Tensor Representation
c -

e Tensors are multidimensional arrays
(generalization of matrices)

e Used to represent data with a number of
features greater that two
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Introduction
e

e Tensors have been widely used in many
dareas
— Psychometrics [Tucker, 1966]
— Information retrieval [Chew et al., 2007]
- Sensor networks analysis [Sun et al., 2007]

- Web ranking and analysis [Kolda et al, 2006; Sun et
al., 2005]



Tensor decompositions
c_

e Multi-way data analysis

e They allow the extraction of
— hidden correlations among data
— clusters of data

— degree of contribution of each data element to
relationships



Tensor decompositions
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Tensor Representation of the Data

e [ensor decomposition [CP,Tucker] can be used for
e understanding spectral characteristics of the data and

e clustering the data based on inter-dependencies.
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Tensor decompositions
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Tucker [Tucker, 1966]
Dense core tensor

Set of matrices that
represent subspaces of
dimensions

approximate y /Q’b/
R
R




Tensor Representation of the Data

e [ensor decomposition [CP,Tucker] can be used for
e understanding spectral characteristics of the data and

e clustering the data based on inter-dependencies.

r1xr2xr3 cluster
relationships

’}6%
o
rll book
2 ~ U2 YT, clusters
s Ll X | Y
5
E 1| u, Iy, Bobgs
I&@ = L2
<
2
Bolg author
clusters

Tucker-Decomposition



Tensor Representation of the Data
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Fitting tensor decompositions
-

e |terative algorithms
— Alternating Least Squares (ALS)
— Alternating Slice-Wise Diagonalization (ASD)
— Self Weighted Alternating Trilinear Diagonalization (SWA-TLD)

e Closed form algorithms
— Generalized rank annihilation method (GRAM)
— Direct trilinear decomposition (DTLD)

e Gradient-based methods
- PMF3 (based on Gauss-Newton method)



Iterative ALS algorithm
-

initialize F' = F° e At each step, all factor
ﬁl matrices are updated one at a
. t time
quality = ﬁt(X F ) e A factor matrix is estimated
F™' = updateFactors(X ,F’) starting from the others
delta = quality — ﬁt(X JF )
Fl‘ =Fl‘+l
.
delta = tol

F

return F’
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Observations

e Tensor decomposition algorithms are,
especially for dense tensors, time

consuming:

- For dense tensors: exponential in the number of
modes

- For sparse tensors: linear in the number of non-
zero elements.



