
Android: Threads and Services
http://developer.android.com/guide/components/processes-and-threads.html

http://developer.android.com/guide/components/services.html

Ferruccio Damiani

Università di Torino
www.di.unito.it/~damiani

Mobile Device Programming
(Laurea Magistrale in Informatica, a.a. 2018-2019)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 1 / 48

http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/services.html
www.di.unito.it/~damiani

Outline

1 Intents handled by Google Android applications

2 Threads

3 Broadcast receiver

4 Services

5 Service vs Thread

6 Service Notifications

7 Android Interface Definition Language (AIDL)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 2 / 48

Outline

1 Intents handled by Google Android applications

2 Threads

3 Broadcast receiver

4 Services

5 Service vs Thread

6 Service Notifications

7 Android Interface Definition Language (AIDL)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 3 / 48

Reference of Available Intents [http://developer.android.com/guide/appendix/app-intents.html]

This table describe some of the default applications and settings that Google provides in their standard Android

implementation.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 4 / 48

http://developer.android.com/guide/appendix/app-intents.html

MainActivity.java
[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinIntent.git]

Create menu:

MainActivity.kt:

1 override fun onCreateOptionsMenu(menu: Menu): Boolean {

2 menuInflater.inflate(R.menu.intent_menu, menu)

3 return super.onCreateOptionsMenu(menu)

4 }

intent menu.xml:

1 <?xml version="1.0" encoding="utf-8"?>

2 <menu xmlns:android="http://schemas.android.com/apk/res/

android">

3 <item android:id="@+id/menuWebpage"

4 android:title="@string/menu_webpage"/>

5 <item android:id="@+id/menuGoogle"

6 android:title="@string/menu_google"/>

7 <item android:id="@+id/menuPlace"

8 android:title="@string/menu_place"/>

9 <item android:id="@+id/menuDial"

10 android:title="@string/menu_dial"/>

11 </menu>

Manage the events:

1 override fun onOptionsItemSelected(item: MenuItem?): Boolean {

2 return when (item?.itemId) {

3 R.id.menuWebpage -> IntentUtils.invokeWebBrowser(this)

4 R.id.menuGoogle -> IntentUtils.invokeWebSearch(this)

5 R.id.menuPlace -> IntentUtils.showPlace(this)

6 R.id.menuDial -> IntentUtils.dial(this)

7 else -> super.onOptionsItemSelected(item)

8 }

9 }

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 5 / 48

object IntentUtils
[http://developer.android.com/guide/components/intents-common.html]

1 ...

2 fun invokeWebBrowser(activity: Activity): Boolean {

3 val intent = Intent(

4 Intent.ACTION_VIEW,

5 Uri.parse("http://magistrale.educ.di.unito.it")

6)

7 activity.startActivity(intent)

8 return true

9 }

10
11 fun invokeWebSearch(activity: Activity): Boolean {

12 val intent = Intent(Intent.ACTION_WEB_SEARCH)

13 intent.putExtra(SearchManager.QUERY,

14 "studiare informatica unito")

15 activity.startActivity(intent)

16 return true

17 }

1
2 fun dial(activity: Activity): Boolean {

3 val intent = Intent(

4 Intent.ACTION_DIAL,

5 Uri.parse("tel:12345678")

6)

7 activity.startActivity(intent)

8 return true

9 }

10
11 fun showPlace(activity: Activity): Boolean {

12 val intent = Intent(

13 Intent.ACTION_VIEW,

14 Uri.parse("geo:45.090137, 7.659323?z=17")

15)

16 activity.startActivity(intent)

17 return true

18 }

19 ...

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 6 / 48

Execution:

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 7 / 48

Outline

1 Intents handled by Google Android applications

2 Threads

3 Broadcast receiver

4 Services

5 Service vs Thread

6 Service Notifications

7 Android Interface Definition Language (AIDL)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 8 / 48

Processes and Threads

When an application component starts
I If the application does not have any other components running, then the Android system

starts a new Linux process for the application with a single thread of execution.
F By default, all components of the same application run in the same process and thread (called

the “main” thread).

