The Triumph of Randomization

The Big Picture

- Does randomization make for more powerful algorithms?
 - Does randomization expand the class of problems solvable in polynomial time?
 - Does randomization help compute problems fast in parallel in the PRAM model?

You tell me!

The Triumph of Randomization?

- Well, at least for distributed computations!
- o no deterministic 1-crash-resilient solution to Consensus
- T-resilient randomized solution to consensus (f < n/2) for crash failures
- Transformation of the second secon

A simple randomized algorithm

The protocol's structure

An infinite repetition of asynchronous rounds

- in round r, p only handles messages with timestamp r
- @ each round has two phases
- in the first, each p broadcasts an a-value which is a function of the b-values collected in the previous round (the first a-value is the input bit)
- in the second, each p broadcasts a b-value which is a function of the collected a-values
 decide stutters

Ben Or's Algorithm

1: a_p := input bit; r:= 1; 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5: Let A be the multiset of the first n-f a-values with timestamp received 6: if $(\exists v \in \{0,1\}: \forall a \in A: a = v)$ then b_p := v7: else b_p := \bot 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first n-f b-values with timestamp received 11: if $(\exists v \in \{0,1\}: \forall b \in B: b = v)$ then decide(v); a_p = v12: else if $(\exists b \in B: b \neq \bot)$ then a_p := b13: else a_p := \$ {\$ is chosen uniformly at random to be 0 or 1} 14: r := r+1

Validity

2: repeat forever 3: {phase 1} 4: send (a_p , r) to all 5 Let A be the multiset of the first n-f a-values with timestamp r received 6: if ($\exists v \in \{0, 1\} : \forall a \in A : a = v$) then $b_p := v$ 7: else $b_p := \bot$ 8: {phase 2} 9: send (b_p , r) to all 10: Let B be the multiset of the first n-f b-values with timestamp r received 11: if ($\exists v \in \{0, 1\} : \forall b \in B : b = v$) then decide(v); $a_{p} := v$ 12: else if ($\exists b \in B : b \neq \bot$) then $a_{p} := b$ 13: else $a_p := S$ {s is chosen uniformly at random to be 0 or 1}

14: r := r+1

1: a_p := input bit; <u>r:= 1;</u>

Validity

1: *a_p* := input bit; *r*:= 1; 2: repeat forever 3: {phase 1} 4: send (a_n, r) to all 5 Let A be the multiset of the first n-f a-values with timestamp r received 6: if $(\exists v \in \{0,1\} : \forall a \in A : a = v)$ then $b_p := v$ 7: else $b_p := \bot$ 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first n-f b-values with timestamp r received 11: if $(\exists v \in \{0, 1\} : \forall b \in B : b = v)$ then decide(v); $a_n := v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p := b$ 13: else $a_p :=$ {\$ is chosen uniformly at random to be 0 or 1}

14: r := r+1

- All identical inputs (i)
- Seach process set a-value := i and broadcasts it to all
- Since at most f faulty, every correct process receives at least n-f identical a-values in round 1
- Every correct process sets b-value := i and broadcasts it to all
- ♂ Again, every correct process receives at least n-f identical i b-values in round 1 and decides

A useful observation

1: $a_n := input bit; r := 1;$ 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first n-f a-values with timestamp r received 6: if $(\exists v \in \{0, 1\} : \forall a \in A : a = v)$ then $b_n := v$ 7: else $b_p := \bot$ 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first n-f b-values with timestamp r received 11: if $(\exists v \in \{0,1\} : \forall b \in B : b = v)$ then decide(v); $a_p := v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p := b$

13: else $a_p :=$ {\$ is chosen uniformly at random to be 0 or 1}

14: r := r+1

Lemma For all r, either for all p or $b_{n,r} \in \{1, \bot\}$ $b_{p,r} \in \{0, \bot\}$ for all p

A useful observation

1: $a_n := input bit; r := 1;$ 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first n-f a-values with timestamp r received 6: if $(\exists v \in \{0,1\} : \forall a \in A : a = v)$ then $b_n := v$ 7: else $b_p := \bot$ 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first n-f b-values with timestamp r received 11: if $(\exists v \in \{0,1\} : \forall b \in B : b = v)$ then decide(v); $a_p := v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p := b$ 13: else $a_p :=$ {\$ is chosen uniformly at random to be 0 or 1} 14: r := r+1

Lemma For all r, either $b_{n,r} \in \{1, \bot\}$ for alp or $b_{p,r} \in \{0, \bot\}$ for alb

