
Android: Building Your First App
http://developer.android.com/training/basics/firstapp/

Ferruccio Damiani

Università di Torino
www.di.unito.it/~damiani

Mobile Device Programming
(Laurea Magistrale in Informatica, a.a. 2018-2019)

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 1 / 55

http://developer.android.com/training/basics/firstapp/
www.di.unito.it/~damiani

Outline

1 Creating a Project with Android Studio (the basic “Hello World” app)

2 Running Your App

3 Building a Simple User Interface (a text field and a button)

4 Starting Another Activity

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 2 / 55

Outline

1 Creating a Project with Android Studio (the basic “Hello World” app)

2 Running Your App

3 Building a Simple User Interface (a text field and a button)

4 Starting Another Activity

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 3 / 55

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 4 / 55

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 5 / 55

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 6 / 55

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 7 / 55

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 8 / 55

The graphical user interface for an Android app is built using a hierarchy of
View and ViewGroup objects.

View objects are usually UI widgets such as buttons or text fields.

ViewGroup objects are invisible view containers that define how the
child views are laid out, such as in a grid or a vertical list.

Android provides an XML vocabulary that corresponds to the subclasses of
View and ViewGroup so you can define your UI in XML using a hierarchy
of UI elements.
Layouts are subclasses of the ViewGroup.

The default “Hello World” app uses a ConstraintLayout.
Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 9 / 55

Some default files

The created Android project is now a basic “Hello World” app that contains
some default files. The most important are:

app/src/main/res/layout/activity main.xml

This is the XML layout file for the activity you added when you
created the project with Android Studio. Following the New Project
workflow, Android Studio presents this file with both a text view and
a preview of the screen UI. The file includes some default settings and
a TextView element that displays the message, “Hello world!”.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 10 / 55

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 11 / 55

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 12 / 55

1 <?xml version="1.0" encoding="utf-8"?>

2 <android.support.constraint.ConstraintLayout xmlns:android="http://schemas.android.com/apk/res/android"

3 xmlns:app="http://schemas.android.com/apk/res-auto"

4 xmlns:tools="http://schemas.android.com/tools"

5 android:layout_width="match_parent"

6 android:layout_height="match_parent"

7 tools:context=".MainActivity">

8
9 <TextView

10 android:layout_width="wrap_content"

11 android:layout_height="wrap_content"

12 android:text="Hello World!"

13 app:layout_constraintBottom_toBottomOf="parent"

14 app:layout_constraintLeft_toLeftOf="parent"

15 app:layout_constraintRight_toRightOf="parent"

16 app:layout_constraintTop_toTopOf="parent" />

17
18 </android.support.constraint.ConstraintLayout>

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 13 / 55

app/src/main/java/it/unito/di/educ/pdm18kotlin0/MainActivity.kt

A tab for this file appears in Android Studio when the New Project
workflow finishes. When you select the file you see the class definition
for the activity you created. When you build and run the app, the
Activity class starts the activity and loads the layout file that says
“Hello World!’

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 14 / 55

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 15 / 55

1 package it.unito.di.educ.pdm18kotlin0

2
3 import android.support.v7.app.AppCompatActivity

4 import android.os.Bundle

5
6 class MainActivity : AppCompatActivity() {

7
8 override fun onCreate(savedInstanceState: Bundle?) {

9 super.onCreate(savedInstanceState)

10 setContentView(R.layout.activity_main)

11 }

12 }

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 16 / 55

app/src/androidTest/java/it/unito/di/educ/pdm18kotlin0/ExampleInstrumentedTest.kt

It is not necessary to have this class in your project to run the app.
This class is used to test the application in a controlled environment.

1 package it.unito.di.educ.pdm18kotlin0

2
3 import android.support.test.InstrumentationRegistry

4 import android.support.test.runner.AndroidJUnit4

5
6 import org.junit.Test

7 import org.junit.runner.RunWith

8
9 import org.junit.Assert.*

10
11 /**

12 * Instrumented test, which will execute on an Android device.

13 *

14 * See [testing documentation](http://d.android.com/tools/testing).

15 */

16 @RunWith(AndroidJUnit4::class)

17 class ExampleInstrumentedTest {

18 @Test

19 fun useAppContext() {

20 // Context of the app under test.