I If an application component starts and there already exists a process for that application,1

then the component is started within that process and uses the same thread of execution.
However, you can arrange for

F different components in your application to run in separate processes,2 and
F you can create additional threads for any process.

1Because another component from the application exists
2THESE SLIDES DO NOT ILLUSTRATE THIS POSSIBILITY.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 9 / 48

Process lifecycle

The Android system tries to maintain an application process for as long as possible, but eventually needs to
remove old processes to reclaim memory for new or more important processes. There are five levels in the
importance hierarchy. The following list presents the different types of processes in order of importance (the
first process is most important and is killed last):

1. Foreground process. A process that is required for what the user is currently doing.

2. Visible process. A process that doesn’t have any foreground components, but still can affect what the
user sees on screen.

3. Service process. A process that is running a service that has been started with the startService() method
and does not fall into either of the two higher categories.

4. Background process. A process holding an activity that’s not currently visible to the user (the activity’s
onStop() method has been called).

5. Empty process. A process that doesn’t hold any active application components. The only reason to keep
this kind of process alive is for caching purposes, to improve startup time the next time a component
needs to run in it.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 10 / 48

How apps work (by default)

The system creates a thread for the application, called ‘main” or “UI thread”
I It dispatches events to the user interface

Everything happens in the UI thread
I Long operations block the whole UI
I No events can be dispatched

Being blocked for more than 5 secs causes “application not responding” being presented
to the user

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 11 / 48

Threads

Android natively supports multi-threading

An application can comprise concurrent threads

Threads are managed like in Java by
I Extending class Thread
I Implementing interface Runnable

F Method run() is executed when Thread.start() is launched

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 12 / 48

Rules to Android’s single thread model

The Android UI toolkit is not thread-safe!

The following rules naturally arise.

1. Do not block the UI thread. I.e.:
I If you have operations to perform that are not instantaneous, you should make sure to do

them in separate threads (“background” or “worker” threads).

2. Do not access the Android UI toolkit from outside the UI thread. I.e.:
I All manipulations to the user interface should be done within the UI thread.
I Do not manipulate your UI in a worker thread.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 13 / 48

Example (Bad)

[Violation of rule 1]

1 override fun onClick(v: View) {

2 val bitmap = loadImageFromNetwork("http://example.com/image.png")

3 myImageView.setImageBitmap(bitmap)

4 }

[Violation of rule 2]

1 override fun onClick(v: View) {

2 Thread(Runnable {

3 val bitmap = loadImageFromNetwork("http://example.com/image.png")

4 mImageView.setImageBitmap(bitmap)

5 }).start()

6 }

[Violation of ?]

1 override fun onClick(v: View) {

2 var bitmap: Bitmap

3 Thread(Runnable {

4 bitmap = loadImageFromNetwork("http://example.com/image.png")

5 }).start()

6 myImageView.setImageBitmap(bitmap)

7 }

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 14 / 48

How can we fix the problem?

Message-passing like mechanism for thread communication

Each thread is associated with a queue of messages

Different ways to access the UI thread from other threads
I Activity.runOnUiThread(Runnable)
I View.post(Runnable)
I View.postDelayed(Runnable, long)

The Runnable is sent to the UI thread and run within it
I It is invoked on a View from outside the UI thread

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 15 / 48

Example (Fixed)

You can fix the previous code by using the View.post(Runnable) method:

1 override fun onClick(v: View) {

2 Thread(Runnable {

3 val bitmap = loadImageFromNetwork("http://example.com/image.png")

4 mImageView.post(Runnable {

5 mImageView.setImageBitmap(bitmap)

6 })

7 }).start()

8 }

Now this implementation is thread-safe: the network operation is done from a separate thread while the ImageView is
manipulated from the UI thread.