By contradiction. Proof Suppose p and q at round r such that $b_{p,r} = 0$ and $b_{q,r} = 1$ From lines 6,7 p received n-f distinct Os, q received n-f distinct 1s. Then, $2(n-f) \le n$, implying $n \le 2f$

Corollary It is impossible that two processes p and q decide on different values at round r

Agreement

2: repeat forever 3: {phase 1} 4: send (a_n, r) to all 5 Let A be the multiset of the first n-f a-values with timestamp r received 6: if $(\exists v \in \{0,1\} : \forall a \in A : a = v)$ then $b_p := v$ 7: else $b_p := \bot$ 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first n-f b-values with timestamp r received 11: if $(\exists v \in \{0,1\} : \forall b \in B : b = v)$ then decide(v); $a_p := v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p := b$ 13: else $a_p :=$ {\$ is chosen uniformly at random

to be 0 or 1}

14: r := r+1

1: a_p := input bit; <u>r:= 1;</u>

a Let r be the first round in which a decision is made **a** Let p be a process that decides in r

1: $a_n := input bit; r := 1;$ 2: repeat forever 3: {phase 1} 4: send (a_n, r) to all 5 Let A be the multiset of the first n-f a-values with timestamp r received 6: if $(\exists v \in \{0,1\} : \forall a \in A : a = v)$ then $b_p := v$ 7: else $b_p := \bot$ 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first n-f b-values with timestamp r received 11: if $(\exists v \in \{0,1\} : \forall b \in B : b = v)$ then decide(v); $a_p := v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p := b$ 13: else $a_p :=$ {\$ is chosen uniformly at random to be 0 or 1} 14: r := r+1

Agreement

O Let r be the first round in which a decision is made

O Let p be a process that decides in r

- ⊕ By the Corollary, no other process
 can decide on a different value in r
- To decide, p must have received n-f"*i*" from distinct processes
- @ every other correct process has received "i" from at least $n-2f \ge 1$
- By lines 11 and 12, every correct process sets its new a-value to for round r+1 to "i"
- By the same argument used to prove Validity, every correct process that has not decided "i" in round r will do so by the end of round r+1

Termination I

1: a_p := input bit; <u>r:= 1;</u> 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first n-f a-values with timestamp r received 6: if $(\exists v \in \{0,1\} : \forall a \in A : a = v)$ then $b_p := v$ 7: else $b_p := \bot$ 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first n-f b-values with timestamp r received 11: if $(\exists v \in \{0,1\} : \forall b \in B : b = v)$ then decide(v); $a_p := v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p := b$ 13: else $a_p :=$ {\$ is chosen uniformly at random to be 0 or 1}

14: r := r+1

@Remember that by Validity, if all (correct) processes propose the same value "i" in phase 1 of round r , then every correct process decides "i" in round r.

- The probability of all processes proposing the same input value (a landslide) in round 1 is $\Pr[\text{landslide in round 1}] = 1/2^n$
- What can we say about the following rounds?

Termination II

1: a_n := input bit; r:= 1; 2: repeat forever 3: {phase 1} 4: send (a_p, r) to all 5 Let A be the multiset of the first n-f a-values with \bigcirc By the Lemma, however, all non-random timestamp r received 7: else $b_n := \bot$ 8: {phase 2} 9: send (b_p, r) to all 10: Let B be the multiset of the first n-f b-values with timestamp r received 11: if $(\exists v \in \{0,1\} : \forall b \in B : b = v)$ then decide(v); $a_p := v$ 12: else if $(\exists b \in B : b \neq \bot)$ then $a_p := b$ 13: else $a_p :=$ {\$ is chosen uniformly at random to be 0 or 1} 14: r := r+1

- \bigcirc In round r > 1, the a-values are not necessarily chosen at random!
- By line 12, some process may set its a-value to a non-random value v
- values are identical!

Therefore, in every r there is a positive probability (at least $1/2^n$) for a landslide Hence, for any round r

Pr[no lanslide at round $r] \leq 1 - 1/2^n$

Since coin flips are independent:

 $\Pr[\text{no lanslide for first k rounds}] \leq (1 - 1/2^n)^k$ • When $k = 2^n$ this value is about 1/e; then, if $k = c2^n$

 $Pr[landslide within k rounds] \ge$

$1 - (1 - 1/2^n)^k \approx 1 - 1/e^c$

which converges quickly to 1 as c grows