Lecture 12 Network Science Link Analysis ond Wes Seerch

topics Loday's

· Searching the Wes · Link Anelysis + HITS ; HUSS & Authorities + Pege Lonk . Modern Wes Search · Link Analysis Leyond the Wes NETWORKS and MARKETS Chepter 14 Reasoning about a Highly Connected World DAVID EASLEY "Link Analysis and Web Search" JON KLEINBERG

opges ere dynamic end elways sharping "news search" features · "scoreitj" vs "obundena" <u>Filters</u> · what is "importent"? Con the Structure of the deb dominated by links, help us to find such "Stors" First attempt: What "words" on documents

intuitouely correct" - "Li ghet provide out-links to nouj d

Figure 14.2: Finding good lists for the query "newspapers": each page's value as a list is written as a number inside it.

Assumption : pojes hove behaving es hists a better sense for where results ore con pertitors \$ ("Authori Das" ere

Figure 14.3: Re-weighting votes for the query "newspapers": each of the labeled page's new score is equal to the sum of the values of all lists that point to it.

why ~ Ve velues ine Holes

Authorities Hubs ond thet se ere lookly tor: "obtlorites" thet pages with high list volve pefes hubs i $h \cup b(p)$, ev H(p)¥p: $\forall \rho : hus(\rho) \ge auth(\rho) \ge$ = 1 initializ. Authority Update Rule $\forall p$: $\text{auth}(p) = \sum_{i=1}^{n} h \cup b(i)$ n: # pege) Connected to p HUG Uplote Rule $\forall p: hug(p) = \sum_{i=1}^{n} outh(i)$ n: # peges p connects to (P,i) are odges

de ci de 44 let s es steps NUMber hob(p) = orth(p) = 1¥ρ ; K Steps 2 epply euthopdate role epply but opdate role 20 25 normalize values 3 $outh(p) = \frac{outh(p)}{z = outh(i)} + hus(p)$ SJ Merc normalized .152 News Wall St. normalized .152 Journal 11 New York tote normalized .248 Times 3 5 6 6 USA Today normalized .192 3 Facebook normalized .040 3 Yahoo! normalized .120 Amazon normalized .096 Figure 14.4: Re-weighting votes after normalizing for the query "newspapers." normal ted Jelve J GURAL J/hen K -> 00 14.)_ blues STABILIZATION ; ore in por yout

Figure 14.5: Limiting hub and authority values for the query "newspapers."

Л Equilibrium И

Page Rank "Endorsement " rieved es possing directly from one "important" note to outlin. Endorsments ore rechined by in - links end posed ecron out-poing links bosic - lephition (number of stops) I - Yp: PR(p) - <u>A</u>; N:** Peyes 2 for Y stops 2. for χ steps 2. for χ steps 22: Qpy besic pR $pR(p) = \sum_{i=1}^{n} \frac{pR(i)}{out(i)}$ n: # i geges connected to p (i,p) ore d. edges out(i): # of outgoing links of roge i.

Figure 14.6: A collection of eight pages: A has the largest PageRank, followed by B and C (which collect endorsements from A).

Deling the definition of Page Renk ceses dependrate problem networks Some the ì • <u>ب</u> receive nodes ell Some ntoork PR volves The 9

Figure 14.8: The same collection of eight pages, but F and G have changed their links to point to each other instead of to A. Without a smoothing effect, all the PageRank would go to F and G.

Repeating PR update rule $PR(F) = \frac{1}{2}$ PR(G) = $=\frac{1}{2}$ $(P \neq \{F, G\}) PR(P)$ ¥ P 0 dejener te L con here Ceses h OUT GUIPONENT lie of The Ŵ

the problem : itse do not here pother beck to some other nodes Solution lets force this "fluid" to streen back to other Modes "sometimes" select e "saling factor" (domping factor") "S" SE TO, 1] Scoled PR Update Rule (SPRV) $\frac{7R(r) = 5}{i=1} \xrightarrow{PR(i)}_{Out(i)} + (1-5) \xrightarrow{I}_{N}$ the limits of SPRV rule: K->00 : Il the PR volves are unique values dépend on "5" (SETO. 8, 0.9)

Kendom Wolks

roudomly clicking from on foge to enother picking eech page with epid prosoluty. Follow links for a sepunce of K hinks claim: the probability of being et page X after K steps is the explication of the besic PR update rule additional intuition: PR(X) is e rondom wolk ecross hyperlinks will and up at X as we sum the wolk for larger and herger number f streps.

, c В E D the "leakage" of F and G hes a network interproton: the probability of converping to 1, and once it reading For G, then it is stude "forever" So LUTION: Ditte prob. S: I click on en hyperlink with prob. 1-5: I Jump To e readonly Selected rodk.

Applications of Link Analysis to Modern Web Search

Google tolog doesn't se PR ouymon

(poper: 2001) Hilltop (en extension of HITS)

endur terts

clickly behavior

SEO (Seorch Engine Optimization) Conpary Severse engineering of SE's rouking Junctons S SEr define rev neagures perfact result one "moving torgets" is e genre-theoretic principle Ħ

Link Analysis : Beyond the Wes

citation Qualysis

"inpact factor" of journal everage number ef attallans received by papers published in that journal

"influental weights"

La "lege rouk"

[Goog	le Google	# ci	ite -	#					
	ran	k ($\times 10^{-4}$) rat	nk cit	es	Publ	ication	Tit	le Au	uthor(s)
	1	4.65	54	574	PRL	10	531	1963	Unitary Symmetry and Leptonic.	N. Cabibbo
	2	4.29	5	1364	\mathbf{PR}	108	1175	1957	Theory of Superconductivity	J. Bardeen, L. Cooper, J. Schrieffer
	3	3.81	1	3227	\mathbf{PR}	140	A1133	1965	Self-Consistent Equations	W. Kohn & L. J. Sham
	4	3.17	2	2460	\mathbf{PR}	136	B864	1964	Inhomogeneous Electron Gas	P. Hohenberg & W. Kohn
	5	2.65	6	1306	PRL	19	1264	1967	A Model of Leptons	S. Weinberg
	6	2.48	55	568	\mathbf{PR}	65	117	1944	Crystal Statistics	L. Onsager
	7	2.43	56	568	RMP	15	1	1943	Stochastic Problems in	S. Chandrasekhar
	8	2.23	95	462	\mathbf{PR}	109	193	1958	Theory of the Fermi Interaction	R. P. Feynman & M. Gell-Mann
	9	2.15	17	871	PR	109	1492	1958	Absence of Diffusion in	P. W. Anderson
	10	2.13	1853	114	PR	34	1293	1929	The Theory of Complex Spectra	J. C. Slater

k.

Gens

Cons

TABLE I: The top 10 Google-ranked publications when d = 0.5

PL to help to discover "gens"

"Findhy

Proj

u d'cetors con chenje our behouts

Take Home Messages

two methods to find in portant
nodes:
HITS
Page Rank

they are both iterative (Ksteps) · (Nodifications of) Both methods ere widely used in modern Wes

Search augines end other domains Judicetors charge social Leheviors:

"perfect results" ore moving

· Limiting PR and HITS volves:

for K-J=>>> some velues ore returned after each iteration Proof? next...

•

Algorithmic complexity? HIGH, but numerical methods exist To Solve the problem very efficiently (e.g. the power method)