As the complexity of the operation grows, this kind of code can get complicated and
difficult to maintain.
I To handle more complex interactions with a worker thread, you might consider using a

Handler in your worker thread, to process messages delivered from the UI thread.
I The best solution is to extend the AsyncTask class, which simplifies the execution of worker

thread tasks that need to interact with the UI.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 16 / 48

Example (Fixed)

You can fix the previous code by using the View.post(Runnable) method:

1 override fun onClick(v: View) {

2 Thread(Runnable {

3 val bitmap = loadImageFromNetwork("http://example.com/image.png")

4 mImageView.post(Runnable {

5 mImageView.setImageBitmap(bitmap)

6 })

7 }).start()

8 }

Now this implementation is thread-safe: the network operation is done from a separate thread while the ImageView is
manipulated from the UI thread.

As the complexity of the operation grows, this kind of code can get complicated and
difficult to maintain.
I To handle more complex interactions with a worker thread, you might consider using a

Handler in your worker thread, to process messages delivered from the UI thread.
I The best solution is to extend the AsyncTask class, which simplifies the execution of worker

thread tasks that need to interact with the UI.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 16 / 48

Asynchronous tasks

Enable proper and easy use of the UI thread
I Allow one to perform background operations and publish results on the UI thread without

having to manipulate threads

One must subclass AsyncTask and implement the doInBackground() method that runs in
a pool of background threads

An AsyncTask instance has to be created on the UI thread and can be executed only once

To run the task call execute() from the UI thread

We can cancel the task at any time from any thread (through method cancel())

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 17 / 48

Example (Fixed by using AsyncTask)
You can implement the previous example using AsyncTask this way:

1 override fun onClick(v: View) {

2 DownloadImageTask().execute("http://example.com/image.png")

3 }

4 private class DownloadImageTask : AsyncTask<String, Void, Bitmap>() {

5 /** The system calls this to perform work in a worker thread and delivers it the parameters given to AsyncTask.execute() */

6 override fun doInBackground(vararg urls: String): Bitmap {

7 return loadImageFromNetwork(urls[0])

8 }

9 /** The system calls this to perform work in the UI thread and delivers the result from doInBackground() */

10 override fun onPostExecute(result: Bitmap) {

11 mImageView.setImageBitmap(result)

12 }

13 }

Now the UI is safe and the code is simpler, because it separates the work into the part that should be done on a worker
thread and the part that should be done on the UI thread.

doInBackground() executes automatically on a worker thread

I This step is used to perform long-running computations in background

I The result of the computation must be returned by this step and passed back

onPreExecute(), onPostExecute() and onProgressUpdate() are all invoked on the UI thread

I The value returned by doInBackground() is sent to onPostExecute()

We can call publishProgress() at anytime in doInBackground() to execute onProgressUpdate() on the UI thread

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 18 / 48

Example (Fixed by using AsyncTask)
You can implement the previous example using AsyncTask this way:

1 override fun onClick(v: View) {

2 DownloadImageTask().execute("http://example.com/image.png")

3 }

4 private class DownloadImageTask : AsyncTask<String, Void, Bitmap>() {

5 /** The system calls this to perform work in a worker thread and delivers it the parameters given to AsyncTask.execute() */

6 override fun doInBackground(vararg urls: String): Bitmap {

7 return loadImageFromNetwork(urls[0])

8 }

9 /** The system calls this to perform work in the UI thread and delivers the result from doInBackground() */

10 override fun onPostExecute(result: Bitmap) {

11 mImageView.setImageBitmap(result)

12 }

13 }

Now the UI is safe and the code is simpler, because it separates the work into the part that should be done on a worker
thread and the part that should be done on the UI thread.

doInBackground() executes automatically on a worker thread

I This step is used to perform long-running computations in background

I The result of the computation must be returned by this step and passed back

onPreExecute(), onPostExecute() and onProgressUpdate() are all invoked on the UI thread

I The value returned by doInBackground() is sent to onPostExecute()

We can call publishProgress() at anytime in doInBackground() to execute onProgressUpdate() on the UI thread

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 18 / 48

Example of Async Task
[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinAsyncTask.git]

In MainActivity.kt we download a JSON with the list of information of a Flicker gallery:

1 ...