21 val appContext = InstrumentationRegistry.getTargetContext()

22 assertEquals("it.unito.di.educ.pdm18kotlin0", appContext.packageName)

23 }

24 }

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 17 / 55

app/src/test/java/it/unito/di/educ/pdm18kotlin0/ExampleUnitTest.kt

It is not necessary to have this class in your project to run the app.
This class is used to test the application in a controlled environment.

1 package it.unito.di.educ.pdm18kotlin0

2
3 import org.junit.Test

4
5 import org.junit.Assert.*

6
7 /**

8 * Example local unit test, which will execute on the development machine (host).

9 *

10 * See [testing documentation](http://d.android.com/tools/testing).

11 */

12 class ExampleUnitTest {

13 @Test

14 fun addition_isCorrect() {

15 assertEquals(4, 2 + 2)

16 }

17 }

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 18 / 55

app/src/main/AndroidManifest.xml

The manifest file describes the fundamental characteristics of the app
and defines each of its components.

1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"

3 package="it.unito.di.educ.pdm18kotlin0">

4
5 <application

6 android:allowBackup="true"

7 android:icon="@mipmap/ic_launcher"

8 android:label="@string/app_name"

9 android:roundIcon="@mipmap/ic_launcher_round"

10 android:supportsRtl="true"

11 android:theme="@style/AppTheme">

12 <activity android:name=".MainActivity">

13 <intent-filter>

14 <action android:name="android.intent.action.MAIN" />

15
16 <category android:name="android.intent.category.LAUNCHER" />

17 </intent-filter>

18 </activity>

19 </application>

20
21 </manifest>

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 19 / 55

app/build.gradle

Android Studio uses Gradle to compile and build your app. There is a
build.gradle file for each module of your project, as well as a
build.gradle file for the entire project. Usually, you’re only interested
in the build.gradle file for the module, in this case the app or
application module. This is where your app’s build dependencies are
set, including the defaultConfig settings:

I applicationId is the fully qualified package name for your application that you

specified during the New Project workflow.

I minSdkVersion is the Minimum SDK version you specified during the New Project

workflow. This is the earliest version of the Android SDK that your app supports.

I targetSdkVersion indicates the highest version of Android with which you have

tested your application. As new versions of Android become available, you should

test your app on the new version and update this value to match the latest API

level and thereby take advantage of new platform features.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 20 / 55

The res/ subdirectories contain the resources for your application:
I drawable<density>/ Directories for drawable objects (such as bitmaps) that are

designed for various densities, such as medium-density (mdpi) and high-density

(hdpi) screens.

I mipmap<density>/ Directories suggested for the ic launcher.png and

ic launcher round.png (that appears when you run the default app). The

mipmap<density>/ folders are for placing your app icons in only. Any other

drawable assets you use should be placed in the relevant drawable folders. a

I layout/ Directory for files that define your app’s user interface like

activity main.xml, discussed in previous slides, which describes a basic layout for the

MainActivity class.

I values/ Directory for other XML files that contain a collection of resources, such

as string and color definitions. The strings.xml file should define the ”Hello world!”

string that displays when you run the default app.

a
It’s best practice to place your app icons in mipmap- folders (not the drawable- folders) because they are

used at resolutions different from the device’s current density. For example, an tealxxxhdpi app icon can be used

on the launcher for an xxhdpi device. Different home screen launcher apps on different devices show app launcher

icons at various resolutions. When app resource optimization techniques remove resources for unused screen

densities, launcher icons can wind up looking fuzzy because the launcher app has to upscale a lower-resolution icon

for display. To avoid these display issues, apps should use the mipmap/ resource folders for launcher icons. The

Android system preserves these resources regardless of density stripping, and ensures that launcher apps can pick

icons with the best resolution for display.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 21 / 55

Outline

1 Creating a Project with Android Studio (the basic “Hello World” app)

2 Running Your App

3 Building a Simple User Interface (a text field and a button)

4 Starting Another Activity

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 22 / 55

Run on a Real Device

If you have a device running Android, you can install and run your app on it.

Set up your device

1. Plug in your device to your development machine with a USB cable. If you’re

developing on Windows, you might need to install the appropriate USB driver for

your device. For help installing drivers, see the OEM USB Drivers document

[http://developer.android.com/tools/extras/oem-usb.html].
2. Enable USB debugging on your device.

