
1 Translation validation of the Pattern Matching

Compiler

1.1 Source program

Our algorithm takes as its input a source program and translates it into an
algebraic data structure which type we call decision_tree.

type decision_tree =

| Unreachable

| Failure

| Leaf of source_expr

| Guard of source_blackbox * decision_tree * decision_tree

| Switch of accessor * (constructor * decision_tree) list * decision_tree

Unreachable, Leaf of source_expr and Failure are the terminals of the
three. We distinguish

• Unreachable: statically it is known that no value can go there

• Failure: a value matching this part results in an error

• Leaf: a value matching this part results into the evaluation of a source
black box of code

Our algorithm doesn’t support type-declaration-based analysis to know the
list of constructors at a given type. Let’s consider some trivial examples:

function true -> 1

is translated to

Switch ([(true, Leaf 1)], Failure)

while

function
| true -> 1
| false -> 2

1

will be translated to

Switch ([(true, Leaf 1); (false, Leaf 2)])

It is possible to produce Unreachable examples by using refutation clauses
(a "dot" in the right-hand-side)

function
| true -> 1
| false -> 2
| _ -> .

that gets translated into

Switch ([(true, Leaf 1); (false, Leaf 2)], Unreachable)

We trust this annotation, which is reasonable as the type-checker verifies
that it indeed holds.

Guard nodes of the tree are emitted whenever a guard is found. Guards
node contains a blackbox of code that is never evaluated and two branches,
one that is taken in case the guard evaluates to true and the other one that
contains the path taken when the guard evaluates to true.

The source code of a pattern matching function has the following form:

match variable with
| pattern1 → expr1
| pattern2 when guard → expr2
| pattern3 as var → expr3
...
| pn → exprn

Patterns could or could not be exhaustive.
Pattern matching code could also be written using the more compact

form:

2

function
| pattern1 → expr1
| pattern2 when guard → expr2
| pattern3 as var → expr3
...
| pn → exprn

This BNF grammar describes formally the grammar of the source pro-
gram:

start ::= "match" id "with" patterns | "function" patterns
patterns ::= (pattern0|pattern1) pattern1+
;; pattern0 and pattern1 are needed to distinguish the first case in which
;; we can avoid writing the optional vertical line
pattern0 ::= clause
pattern1 ::= "|" clause
clause ::= lexpr "->" rexpr
lexpr ::= rule (ε|condition)
rexpr ::= _code ;; arbitrary code
rule ::= wildcard|variable|constructor_pattern| or_pattern ;;
wildcard ::= "_"
variable ::= identifier
constructor_pattern ::= constructor (rule|ε) (assignment|ε)
constructor ::= int|float|char|string|bool |unit|record|exn|objects|ref |list|tuple|array|variant|parameterized_variant ;; data types
or_pattern ::= rule ("|" wildcard|variable|constructor_pattern)+
condition ::= "when" bexpr
assignment ::= "as" id
bexpr ::= _code ;; arbitrary code

The source program is parsed using the ocaml-compiler-libs library. The
result of parsing, when successful, results in a list of clauses and a list of
type declarations. Every clause consists of three objects: a left-hand-side

3

that is the kind of pattern expressed, an option guard and a right-hand-side
expression. Patterns are encoded in the following way:

pattern type

_ Wildcard
p1 as x Assignment
c(p1,p2,. . . ,pn) Constructor
(p1| p2) Orpat

Once parsed, the type declarations and the list of clauses are encoded in
the form of a matrix that is later evaluated using a matrix decomposition
algorithm.

Patterns are of the form

pattern type of pattern

_ wildcard
x variable
c(p1,p2,. . . ,pn) constructor pattern
(p1| p2) or-pattern

The pattern p matches a value v, written as p 4 v, when one of the
following rules apply

_ 4 v ∀v
x 4 v ∀v
(p1 | p2) 4 v iff p1 4 v or p2 4 v
c(p1, p2, . . . , pa) 4 c(v1, v2, . . . , va) iff (p1, p2, . . . , pa) 4 (v1, v2, . . . , va)
(p1, p2, . . . , pa) 4 (v1, v2, . . . , va) iff pi 4 vi ∀i ∈ [1..a]

When a value v matches pattern p we say that v is an instance of p.
During compilation by the translators, expressions at the right-hand-side

are compiled into Lambda code and are referred as lambda code actions li.
We define the pattern matrix P as the matrix |m x n| where m bigger or

equal than the number of clauses in the source program and n is equal to

4

the arity of the constructor with the gratest arity.