2 val strPhoto = getJSON(url, 10000)

3 val jsonAll = JSONObject(strPhoto)

4
5 val jsonPhotos = jsonAll.optJSONObject("photos")

6 val jsonPhoto = jsonPhotos.optJSONArray("photo")

7
8 lista.apply {

9 layoutManager = LinearLayoutManager(applicationContext)

10 adapter = MyListAdapter(jsonPhoto)

11 }

12 ...

and into the MyListAdapter we download all images we need.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 19 / 48

Example of Async Task
[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinAsyncTask.git]

In MyListAdapter we define an holder with some custom property:

1 ...

2 // Provide a reference to the views for each data item

3 class ViewHolder(val myView: View,

4 var imageURL: String,

5 var toDownload: Boolean = true,

6 var bitmap: Bitmap? = null) : RecyclerView.ViewHolder(myView)

7 ...

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 20 / 48

Example of Async Task
[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinAsyncTask.git]

Override the method to display the data at the specified position:

1 // Replace the contents of a view (invoked by the layout manager)

2 override fun onBindViewHolder(holder: MyListAdapter.ViewHolder, position: Int) {

3
4 // https://farm{farm-id}.staticflickr.com/{server-id}/{id}_{secret}.jpg

5 val imageData = jsonPhoto.optJSONObject(position)

6 val strURL = "https://farm" + imageData.optInt("farm", 1) +

7 ".staticflickr.com/" + imageData.optString("server", "") +

8 "/" + imageData.optString("id", "") + "_" + imageData.optString("secret", "") + ".jpg"

9
10 holder.myView.photoTitle.text = imageData.optString("title", "")

11 if (strURL == holder.imageURL && holder.bitmap != null) {

12 holder.myView.photo.setImageBitmap(holder.bitmap)

13 } else {

14 holder.apply {

15 imageURL = strURL

16 toDownload = true

17 myView.photo.setImageResource(R.drawable.empty)

18 }

19 DownloadAsyncTask().executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, holder)

20 }

21 }

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 21 / 48

Example of Async Task
[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/KotlinAsyncTask.git]

Do the background work:

1 override fun doInBackground(vararg params: MyListAdapter.ViewHolder): MyListAdapter.ViewHolder {

2 val viewHolder = params[0]

3 try {

4 if (viewHolder.toDownload) {

5 viewHolder.toDownload = false

6 val imageURL = URL(viewHolder.imageURL)

7 viewHolder.bitmap = BitmapFactory.decodeStream(imageURL.openStream())

8 }

9 } catch (e: IOException) {

10 viewHolder.bitmap = null

11 }

12 return viewHolder

13 }

Show the result:

1 override fun onPostExecute(result: MyListAdapter.ViewHolder) {

2 if (result.bitmap == null) {

3 result.myView.photo.setImageResource(R.drawable.empty)

4 } else {

5 result.myView.photo.setImageBitmap(result.bitmap)

6 }

7 }

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 22 / 48

Caution: A problem you might encounter when using a worker thread is unexpected restarts
in your activity due to a runtime configuration change [http://developer.android.com/guide/topics/resources/

runtime-changes.html] (such as when the user changes the screen orientation), which may destroy your
worker thread. To see how you can persist your task during one of these restarts and how to
properly cancel the task when the activity is destroyed, see the source code for the Shelves
[https://code.google.com/p/shelves/] sample application.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 23 / 48

http://developer.android.com/guide/topics/resources/runtime-changes.html
http://developer.android.com/guide/topics/resources/runtime-changes.html
https://code.google.com/p/shelves/

Outline

1 Intents handled by Google Android applications

2 Threads

3 Broadcast receiver

4 Services

5 Service vs Thread

6 Service Notifications

7 Android Interface Definition Language (AIDL)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 24 / 48

Broadcast receiver

A component that allows us to register for system or application events
I All registered receivers for an event are notified by the Android runtime once the event

happens

A broadcast receiver is just a “gateway” to other components and is intended to do a
very minimal amount of work
I A receiver can be registered via the manifest

F Through tag <receiver>

I We can also register a receiver via method Context.registerReceiver()

The implementing class extends class BroadcastReceiver
I Method onReceive() is called by the Android system

F Once the code returns, the system considers the object to be finished and no longer active

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 25 / 48

System Events

Several system events are defined as final static fields in class Intent
[http://developer.android.com/reference/android/content/Intent.html]