On most devices running Android 3.2 or older, you can find the option under
Settings > Applications > Development. On Android 4.0 and newer, it’s in
Settings > Developer options.
Note: On Android 4.2 and newer, Developer options is hidden by default. To make
it available, go to Settings > About phone and tap Build number seven times.
Return to the previous screen to find Developer options.

Run the app from Android Studio

1. Select one of your project’s files and click Run from the toolbar.

2. In the Choose Device window that appears, select the Choose a running device

radio button, select your device, and click OK.

Android Studio installs the app on your connected device and starts it.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 23 / 55

http://developer.android.com/tools/extras/oem-usb.html

Run on a Real Device

If you have a device running Android, you can install and run your app on it.

Set up your device

1. Plug in your device to your development machine with a USB cable. If you’re

developing on Windows, you might need to install the appropriate USB driver for

your device. For help installing drivers, see the OEM USB Drivers document

[http://developer.android.com/tools/extras/oem-usb.html].
2. Enable USB debugging on your device.

On most devices running Android 3.2 or older, you can find the option under
Settings > Applications > Development. On Android 4.0 and newer, it’s in
Settings > Developer options.
Note: On Android 4.2 and newer, Developer options is hidden by default. To make
it available, go to Settings > About phone and tap Build number seven times.
Return to the previous screen to find Developer options.

Run the app from Android Studio

1. Select one of your project’s files and click Run from the toolbar.

2. In the Choose Device window that appears, select the Choose a running device

radio button, select your device, and click OK.

Android Studio installs the app on your connected device and starts it.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 23 / 55

http://developer.android.com/tools/extras/oem-usb.html

Run on a Real Device

If you have a device running Android, you can install and run your app on it.

Set up your device

1. Plug in your device to your development machine with a USB cable. If you’re

developing on Windows, you might need to install the appropriate USB driver for

your device. For help installing drivers, see the OEM USB Drivers document

[http://developer.android.com/tools/extras/oem-usb.html].
2. Enable USB debugging on your device.

On most devices running Android 3.2 or older, you can find the option under
Settings > Applications > Development. On Android 4.0 and newer, it’s in
Settings > Developer options.
Note: On Android 4.2 and newer, Developer options is hidden by default. To make
it available, go to Settings > About phone and tap Build number seven times.
Return to the previous screen to find Developer options.

Run the app from Android Studio

1. Select one of your project’s files and click Run from the toolbar.

2. In the Choose Device window that appears, select the Choose a running device

radio button, select your device, and click OK.

Android Studio installs the app on your connected device and starts it.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 23 / 55

http://developer.android.com/tools/extras/oem-usb.html

Run on the Emulator

Whether you’re using Android Studio or the command line, to run your app on the

emulator you need to first create an Android Virtual Device (AVD). An AVD is a device

configuration for the Android emulator that allows you to model a specific device.

Create an AVD
1. Launch the Android Virtual Device Manager: in Android Studio, select Tools >

Android > AVD Manager, or click the AVD Manager icon in the toolbar.

2. On the AVD Manager main screen, click Create Virtual Device.

3. In the Select Hardware window, select a device configuration, such as Nexus 6, then

click Next.

4. Select the desired system version for the AVD and click Next.

5. Verify the configuration settings, then click Finish.

Run the app from Android Studio
1. In Android Studio, select your project and click Run from the toolbar.

2. In the Choose Device window, click the Launch emulator radio button.

3. From the Android virtual device pull-down menu, select the emulator you created,

and click OK.

It can take a few minutes for the emulator to load itself. You may have to unlock the

screen. When you do, PDM18kotlin0 appears on the emulator screen.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 24 / 55

Run on the Emulator

Whether you’re using Android Studio or the command line, to run your app on the

emulator you need to first create an Android Virtual Device (AVD). An AVD is a device

configuration for the Android emulator that allows you to model a specific device.

Create an AVD
1. Launch the Android Virtual Device Manager: in Android Studio, select Tools >

Android > AVD Manager, or click the AVD Manager icon in the toolbar.

2. On the AVD Manager main screen, click Create Virtual Device.

3. In the Select Hardware window, select a device configuration, such as Nexus 6, then

click Next.

4. Select the desired system version for the AVD and click Next.

5. Verify the configuration settings, then click Finish.

Run the app from Android Studio
1. In Android Studio, select your project and click Run from the toolbar.