P =


p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n
...

...
. . .

...
pm,1 pm,2 · · · pm,n)


every row of P is called a pattern vector ~pi = (p1, p2, . . . , pn); In every
instance of P pattern vectors appear normalized on the length of the longest
pattern vector. Considering the pattern matrix P we say that the value
vector ~v = (v1, v2, . . . , vi) matches the pattern vector pi in P if and only if
the following two conditions are satisfied:

• pi,1, pi,2, · · · , pi,n 4 (v1, v2, . . . , vi)

• ∀j < i pj,1, pj,2, · · · , pj,n � (v1, v2, . . . , vi)

We can define the following three relations with respect to patterns:

• Pattern p is less precise than pattern q, written p 4 q, when all in-
stances of q are instances of p

• Pattern p and q are equivalent, written p ≡ q, when their instances
are the same

• Patterns p and q are compatible when they share a common instance

Wit the support of two auxiliary functions

• tail of an ordered family

tail((xi)i ∈ I) := (xi)i 6= min(I)

• first non-⊥ element of an ordered family

First((xi)i) := ⊥ if ∀i, xi = ⊥
First((xi)i) := x_min{i | xi 6= ⊥} if ∃i, xi 6= ⊥

5

we now define what it means to run a pattern row against a value vector of
the same length, that is (pi)i(vi)i

pi vi resultpat

∅ (∅) []
(_, tail(pi)i) (vi) tail(pi)i(tail(vi)i)
(x, tail(pi)i) (vi) σ[x7→v0] if tail(pi)i(tail(vi)i) = σ

(K(qj)j , tail(pi)i) (K(v’j)j ,tail(vj)j) ((qj)j + tail(pi)i)((v’j)j + tail(vi)i)
(K(qj)j , tail(pi)i) (K’(v’l)l,tail(vj)j) ⊥ if K 6= K’
(q1|q2, tail(pi)i) (vi)i First((q1,tail(pi)i)(vi)i, (q2,tail(pi)i)(vi)i)

A source program tS is a collection of pattern clauses pointing to bb
terms. Running a program tS against an input value vS , written tS(vS)
produces a result r belonging to the following grammar:

tS ::= (p → bb)i∈I

tS(vS) → r
r ::= guard list * (Match bb | NoMatch | Absurd)

We can define what it means to run an input value vS against a source
program tS :

tS(vS) := ⊥ if ∀i, pi(vS) = ⊥
First((xi)i) := x_min{i | xi 6= ⊥} if ∃i, xi 6= ⊥
tS(vS) = Absurd if bb_min{pi → bbi | pi(vS) 6= ⊥} = refutation clause
tS(vS) = Match bb_min{pi → bbi | pi(vS) 6= ⊥}
[. . .] Big part that I think doesn’t need revision from you [. . .]
In our prototype we make use of accessors to encode stored values.

let value = 1 :: 2 :: 3 :: []

(* that can also be written *)

let value = []

|> List.cons 3

|> List.cons 2

|> List.cons 1

(field 0 x) = 1

(field 0 (field 1 x)) = 2

(field 0 (field 1 (field 1 x)) = 3

(field 0 (field 1 (field 1 (field 1 x)) = []

An accessor a represents the access path to a value that can be reached by
deconstructing the scrutinee.

6

a ::= Here | n.a

The above example, in encoded form:

Here = 1

1.Here = 2

1.1.Here = 3

1.1.1.Here = []

In our prototype the source matrix mS is defined as follows

SMatrix mS := (aj)j∈J, ((pij)j∈J → bbi)i∈I

Source matrices are used to build source decision trees CS . A decision
tree is defined as either a Leaf, a Failure terminal or an intermediate node
with different children sharing the same accessor a and an optional fallback.
Failure is emitted only when the patterns don’t cover the whole set of pos-
sible input values S. The fallback is not needed when the user doesn’t use a
wildcard pattern. %%% Give example of thing

CS ::= Leaf bb | Switch(a, (Ki → Ci)i∈S , C?) | Failure | Unreachable
vS ::= K(vi)i∈I | n ∈ N

We say that a translation of a source program to a decision tree is correct
when for every possible input, the source program and its respective decision
tree produces the same result

∀vS , tS(vS) = JtSKS(vS)

We define the decision tree of source programs JtSK in terms of the deci-
sion tree of pattern matrices JmSK by the following:

J((pi → bbi)i∈IK := J(Here), (pi → bbi)i∈I K

Decision tree computed from pattern matrices respect the following invariant:

∀v (vi)i∈I = v(ai)i∈I → JmK(v) = m(vi)i∈I for m = ((ai)i∈I, (ri)i∈I)
v(Here) = v
K(vi)i(k.a) = vk(a) if k ∈ [0;n[

7

We proceed to show the correctness of the invariant by a case analysys.
Base cases:

1. [| ∅, (∅ → bbi)i |] ≡ Leaf bbi where i := min(I), that is a decision
tree [|ms|] defined by an empty accessor and empty patterns pointing
to blackboxes bbi. This respects the invariant because a source matrix
in the case of empty rows returns the first expression and (Leaf bb)(v)
:= Match bb

2. [| (aj)j , ∅ |] ≡ Failure

Regarding non base cases: Let’s first define some auxiliary functions

• The index family of a constructor

Idx(K) := [0; arity(K)[

• head of an ordered family (we write x for any object here, value, pattern
etc.)

head((xi)i ∈ I) = x_min(I)

• tail of an ordered family

tail((xi)i ∈ I) := (xi)i 6= min(I)

• head constructor of a value or pattern

constr(K(xi)i) = K
constr(_) = ⊥
constr(x) = ⊥

• first non-⊥ element of an ordered family

First((xi)i) := ⊥ if ∀i, xi = ⊥
First((xi)i) := x_min{i | xi 6= ⊥} if ∃i, xi 6= ⊥

8

• definition of group decomposition:

let constrs((pi)i ∈ I) = { K | K = constr(pi), i ∈ I }
let Groups(m) where m = ((ai)i ((pij)i → ej)ij) =

let (Kk)k = constrs(pi0)i in
(Kk →

((a0.l)l + tail(ai)i)
(
if poj is Kk(ql) then

(ql)l + tail(pij)i → ej
if poj is _ then

(_)l + tail(pij)i → ej
else ⊥
)j

), (
tail(ai)i, (tail(pij)i → ej if p0j is _ else ⊥)j

)

Groups(m) is an auxiliary function that decomposes a matrix m into subma-
trices, according to the head constructor of their first pattern. Groups(m)
returns one submatrix m_r for each head constructor K that occurs on the
first row of m, plus one "wildcard submatrix" mwild that matches on all val-
ues that do not start with one of those head constructors. Intuitively, m is
equivalent to its decomposition in the following sense: if the first pattern of
an input vector (v_i)ˆi starts with one of the head constructors Kk, then
running (v_i)ˆi against m is the same as running it against the submatrix
mKk

; otherwise (its head constructor /∈ (Kk)k) it is equivalent to running it
against the wildcard submatrix.

We formalize this intuition as follows

1. Lemma (Groups): Let m be a matrix with

Groups(m) = (k_r → m_r)ˆk, mwild

9

For any value vector (vi)
l such that v0 = k(v′l)

l for some constructor
k, we have:

if k = kk for some k then
m(vi)i = mk((vl’)l + (vi)i∈I\{0})

else
m(vi)i = mwild(vi)i∈I\{0}

2. Proof: Let m be a matrix ((ai)i, ((pij)i → ej)j) with

Groups(m) = (Kk → mk)k, mwild

Below we are going to assume that m is a simplified matrix such that
the first row does not contain an or-pattern or a binding to a variable.

Let (vi)i be an input matrix with v0 = Kv(v’l)l for some constructor
Kv. We have to show that:

• if Kk = Kv for some Kk ∈ constrs(p0j)j , then m(vi)i = mk((v’l)l

+ tail(vi)i)

• otherwise m(vi)i = mwild(tail(vi)i)

Let us call (rkj) the j-th row of the submatrix mk, and rjwild the j-th
row of the wildcard submatrix mwild.

Our goal contains same-behavior equalities between matrices, for a
fixed input vector (vi)i. It suffices to show same-behavior equalities
between each row of the matrices for this input vector. We show that
for any j,

• if Kk = Kv for some Kk ∈ constrs(p0j)j , then

(pij)i(vi)i = rkj((v’l)l + tail(vi)i

• otherwise

(pij)i(vi)i = rjwild tail(vi)i

10

In the first case (Kv is Kk for some Kk ∈ constrs(p0j)j), we have to
prove that

(pij)i(vi)i = rkj((v’l)l + tail(vi)i

By definition of mk we know that rkj is equal to

if poj is Kk(ql) then
(ql)l + tail(pij)i → ej

if poj is _ then
(_)l + tail(pij)i → ej

else ⊥

By definition of (pi)i(vi)i we know that (pij)i(vi) is equal to

(K(qj)j , tail(pij)i) (K(v’l)l,tail(vi)i) := ((qj)j + tail(pij)i)((v’l)l + tail(vi)i)
(_, tail(pij)i) (vi) := tail(pij)i(tail(vi)i)
(K(qj)j , tail(pij)i) (K’(v’l)l,tail(vj)j) := ⊥ if K 6= K’

We prove this first case by a second case analysis on p0j .

