
The Triumph
of Randomization

The Big Picture

Does randomization make for more powerful
algorithms?

Does randomization expand the class of problems solvable in
polynomial time?

Does randomization help compute problems fast in parallel
in the PRAM model?

You tell me!

The Triumph of
Randomization?

Well, at least for distributed computations!

no deterministic 1-crash-resilient solution to
Consensus

 -resilient randomized solution to consensus
() for crash failures

randomized solution for Consensus exists even
for Byzantine failures!

f

f <n/2

A simple randomized
algorithm

M. Ben Or. “Another advantage of free choice: completely
asynchronous agreement protocols” (PODC 1983, pp. 27-30)

exponential number of operations per process

BUT more practical protocols exist

down to expected operations/process

 resilient

O(n log2n)

n−1

The protocol’s structure
An infinite repetition of asynchronous rounds

in round , only handles messages with
timestamp
each round has two phases
in the first, each broadcasts an a-value
which is a function of the b-values collected
in the previous round (the first a-value is
the input bit)
in the second, each broadcasts a b-value
which is a function of the collected a-values
decide stutters

r

pr

p

p

Ben Or’s Algorithm
 1: := input bit; := 1;

 2: repeat forever

 3: !{phase 1}

 4: !send to all

 5: !Let be the multiset of the first a-values with timestamp received

 6: !if then :=

 7:!else :=

 8:!{phase 2}

 9:!send to all

10:!Let be the multiset of the first b-values with timestamp received

11:!if then decide(v); :=

12:!else if then :=

13:!else := { is chosen uniformly at random to be 0 or 1}

14:! :=

ap r

(ap, r)

r

bp v

A

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

⊥bp

(bp, r)

n−f

n−f rB

(∃v ∈ {0, 1} : ∀b ∈ B : b = v) ap v

(∃b ∈ B : b #= ⊥) ap

ap

r+1r

b

$ $

Validity

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Validity
All identical inputs ()

Each process set a-value :=
and broadcasts it to all

Since at most faulty, every
correct process receives at
least identical a-values in
round 1

Every correct process sets
b-value := and broadcasts it to
all

Again, every correct process
receives at least identical
b-values in round 1 and decides

n−f

n−f

f

i

i

i

i

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

A useful observation

Lemma For all , either .
! ! ! ! for all or .
! ! ! ! for all
bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}

r

p

p

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

A useful observation

Lemma For all , either .
! ! ! ! for all or .
! ! ! ! for all

Proof By contradiction.
Suppose and at round such that

! = 0 and = 1

From lines 6,7 received distinct
0s, received distinct 1s.
Then, , implying
Contradiction

Corollary It is impossible that
two processes and decide
on different values at round

bp,r ∈ {1,⊥}
bp,r ∈ {0,⊥}

r

p

p

p q

r

2(n−f)≤n

n−f

n−f

p

p

q

bp,r bq,r

n≤2f

q r

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Agreement
Let be the first round in which a
decision is made
Let be a process that decides in

r

p r

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Agreement
Let be the first round in which a
decision is made
Let be a process that decides in

By the Corollary, no other process
can decide on a different value in

To decide, must have received
“ ” from distinct processes

every other correct process has
received “ ” from at least

By lines 11 and 12, every correct
process sets its new a-value to for
round to “ ”
By the same argument used to prove
Validity, every correct process that
has not decided “ ” in round will do
so by the end of round

r

p r

r

p n−f

n−2f ≥ 1

r+1

r+1

r

i

i

i

i

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Termination I
Remember that by Validity, if all
(correct) processes propose the
same value “ ” in phase 1 of
round . , then every correct
process decides “ ” in round .

The probability of all processes
proposing the same input value (a
landslide) in round 1 is

Pr[landslide in round 1] = .

What can we say about the
following rounds?

1/2
n

r

i

i

r

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

Termination II
In round r > 1, the a-values are not
necessarily chosen at random!
By line 12, some process may set its a-value
to a non-random value v
By the Lemma, however, all non-random
values are identical!
Therefore, in every r there is a positive
probability (at least) for a landslide
Hence, for any round r

Pr[no lanslide at round r] .
Since coin flips are independent:
Pr[no lanslide for first k rounds] .
When , this value is about 1/e; then, if

Pr[landslide within k rounds] !

which converges quickly to 1 as c grows

k = 2
n

k = c2
n

1/2
n

≤ (1 − 1/2n)k

≤ 1 − 1/2
n

 1: := input bit; := 1;
 2: repeat forever
 3: {phase 1}
 4:!send to all
 5 !Let A be the multiset of the first a-values with
! ! timestamp received
 6: if then :=
 7:!else := ⊥
 8:!{phase 2}
 9:!send to all
10:!Let B be the multiset of the first b-values with
! timestamp received
11:!if then decide(); :=
12:!else if then :=
13:!else := { is chosen uniformly at random
! ! ! ! ! ! ! to be 0 or 1}
14:! :=

ap

(∃v ∈ {0, 1} : ∀a ∈ A : a = v)

(∃v ∈ {0, 1} : ∀b ∈ B : b = v)

ap

bp

ap

n−f

bp

(bp, r)

n−f

(ap, r)

v

v

(∃b ∈ B : b #= ⊥) bap

apv

r r+1

$ $

r

r

r

1 − (1 − 1/2n)k
≈ 1 − 1/ec