2. In the Choose Device window, click the Launch emulator radio button.

3. From the Android virtual device pull-down menu, select the emulator you created,

and click OK.

It can take a few minutes for the emulator to load itself. You may have to unlock the

screen. When you do, PDM18kotlin0 appears on the emulator screen.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 24 / 55

Run on the Emulator

Whether you’re using Android Studio or the command line, to run your app on the

emulator you need to first create an Android Virtual Device (AVD). An AVD is a device

configuration for the Android emulator that allows you to model a specific device.

Create an AVD
1. Launch the Android Virtual Device Manager: in Android Studio, select Tools >

Android > AVD Manager, or click the AVD Manager icon in the toolbar.

2. On the AVD Manager main screen, click Create Virtual Device.

3. In the Select Hardware window, select a device configuration, such as Nexus 6, then

click Next.

4. Select the desired system version for the AVD and click Next.

5. Verify the configuration settings, then click Finish.

Run the app from Android Studio
1. In Android Studio, select your project and click Run from the toolbar.

2. In the Choose Device window, click the Launch emulator radio button.

3. From the Android virtual device pull-down menu, select the emulator you created,

and click OK.

It can take a few minutes for the emulator to load itself. You may have to unlock the

screen. When you do, PDM18kotlin0 appears on the emulator screen.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 24 / 55

Example [git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/PDM18kotlin0.git]

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 25 / 55

Outline

1 Creating a Project with Android Studio (the basic “Hello World” app)

2 Running Your App

3 Building a Simple User Interface (a text field and a button)

4 Starting Another Activity

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 26 / 55

In the next slides, we will create a layout in XML that includes a text
field and a button.

Namely, we will see how to:
I Create a Linear Layout
I Build an Intent
I Add a Text Field
I Add String Resources
I Add a Button
I Make the Input Box Fill in the Screen Width

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 27 / 55

The graphical user interface for an Android app is built using a hierarchy of
View and ViewGroup objects.

View objects are usually UI widgets such as buttons or text fields.

ViewGroup objects are invisible view containers that define how the
child views are laid out, such as in a grid or a vertical list.

Android provides an XML vocabulary that corresponds to the subclasses of
View and ViewGroup so you can define your UI in XML using a hierarchy
of UI elements.
Layouts are subclasses of the ViewGroup.

In this example, we will work with a LinearLayout.
Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 28 / 55

Create a Linear Layout
Create a new application with name “PDM18kotlin1” and an EmptyActivity (of name
MainActivity). Then:

1. In Android Studio, from the res/layout directory, open the activity main.xml

file.
The EmptyActivity template (you chose when you created this project) includes
the activity main.xml file with a ConstraintLayout root view and a TextView

child view.

2. Delete the TextView element.

3. Change the <ConstraintLayout> to <LinearLayout>.

4. Add the android:orientation attribute and set it to "horizontal".

5. Remove the xmlns:app attribute and the tools:context attribute.

The result looks like this:

res/layout/activity main.xml

1 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 xmlns:tools="http://schemas.android.com/tools"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent"

5 android:orientation="horizontal" >

6 </LinearLayout>

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 29 / 55

res/layout/activity main.xml

1 <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

2 xmlns:tools="http://schemas.android.com/tools"

3 android:layout_width="match_parent"

4 android:layout_height="match_parent"

5 android:orientation="horizontal" >

6 </LinearLayout>

LinearLayout is a view group (a subclass of ViewGroup).

It lays out child views in either a vertical or horizontal orientation, as specified by

the android:orientation attribute.

I Each child of a LinearLayout appears on the screen in the order in which it

appears in the XML.

Two other attributes, android:layout width and android:layout height, are

required for all views in order to specify their size.

I Because (in this example) the LinearLayout is the root view in the layout,

it should fill the entire screen area that’s available to the app by setting the

width and height to "match parent". This value declares that the view

should expand its width or height to match the width or height of the parent

view.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 30 / 55

Add a Text Field

As with every View object, you must define certain XML attributes to specify the EditText
object’s properties.

1. In the activity main.xml file, within the <LinearLayout> element, define an
<EditText> element with the id attribute set to @+id/edit message.