Other Android system classes also define events

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 26 / 48

http://developer.android.com/reference/android/content/Intent.html

Dynamic invocations

Intent objects are delivered to all interested parties

Android finds the appropriate activity, service, or broadcast receiver to respond to the
intent
I Instantiates them if necessary

Broadcast intents are delivered only to broadcast receivers, never to activities or services
I An intent passed to startActivity() is delivered only to an activity, never to a service or

broadcast receiver, etc.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 27 / 48

sendBroadcast and sendOrderedBroadcast

sendBroadcast
I Broadcasts the given intent to all interested BroadcastReceivers

F An optional required permission could be enforced

I This call is asynchronous; it returns immediately

sendOrderedBroadcast
I Broadcasts the given intent to all interested BroadcastReceivers

F Delivering them one at a time to allow preferred receivers to consume the broadcast before it is
delivered to the others

I This call is asynchronous; it returns immediately

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 28 / 48

LocalBroadcastManager [http://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html]

It is an helper to register for and send broadcasts of Intents to local objects within your
process—this is has a number of advantages over sending global broadcasts with
sendBroadcast(Intent):

Broadcasted data do not leave your app
I No need to worry about leaking private data

Other apps cannot communicate with these broadcasts
I No need to worry about having security holes

More efficient than sending a global broadcast through the system

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 29 / 48

http://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html

Outline

1 Intents handled by Google Android applications

2 Threads

3 Broadcast receiver

4 Services

5 Service vs Thread

6 Service Notifications

7 Android Interface Definition Language (AIDL)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 30 / 48

Services

Application components that perform long-running operations in background without a
user interface
I Must be declared in the manifest
I Any app component can use a service in the same way as any component can use an activity

F We can declare the service as private, in the manifest file, and block access from other
applications

Continue to run in background even if the user switches to another application

A component can also bind to a service to interact with it and perform inter-process
communication (IPC)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 31 / 48

A service can essentially take two forms:

Started. A service is ”started” when an application component starts it by calling
startService()
I A started service performs a single operation and does not return a result to the caller

Bound. A service is ”bound” when an application component binds to it by calling
bindService()
I A bound service offers a client-server interface that allows components to interact with the

service, even across processes with inter-process communication (IPC)
I A bound service runs only as long as another application component is bound to it
I Multiple components can bind to the service

Services can work both ways at the same time—it can be started (to run indefinitely) and also
allow binding.

It’s simply a matter of whether you implement a couple callback methods:
I onStartCommand() to allow components to start it, and
I onBind() to allow binding.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 32 / 48

Caution:

A service runs in the main thread of its hosting process
I The service does not create its own thread and does not run in a separate process

If your service is going to do any CPU intensive work you should create a new thread
within the service to do that work

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 33 / 48

Creating a Service

To create a service, you must create a subclass of Service (or one of its existing
subclasses)—the most important callback methods you should override are:

onStartCommand()
I The system calls this method when another component requests that the service be started

(through startService(Intent))

stopSelf() or stopService(Intent)
I For the self-termination of the service or for asking for the termination of a service from the

outside
I No need to implement these methods if we only want to provide binding
I System-decided termination (i.e., memory shor tage)

onCreate()
I The system calls this method when the service is first created, to perform one-time setup

procedures (before it calls either onStar tCommand() or onBind())
F If the service is already running, this method is not called

onDestroy()
I The system calls this method when the service is no longer used and is being destroyed

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 34 / 48

startService() vs bindService()

If a service is started by invoking startService()
I It keeps running until it stops itself or another component stops it

If a service is created by invoking bindService() (and onStartCommand() is not called)
I It only runs as long as a component is bound to it
I When the service is unbound from all clients, it is destroyed

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 35 / 48

Creating a Started Service

A started service is one that another component starts by calling startService(), resulting in a
call to the service’s onStartCommand() method. Traditionally, there are two classes you can
extend to create a started service:

Service. This is the base class for all services.
I When you extend this class, it’s important that you create a new thread in which to do all

the service’s work, because the service uses your application’s main thread, by default, which
could slow the performance of any activity your application is running.