TODO

In the second case (Kv is distinct from Kk for all Kk ∈ constrs(poj)j),
we have to prove that

(pij)i(vi)i = rjwild tail(vi)i

TODO

1.2 Target translation

The target program of the following general form is parsed using a parser
generated by Menhir, a LR(1) parser generator for the OCaml programming
language. Menhir compiles LR(1) a grammar specification, in this case a
subset of the Lambda intermediate language, down to OCaml code. This is
the grammar of the target language (TODO: check menhir grammar)

11

start ::= sexpr
sexpr ::= variable | string | "(" special_form ")"
string ::= "\"" identifier "\"" ;; string between doublequotes
variable ::= identifier
special_form ::= let|catch|if|switch|switch-star|field|apply|isout
let ::= "let" assignment sexpr ;; (assignment sexpr)+ outside of pattern match code
assignment ::= "function" variable variable+ ;; the first variable is the identifier of the function
field ::= "field" digit variable
apply ::= ocaml_lambda_code ;; arbitrary code
catch ::= "catch" sexpr with sexpr
with ::= "with" "(" label ")"
exit ::= "exit" label
switch-star ::= "switch*" variable case*
switch::= "switch" variable case* "default:" sexpr
case ::= "case" casevar ":" sexpr
casevar ::= ("tag"|"int") integer
if ::= "if" bexpr sexpr sexpr
bexpr ::= "(" ("!="|"="\vert{}">"|"<="|">"|"<") sexpr digit | field ")"
label ::= integer

The prototype doesn’t support strings.
The AST built by the parser is traversed and evaluated by the symbolic

execution engine. Given that the target language supports jumps in the
form of "catch - exit" blocks the engine tries to evaluate the instructions
inside the blocks and stores the result of the partial evaluation into a record.
When a jump is encountered, the information at the point allows to finalize
the evaluation of the jump block. In the environment the engine also stores
bindings to values and functions. Integer additions and subtractions are
simplified in a second pass. The result of the symbolic evaluation is a target
decision tree CT

CT ::= Leaf bb | Switch(a, (πi → Ci)i∈S , C?) | Failure
vT ::= Cell(tag ∈ N, (vi)i∈I) | n ∈ N

12

Every branch of the decision tree is "constrained" by a domain

Domain π = { n|n∈N x n|n∈Tag⊆N }

Intuitively, the π condition at every branch tells us the set of possible values
that can "flow" through that path. π conditions are refined by the engine
during the evaluation; at the root of the decision tree the domain corresponds
to the set of possible values that the type of the function can hold. C? is
the fallback node of the tree that is taken whenever the value at that point
of the execution can’t flow to any other subbranch. Intuitively, the πfallback

condition of the C? fallback node is

πfallback = ¬
⋃
i∈I
πi

The fallback node can be omitted in the case where the domain of the children
nodes correspond to set of possible values pointed by the accessor at that
point of the execution

domain(vS(a)) =
⋃
i∈I
πi

We say that a translation of a target program to a decision tree is correct
when for every possible input, the target program and its respective decision
tree produces the same result

∀vT , tT (vT) = JtT KT (vT)

1.3 Equivalence checking

The equivalence checking algorithm takes as input a domain of possible val-
ues S and a pair of source and target decision trees and in case the two trees
are not equivalent it returns a counter example. Our algorithm respects the
following correctness statement:

equiv(S,CS , CT)[] = Yes ∧ CT covers S =⇒ ∀vS ≈ vT ∈ S, CS(vS) = CT (vT)

equiv(S,CS , CT)[] = No(vS , vT) ∧ CT covers S =⇒ vS ≈ vT ∈ S ∧ CS(vS) 6= CT (vT)

13

Our equivalence-checking algorithm equiv(S,CS , CT)G is a exactly decision
procedure for the provability of the judgment (equiv(S,CS , CT)G), defined
below.