2. Define the layout width and layout height attributes as wrap content.

3. Define a hint attribute as a string object named edit message.

The <EditText> element should read as follows:

res/layout/activity main.xml

1 <EditText android:id="@+id/edit_message"

2 android:layout_width="wrap_content"

3 android:layout_height="wrap_content"

4 android:hint="@string/edit_message" />

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 31 / 55

res/layout/activity main.xml

1 <EditText android:id="@+id/edit_message"

2 android:layout_width="wrap_content"

3 android:layout_height="wrap_content"

4 android:hint="@string/edit_message" />

EditText is a view (a subclass of View).

The android:id attribute provides a unique identifier for the view, which you can

use to reference the object from your app code, such as to read and manipulate

the object (we will see this in the next slides).

I The at sign (@) is required when you’re referring to any resource objecta from
XML. It is followed by the resource type (id in this case), a slash, then the
resource name (edit message).

F When you compile the app, the SDK tools use the ID name to create a
new resource ID in your project’s gen/R.java file that refers to the
EditText element.

F With the resource ID declared once this way, other references to the ID
do not need the plus sign.

F Using the plus sign is necessary only when specifying a new resource ID
and not needed for concrete resources such as strings or layouts.

aFor more information about resource objects see the Resource Objects
sidebox in the next slide.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 32 / 55

The android:layout width

and android:layout width

attributes.

I Instead of using specific
sizes for the width and
height, the
"wrap content" value
specifies that the view
should be only as big as
needed to fit the
contents of the view.

I If you were to instead

use "match parent",

then the EditText

element would fill the

screen, because it would

match the size of the

parent LinearLayout.

Resource Objects

A resource object is a unique integer name

that’s associated with an app resource,

such as a bitmap, layout file, or string.

I Every resource has a corresponding
resource object defined in your
project’s gen/R.java file. You can
use the object names in the R class to
refer to your resources, such as when
you need to specify a string value for
the android:hint attribute. You
can also create arbitrary resource IDs
that you associate with a view using
the android:id attribute, which
allows you to reference that view
from other code.

I The SDK tools generate the R.java

file each time you compile your app.

You should never modify this file by

hand.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 33 / 55

The android:hint attribute.

I This is a default string to display when the text field is empty.
I Instead of using a hard-coded string as the value, the

"@string/edit message" value refers to a string resource defined in a
separate file.a

F Because this refers to a concrete resource (not just an identifier), it
does not need the plus sign.

aThis string resource has the same name as the element ID: edit message.
However, references to resources are always scoped by the resource type (such
as id or string), so using the same name does not cause collisions.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 34 / 55

Add String Resources

By default, your Android project includes a string resource file at
res/values/strings.xml. Here, you’ll add a new string named "edit message" and
set the value to ”Enter a message.”

1. In Android Studio, from the res/values directory, open strings.xml.

2. Add a line for a string named "edit message" with the value, ”Enter a message”.

3. Add a line for a string named "button send" with the value, ”Send”.

You’ll create the button that uses this string in the next slide.

The result for strings.xml looks like this:

res/values/strings.xml

1 <resources>

2 <string name="app_name">PDM18kotlin1</string>

3 <string name="edit_message">Enter a message</string>

4 <string name="button_send">Send</string>

5 </resources>

Best Practice
For text in the user interface, always specify each string as a resource. String resources allow you to manage all UI text in a
single location, which makes the text easier to find and update. Externalizing the strings also allows you to localize your app to
different languages by providing alternative definitions for each string resource.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 35 / 55

Add a Button

1. From the res/layout directory, edit the activity main.xml file.

2. Within the <LinearLayout> element, define a <Button> element immediately
following the <EditText> element.

3. Set the button’s width and height attributes to "wrap content" so the button is
only as big as necessary to fit the button’s text label.

4. Define the button’s text label with the android:text attribute; set its value to
the button send string resource you defined in the previous slide.

Your <LinearLayout> should now look: res/layout/activity main.xmla

1 <LinearLayout

2 xmlns:android="http://schemas.android.com/apk/res/android"

3 xmlns:tools="http://schemas.android.com/tools"

4 android:layout_width="match_parent"

5 android:layout_height="match_parent"

6 android:orientation="horizontal" >

7 <EditText android:id="@+id/edit_message"

8 android:layout_width="wrap_content"

9 android:layout_height="wrap_content"

10 android:hint="@string/edit_message" />

11 <Button

12 android:layout_width="wrap_content"

13 android:layout_height="wrap_content"

14 android:text="@string/button_send" />

15 </LinearLayout>

a
This button doesn’t need the android:id attribute, because it won’t be referenced from the activity code.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 36 / 55

The layout is currently designed so that both the EditText and Button widgets are only

as big as necessary to fit their content, as shown here:

(the EditText and Button widgets have their widths set to "wrap content").

