: a_p := input bit; r := 1; 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first $n-f$ a-values with t imestamp r received 7: else b_p := \perp 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first $n-f$ b-values with timestamp r received 11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then $\mathsf{decide}(v)$; $a_p = v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p = b$ 13: else $a_p :=$ \$ {\$ is chosen uniformly at random to be 0 or 1 } 14: $r := r+1$

Proof By contradiction. Suppose p and q at round r such that $b_{p,r}$ = 0 and $b_{q,r}$ = 1 From lines 6,7 p received $n-f$ distinct 0s, q received $n-f$ distinct 1s. Then, $2(n-f) \leq n$, implying $n \leq 2f$ Contradiction

Corollary It is impossible that two processes p and q decide on different values at round \hat{r}

Agreement

 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first $n-f$ a-values with t imestamp r received 7: else b_p := \perp 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first $n-f$ b-values with timestamp r received 11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then $\mathsf{decide}(v)$; $a_p = v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p = b$ 13: else $a_p :=$ \$ {\$ is chosen uniformly at random to be 0 or 1 }

14: $r := r+1$

1: a_p := input bit; r := 1;

Let r be the first round in which a decision is made

Let \bar{p} be a process that decides in \bar{r}

1: a_p := input bit; r := 1; 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first $n-f$ a-values with t imestamp r received 7: else b_p := \perp 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first $n-f$ b-values with timestamp r received 11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then $\mathsf{decide}(v)$; $a_p = v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p = b$ 13: else $a_p :=$ \$ {\$ is chosen uniformly at random to be 0 or 1 } 14: $r := r+1$

Let r be the first round in which \boldsymbol{a} decision is made

Let \bar{p} be a process that decides in \bar{r}

By the Corollary, no other process can decide on a different value in \overline{r}

To decide, \bar{p} must have received $\bar{n}\!-\!\bar{f}$ "i" from distinct processes

every other correct process has received " i " from at least $n\!-\!2f \geq 1$

By lines 11 and 12, every correct process sets its new a-value to for round $r+1$ to " i "

By the same argument used to prove Validity, every correct process that has not decided " $i^{\prime\prime}$ in round r will do so by the end of round $r+1$

Termination I

1: a_p := input bit; r := 1; 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first $n-f$ a-values with t imestamp r received 7: else b_p := \perp 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first $n-f$ b-values with timestamp r received 11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then $\mathsf{decide}(v)$; $a_p = v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p = b$ 13: else $a_p :=$ \$ {\$ is chosen uniformly at random to be 0 or 1 }

14: $r := r+1$

Remember that by Validity, if all (correct) processes propose the same value i' in phase 1 of round r , then every correct process decides $"i"$ in round $r.$

- The probability of all processes proposing the same input value (a landslide) in round 1 is Pr[landslide in round 1] = $1/2^n$
- What can we say about the following rounds?

Termination II

1: $a_p := \text{input bit};$ $r := 1;$ 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all t imestamp r received 6: if $(\exists v \in \{0, 1\} : \forall a \in A : a = v)$ then $b_p := v$ 7: else b_p := \perp 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first $n-f$ b-values with timestamp r received 11: if $(\exists v \in \{0,1\} : \forall b \in B : b = v)$ then $\mathsf{decide}(v)$; $a_p := v$ 12: else if $(\exists b \in B : b \neq \bot)$ then a_p := b 13: else $a_p :=$ \$ {\$ is chosen uniformly at random to be 0 or 1 } 14: $r := r+1$

In round r > 1, the a-values are not necessarily chosen at random! By line 12, some process may set its a-value to a non-random value v 5 Let A be the multiset of the first $n-f$ a-values with \bigcirc By the Lemma, however, all non-random values are identical! Therefore, in every r there is a positive probability (at least $1/2$ ⁿ) for a landslide Hence, for any round r Pr[no lanslide at round r] $\leq 1 - 1/2^n$ Since coin flips are independent: Pr[no lanslide for first k rounds] $\leq (1-1/2^n)^k$ When $k = 2^n$ this value is about 1/e; then, if Pr[landslide within k rounds] \ge which converges quickly to 1 as c grows $k = c2^n$ $1 - (1 - 1/2^n)^k \approx 1 - 1/e^c$