constraint trees
C ::= Leaf(t)

| Failure
| Switch(a, (πi, Ci)i, Cfb)

| Guard(t, C0, C1)

boolean result
b ∈ {0, 1}

guard queues
G ::= (t1 = b1), . . . , (tn = bn)

input space
S ⊆ {(vS , vT) | vS ≈val vT }

equiv(∅, CS , CT)G equiv(S,Failure,Failure)[]

tS ≈term tT

equiv(S, Leaf(tS), Leaf(tT))[]

∀i, equiv((S ∧ a = Ki), Ci, trim(CT , a = Ki))G

equiv((S ∧ a /∈ (Ki)
i), Cfb, trim(CT , a /∈ (Ki)

i))G

equiv(S, Switch(a, (Ki, Ci)
i, Cfb), CT)G

CS ∈ Leaf(t),Failure

∀i, equiv((S ∧ a ∈ Di), CS , Ci)G equiv((S ∧ a /∈ (Di)
i), CS , Cfb)G

equiv(S,CS ,Switch(a, (Di)
iCi, Cfb))G

equiv(S,C0, CT)G, (tS = 0) equiv(S,C1, CT)G, (tS = 1)

equiv(S,Guard(tS , C0, C1), CT)G

tS ≈term tT equiv(S,CS , Cb)G

equiv(S,CS ,Guard(tT , C0, C1))(tS = b), G

Running a program tS or its translation JtSK against an input vS produces
as a result r in the following way:

14

(JtSKS(vS) ≡ CS(vS)) → r
tS(vS) → r

Likewise

(JtT KT (vT) ≡ CT (vT)) → r
tT (vT) → r
result r ::= guard list * (Match blackbox | NoMatch | Absurd)
guard ::= blackbox.

Having defined equivalence between two inputs of which one is expressed in
the source language and the other in the target language, vS ' vT , we can
define the equivalence between a couple of programs or a couple of decision
trees

tS ' tT := ∀vS'vT , tS(vS) = tT (vT)
CS ' CT := ∀vS'vT , CS(vS) = CT (vT)

The result of the proposed equivalence algorithm is Yes or No(vS, vT). In
particular, in the negative case, vS and vT are a couple of possible counter
examples for which the decision trees produce a different result.

In the presence of guards we can say that two results are equivalent
modulo the guards queue, written r1 'gs r2, when:

(gs1, r1) 'gs (gs2, r2) ⇔ (gs1, r1) = (gs2 ++ gs, r2)

We say that CT covers the input space S, written covers(CT , S) when every
value vS∈S is a valid input to the decision tree CT . (TODO: rephrase) Given
an input space S and a couple of decision trees, where the target decision
tree CT covers the input space S we can define equivalence:

equiv(S, CS , CT , gs) = Yes ∧ covers(CT , S) → ∀vS'vT ∈ S, CS(vS) 'gs CT (vT)

Similarly we say that a couple of decision trees in the presence of an input
space S are not equivalent in the following way:

equiv(S, CS , CT , gs) = No(vS ,vT) ∧ covers(CT , S) → vS'vT ∈ S ∧ CS(vS) 6=gs CT (vT)

15

Corollary: For a full input space S, that is the universe of the target program:

equiv(S, JtSKS , JtT KT , ∅) = Yes ⇔ tS ' tT

1.3.1 The trimming lemma

The trimming lemma allows to reduce the size of a decision tree given an
accessor a → π relation (TODO: expand)

∀vT ∈ (a→π), CT (vT) = Ct/a→π(vT)

We prove this by induction on CT :

• CT = Leafbb: when the decision tree is a leaf terminal, the result of
trimming on a Leaf is the Leaf itself

Leafbb/a→π(v) = Leafbb(v)

• The same applies to Failure terminal

Failure/a→π(v) = Failure(v)

• When CT = Switch(b, (π→Ci)i)/a→π then we look at the accessor a
of the subtree Ci and we define πi’ = πi if a 6=b else πi∩π Trimming a
switch node yields the following result:

Switch(b, (π→Ci)i∈I)/a→π := Switch(b, (π’i→Ci/a→π)i∈I)

For the trimming lemma we have to prove that running the value vT against
the decision tree CT is the same as running vT against the tree Ctrim that is
the result of the trimming operation on CT

CT (vT) = Ctrim(vT) = Switch(b, (πi’→Ci/a→π)i∈I)(vT)

We can reason by first noting that when vT /∈(b→πi)i the node must be a
Failure node. In the case where ∃k | vT∈(b→πk) then we can prove that

Ck/a→π(vT) = Switch(b, (πi’→Ci/a→π)i∈I)(vT)

16

because when a 6= b then πk’= πk and this means that vT∈πk’ while when
a = b then πk’=(πk∩π) and vT∈πk’ because:

• by the hypothesis, vT∈π

• we are in the case where vT∈πk

So vT ∈ πk’ and by induction

Ck(vT) = Ck/a→π(vT)

We also know that ∀vT∈(b→πk) → CT (vT) = Ck(vT) By putting together
the last two steps, we have proven the trimming lemma.