This works fine for the button, but not as well for the text field, because the

user might type something longer. It would be nice to fill the unused screen

width with the text field. You can do this inside a LinearLayout with the weight

property, which you can specify using the android:layout weight attribute.

Inside a LinearLayout the android:layout weight attribute is such that:

The weight value is a number that specifies the amount of remaining space each
view should consume, relative to the amount consumed by sibling views. This
works kind of like the amount of ingredients in a drink recipe: ”2 parts soda, 1
part syrup” means two-thirds of the drink is soda.

Example
If you give one view a weight of 2 and another one a weight of 1, the sum is 3, so the
first view fills 2/3 of the remaining space and the second view fills the rest. If you add a
third view and give it a weight of 1, then the first view (with weight of 2) now gets 1/2
the remaining space, while the remaining two each get 1/4.

The default weight for all views is 0, so if you specify any weight value greater
than 0 to only one view, then that view fills whatever space remains after all views
are given the space they require.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 37 / 55

Make the Input Box Fill in the Screen Width

To fill the remaining space in your layout with the EditText element, do the following:

1. In the activity main.xml file, assign the <EditText> element’s layout weight

attribute a value of 1.

2. Also, assign <EditText> element’s layout width attribute a value of 0dp.

res/layout/activity main.xml

1 <EditText

2 android:layout_weight="1"

3 android:layout_width="0dp"

4 ... />

To improve the layout efficiency when you specify the weight, you should change
the width of the EditText to be zero (0dp). Setting the width to zero improves
layout performance because using "wrap content" as the width requires the
system to calculate a width that is ultimately irrelevant because the weight value
requires another width calculation to fill the remaining space. The result is as

shown here:
(the EditText widget is given all the layout weight, so it fills the remaining space

in the LinearLayout—compare with:).

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 38 / 55

Run Your App

Your complete activity main.xml layout file should now look:
res/layout/activity main.xml

1 <?xml version="1.0" encoding="utf-8"?>

2 <LinearLayout

3 xmlns:android="http://schemas.android.com/apk/res/android"

4 xmlns:tools="http://schemas.android.com/tools"

5 android:layout_width="match_parent"

6 android:layout_height="match_parent"

7 android:orientation="horizontal">

8 <EditText android:id="@+id/edit_message"

9 android:layout_weight="1"

10 android:layout_width="0dp"

11 android:layout_height="wrap_content"

12 android:hint="@string/edit_message" />

13 <Button

14 android:layout_width="wrap_content"

15 android:layout_height="wrap_content"

16 android:text="@string/button_send" />

17 </LinearLayout>

This layout is applied by the default Activity class that the SDK tools gen-
erated when you created the project. In Android Studio, from the toolbar,
click Run to run the app and see the results.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 39 / 55

Outline

1 Creating a Project with Android Studio (the basic “Hello World” app)

2 Running Your App

3 Building a Simple User Interface (a text field and a button)

4 Starting Another Activity

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 40 / 55

Up to now we have an app that shows an activity (a single screen)
with a text field and a button.

In the next slides, we will add some code to MainActivity that
starts a new activity when the user clicks the Send button.

Namely, we will see how to:
I Respond to the Send Button
I Build an Intent
I Create the Second Activity
I Receive the Intent
I Display the Message

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 41 / 55

Respond to the Send Button

1. From the res/layout directory, edit the activity main.xml file.

2. To the <Button> element, add the android:onClick attribute.
res/layout/activity main.xml

1 <Button

2 android:layout_width="wrap_content"

3 android:layout_height="wrap_content"

4 android:text="@string/button_send"

5 android:onClick="sendMessage" />

The android:onClick attribute’s value, "sendMessage", is the name of a
method in your activity that the system calls when the user clicks the button.

