Tensor Representation

- Tensors are multidimensional arrays (generalization of matrices)
- Used to represent data with a number of features greater that two
 - Documents Keywords Years
 - Author Keyword Venue
 - Source Destination Time

Introduction

- Tensors have been widely used in many areas
 - Psychometrics [Tucker, 1966]
 - Information retrieval [Chew et al., 2007]
 - Sensor networks analysis [Sun et al., 2007]
 - Web ranking and analysis [Kolda et al, 2006; Sun et al., 2005]

Tensor decompositions

- Multi-way data analysis
- They allow the extraction of
 - hidden correlations among data
 - clusters of data
 - degree of contribution of each data element to relationships

Tensor decompositions

- CANDECOMP / PARAllel FACtors (PARAFAC) [Carrol et al., 1970; Harshman, 1970]
 - Sum of R rank-one tensors
 - Diagonal tensor
 - Set of factor matrices

- Tensor decomposition [CP,Tucker] can be used for
 - understanding spectral characteristics of the data and
 - clustering the data based on inter-dependencies.

- Tensor decomposition [CP,Tucker] can be used for
 - understanding spectral characteristics of the data and
 - clustering the data based on inter-dependencies.

Tensor decompositions

- Tucker [Tucker, 1966]
 - Dense core tensor
 - Set of matrices that represent subspaces of dimensions

- Tensor decomposition [CP,Tucker] can be used for
 - understanding spectral characteristics of the data and
 - clustering the data based on inter-dependencies.

- Tensor decomposition [CP,Tucker] can be used for
 - understanding spectral characteristics of the data and

Fitting tensor decompositions

- Iterative algorithms
 - Alternating Least Squares (ALS)
 - Alternating Slice-Wise Diagonalization (ASD)
 - Self Weighted Alternating Trilinear Diagonalization (SWA-TLD)
- Closed form algorithms
 - Generalized rank annihilation method (GRAM)
 - Direct trilinear decomposition (DTLD)
- Gradient-based methods
 - PMF3 (based on Gauss-Newton method)

Iterative ALS algorithm

- At each step, all factor matrices are updated one at a time
- A factor matrix is estimated starting from the others

[Carrol et al., 1970 Harshman, 1970]

[Carrol et al., 1970 Harshman, 1970]

[Carrol et al., 1970 Harshman, 1970]

Iterative ALS

Observations

- Tensor decomposition algorithms are, especially for dense tensors, time consuming:
 - For dense tensors: exponential in the number of modes
 - For sparse tensors: linear in the number of nonzero elements.