IntentService. This is a subclass of Service that uses a worker thread to handle all start
requests, one at a time.
I This is the best option if you don’t require that your service handle multiple requests

simultaneously.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 36 / 48

IntentService

Provides a straightforward solution for handling asynchronous requests (expressed through
Intents)
I All you need to do is implement onHandleIntent(), which receives the intent for each start

request so you can do the background work.

Clients send requests through startService(Intent)
I The service is started as needed and handles Intents using a worker thread automatically
I The service stops itself as soon it runs out of work

All requests are handled by a single worker thread
I Implementation of pattern “Work queue processor”

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 37 / 48

Foreground/Background services

A foreground service performs some operation that is noticeable to the user. For example,
an audio app would use a foreground service to play an audio track. Foreground services
must display a status bar icon. Foreground services continue running even when the user
isn’t interacting with the app.

A background service performs an operation that isn’t directly noticed by the user. For
example, if an app used a service to compact its storage, that would usually be a
background service.
Note: If your app targets API level 26 or higher, the system imposes restrictions on running background

services when the app itself is not in the foreground. In most cases like this, your app should use a

scheduled job instead.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 38 / 48

Scheduled services

A JobScheduler (API level 21) launches the service

The system schedules the jobs for execution at the appropriate times

Google recommends that we use JobScheduler to execute background services

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 39 / 48

Outline

1 Intents handled by Google Android applications

2 Threads

3 Broadcast receiver

4 Services

5 Service vs Thread

6 Service Notifications

7 Android Interface Definition Language (AIDL)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 40 / 48

Service vs Thread

A service can run in the background even when the user is not interacting with the
application.

A thread can perform work outside the main thread, but only while the user is interacting
with the application.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 41 / 48

Outline

1 Intents handled by Google Android applications

2 Threads

3 Broadcast receiver

4 Services

5 Service vs Thread

6 Service Notifications

7 Android Interface Definition Language (AIDL)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 42 / 48

Service Notifications

Once running, a service can notify the user of events using
I Toast notifications are messages that appear on the surface of the current window for a

moment then disappear
I Status bar notifications provide an icon in the status bar with a message, the user can select

it to take an action
F This is the best technique when some background work has completed

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 43 / 48

Status Bar Notifications

Used by background services to notify the occurrence of an event without interrupting the
operations of the foreground activities
I Display an icon on the Status Bar
I Display a message in the Notification Window
I Fire an event in case the user selects the notification

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 44 / 48

Toast Notifications

A Toast Notification is a message that pops up on the surface of the window, and
automatically fades out
I Typically created by the foreground activity
I Display a message text and then fades out
I Does not accept events! (use Status Bar Notifications instead)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 45 / 48

Outline

1 Intents handled by Google Android applications

2 Threads

3 Broadcast receiver

4 Services

5 Service vs Thread

6 Service Notifications

7 Android Interface Definition Language (AIDL)

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 46 / 48

Android Interface Definition Language (AIDL)
[http://developer.android.com/guide/components/aidl.html]

AIDL supports Inter-Process Communication (IPC)

AIDL is similar to other IDLs using

Used to define the programming interface that both the client and service agree upon to
communicate with each other
I One process cannot normally access the memory of another process
I Actors need to decompose their objects into primitives that the operating system can

understand, and marshal the objects across the boundary
I Android handles it for us with AIDL

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 47 / 48

http://developer.android.com/guide/components/aidl.html

Note.Using AIDL is necessary only if you allow clients from different applications to access your
service for IPC and want to handle multithreading in your service.

If you do not need to perform concurrent IPC across different applications, you should
create your interface by implementing a Binder or,

if you want to perform IPC, but do not need to handle multithreading, implement your
interface using a Messenger.

Regardless, be sure that you understand Bound Services before implementing an AIDL.

Ferruccio Damiani (Università di Torino) Android: Threads and Services Mobile Device Programming 48 / 48

	Intents handled by Google Android applications
	Threads
	Broadcast receiver
	Services
	Service vs Thread
	Service Notifications
	Android Interface Definition Language (AIDL)

