
The Triumph 
of Randomization

The Big Picture

Does randomization make for more powerful 
algorithms?

Does randomization expand the class of problems solvable in 
polynomial time?

Does randomization help compute problems fast in parallel 
in the PRAM model? 

You tell me!

The Triumph of 
Randomization?

Well, at least for distributed computations!

no deterministic 1-crash-resilient solution to 
Consensus

  -resilient randomized solution to consensus       
(        ) for crash failures

randomized solution for Consensus exists even 
for Byzantine failures!
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A simple randomized 
algorithm

M. Ben Or.  “Another advantage of free choice: completely 
asynchronous agreement protocols” (PODC 1983, pp. 27-30)

exponential number of operations per process

BUT more practical protocols exist 

down to             expected operations/process

       resilient
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The protocol’s structure
An infinite repetition of asynchronous rounds

in round  ,   only handles messages with 
timestamp 
each round has two phases
in the first, each   broadcasts an a-value 
which is a function of the b-values collected 
in the previous round (the first a-value is 
the input bit)
in the second, each   broadcasts a b-value 
which is a function of the collected a-values 
decide stutters
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Ben Or’s Algorithm
 1:    := input bit;   := 1;

 2: repeat forever

 3: !{phase 1}

 4: !send        to all

 5: !Let   be the multiset of the first       a-values with timestamp   received

 6: !if                                   then    := 

 7:!else    := 

 8:!{phase 2}

 9:!send        to all

10:!Let   be the multiset of the first        b-values with timestamp   received

11:!if                                   then decide(v);     := 

12:!else if                     then    := 

13:!else    :=     {   is chosen uniformly at random to be 0 or 1}

14:!   := 
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Validity

 1:     := input bit;   := 1;
 2: repeat forever
 3: {phase 1}
 4:!send        to all
 5 !Let A be the multiset of the first       a-values with 
! ! timestamp   received
 6: if                                   then    := 
 7:!else    := ⊥
 8:!{phase 2}
 9:!send        to all
10:!Let B be the multiset of the first       b-values with 
!   .......timestamp   received
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13:!else     :=     {  is chosen uniformly at random 
! ! ! ! ! ! ! to be 0 or 1}
14:!   := 

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Validity
All identical inputs ( )

Each process set a-value :=   
and broadcasts it to all

Since at most   faulty, every 
correct process receives at 
least       identical a-values in 
round 1

Every correct process sets              
b-value :=   and broadcasts it to 
all

Again, every correct process 
receives at least       identical    
b-values in round 1 and decides 
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A useful observation

Lemma   For all  , either       .                 
! ! ! ! for all   or    .                 
! ! ! ! for all   
bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}
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A useful observation

Lemma   For all  , either       .                 
! ! ! ! for all   or    .                 
! ! ! ! for all   

Proof      By contradiction.
Suppose   and   at round   such that         

! = 0 and      = 1

From lines 6,7   received        distinct 
0s,    received         distinct 1s.
Then,              , implying          
Contradiction

Corollary  It is impossible that 
two processes   and   decide 
on different values at round  

bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}
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Agreement
Let   be the first round in which a 
decision is made 
Let   be a process that decides in 
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Agreement
Let   be the first round in which a 
decision is made 
Let   be a process that decides in 

By the Corollary, no other process 
can decide on a different value in 

To decide,   must have received       
“ ” from distinct processes

every other correct process has 
received “ ” from at least

By lines 11 and 12, every correct 
process sets its new a-value to for 
round      to “ ”
By the same argument used to prove 
Validity, every correct process that 
has not decided “ ” in round   will do 
so by the end of round 
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Termination I
Remember that by Validity, if all 
(correct) processes propose the 
same value “ ” in phase 1 of 
round . , then every correct 
process decides “ ” in round  .

The probability of all processes 
proposing the same input value (a 
landslide) in round 1 is

Pr[landslide in round 1] =    .

What can we say about the 
following rounds?
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Termination II
In round r > 1, the a-values are not 
necessarily chosen at random!
By line 12, some process may set its a-value 
to a non-random value v
By the Lemma, however, all non-random 
values are identical!
Therefore, in every r there is a positive 
probability (at least      ) for a landslide
Hence, for any round r

Pr[no lanslide at round r]                       .
Since coin flips are independent:
Pr[no lanslide for first k rounds]              .
When       , this value is about 1/e; then, if

Pr[landslide within k rounds] ! 

which converges quickly to 1 as c grows
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