1.3.2 Equivalence checking

The equivalence checking algorithm takes as parameters an input space S, a
source decision tree CS and a target decision tree CT :

equiv(S, CS , CT) → Yes | No(vS , vT)

When the algorithm returns Yes and the input space is covered by CS
we can say that the couple of decision trees are the same for every couple of
source value vS and target value vT that are equivalent.

equiv(S, CS , CT) = Yes and cover(CT , S) → ∀ vS ' vT∈S ∧ CS(vS) = CT (vT)

In the case where the algorithm returns No we have at least a couple of
counter example values vS and vT for which the two decision trees outputs
a different result.

equiv(S, CS , CT) = No(vS ,vT) and cover(CT , S) → ∀ vS ' vT∈S ∧ CS(vS) 6= CT (vT)

We define the following

Forall(Yes) = Yes
Forall(Yes::l) = Forall(l)
Forall(No(vS ,vT)::_) = No(vS ,vT)

17

There exists and are injective:

int(k) ∈ N (arity(k) = 0)
tag(k) ∈ N (arity(k) > 0)
π(k) = {n| int(k) = n} x {n| tag(k) = n}

where k is a constructor.
We proceed by case analysis:

1. in case of unreachable:

CS(vS) = Absurd(Unreachable) 6= CT (vT) ∀vS ,vT

1. In the case of an empty input space

equiv(∅, CS , CT) := Yes

and that is trivial to prove because there is no pair of values (vS , vT)
that could be tested against the decision trees. In the other subcases
S is always non-empty.

2. When there are Failure nodes at both sides the result is Yes:

equiv(S, Failure, Failure) := Yes

Given that ∀v, Failure(v) = Failure, the statement holds.

3. When we have a Leaf or a Failure at the left side:

equiv(S, Failure as CS , Switch(a, (πi → CT i)i∈I)) := Forall(equiv(S∩a→π(ki)), CS , CT i)i∈I)
equiv(S, Leaf bbS as CS , Switch(a, (πi → CT i)i∈I)) := Forall(equiv(S∩a→π(ki)), CS , CT i)i∈I)

Our algorithm either returns Yes for every sub-input space Si := S∩(a→π(ki))
and subtree CT i

equiv(Si, CS , CT i) = Yes ∀i

18

or we have a counter example vS , vT for which

vS'vT∈Sk ∧ cS(vS) 6= CT k(vT)

then because

vT∈(a→πk) → CT (vT) = CT k(vT) ,
vS'vT∈S ∧ CS(vS)6=CT (vT)

we can say that

equiv(Si, CS , CT i) = No(vS , vT) for some minimal k∈I

4. When we have a Switch on the right we define πfallback as the domain
of values not covered but the union of the constructors ki

πfallback = ¬
⋃
i∈I
π(ki)

Our algorithm proceeds by trimming

equiv(S, Switch(a, (ki → CSi)i∈I, Csf), CT) :=
Forall(equiv(S∩(a→π(ki)i∈I), CSi, Ct/a→π(ki))

i∈I + equiv(S∩(a→πn), CS , Ca→πfallback))

The statement still holds and we show this by first analyzing the Yes
case:

Forall(equiv(S∩(a→π(ki)i∈I), CSi, Ct/a→π(ki))
i∈I = Yes

The constructor k is either included in the set of constructors ki:

k | k∈(ki)i ∧ CS(vS) = CSi(vS)

We also know that

(1) CSi(vS) = Ct/a→πi
(vT)

(2) CT/a→πi
(vT) = CT (vT)

19

(1) is true by induction and (2) is a consequence of the trimming
lemma. Putting everything together:

CS(vS) = CSi(vS) = CT/a→πi
(vT) = CT (vT)

When the k/∈(ki)i [TODO]

The auxiliary Forall function returns No(vS, vT) when, for a minimum
k,

equiv(Sk, CSk, CT/a→πk
= No(vS , vT)

Then we can say that

CSk(vS) 6= Ct/a→πk
(vT)

that is enough for proving that

CSk(vS) 6= (Ct/a→πk
(vT) = CT (vT))

20