3. In the java/it.unito.di.educ.pdm18kotlin1/ directory, open the
MainActivity.kt file.

4. Within the MainActivity class, add the sendMessage() method stub shown
below.
java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 /** Called when the user clicks the Send button */

2 fun sendMessage(view: View) {

3 // Do something in response to button

4 }

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 42 / 55

java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 /** Called when the user clicks the Send button */

2 fun sendMessage(view: View) {

3 // Do something in response to button

4 }

In order for the system to match this method to the method name given to
android:onClick, the signature must be exactly as shown. Specifically, the method
must:

Be public

Have a void return value

Have a View as the only parameter (this will be the View that was clicked)

In the next slides, we will fill in this method to read the contents of the text field and

deliver that text to another activity.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 43 / 55

Build an Intent
1. In MainActivity.kt, inside the sendMessage() method, create an Intent to

start an activity called DisplayMessageActivity with the following code:1

java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 /** Called when the user clicks the Send button */

2 fun sendMessage(view: View) {

3 val intent = Intent(this, DisplayMessageActivity::class.java)

4 }

Intents. An Intent is an object that provides runtime binding between separate compo-

nents (such as two activities).

I The Intent represents an app’s ”intent to do something.”

I You can use intents for a wide variety of tasks, but most often they’re used to

start another activity.

The constructor used here takes two parameters:
I A Context as its first parameter (this is used because the Activity class is a

subclass of Context)
I The Class of the app component to which the system should deliver the

Intent (in this case, the activity that should be started)
1

Android Studio indicates that you must import the Intent class, and raise an error for the reference to

DisplayMessageActivity because the class doesn’t exist yet (ignore the error for now; we’ll create the class soon).

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 44 / 55

2. At the top of the file, import the Intent class:
java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 import android.content.Intent

Tip
In Android Studio, press Alt + Enter (option + return on Mac) to import missing classes.

3. Inside the sendMessage() method, use findViewById() to get the EditText

element.
java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 fun sendMessage(view: View) {

2 val intent = Intent(this, DisplayMessageActivity::class.java)

3 val edit_message = findViewById<EditText>(R.id.edit_message)

4 }

4. At the top of the file, import the EditText class.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 45 / 55

5. Assign the text to a local message variable, and use the putExtra() method to
add its text value to the intent.
java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 fun sendMessage(view: View) {

2 val intent = Intent(this, DisplayMessageActivity::class.java)

3 val edit_message = findViewById<EditText>(R.id.edit_message)

4 val message = edit_message.text.toString()

5 intent.putExtra(EXTRA_MESSAGE, message)

6 }

An Intent can carry data types as key-value pairs called extras. The putExtra() method
takes the key name in the first parameter and the value in the second parameter.

6. At the top of the MainActivity class, add the EXTRA MESSAGE definition as
follows:
java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 const val EXTRA_MESSAGE = "it.unito.di.educ.pdm18kotlin1.MESSAGE"

2 class MainActivity : AppCompatActivity() {

3 ...

4 }

For the next activity to query the extra data, you should define the key for your
intent’s extra using a public constant.

Best Practice
Define keys for intent extras using your app’s package name as a prefix. This ensures the keys are unique, in case your app
interacts with other apps.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 46 / 55

7. In the sendMessage() method, to finish the intent, call the startActivity()

method, passing it the Intent object created in step 1.

With this new code, the complete sendMessage() method that’s invoked by the Send
button now looks like this:
java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 /** Called when the user clicks the Send button */

2 fun sendMessage(view: View) {

3 val intent = Intent(this, DisplayMessageActivity::class.java)

4 val edit_message = findViewById<EditText>(R.id.edit_message)

5 val message = edit_message.text.toString()

6 intent.putExtra(EXTRA_MESSAGE, message)

7 startActivity(intent)

8 }

The system receives this call and starts an instance of the Activity specified by the

Intent.

Now we need to create the DisplayMessageActivity class in order for
this to work.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 47 / 55

7. In the sendMessage() method, to finish the intent, call the startActivity()

method, passing it the Intent object created in step 1.

With this new code, the complete sendMessage() method that’s invoked by the Send
button now looks like this:
java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 /** Called when the user clicks the Send button */

2 fun sendMessage(view: View) {

3 val intent = Intent(this, DisplayMessageActivity::class.java)

4 val edit_message = findViewById<EditText>(R.id.edit_message)

5 val message = edit_message.text.toString()

6 intent.putExtra(EXTRA_MESSAGE, message)

7 startActivity(intent)

8 }

The system receives this call and starts an instance of the Activity specified by the

Intent.

Now we need to create the DisplayMessageActivity class in order for
this to work.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 47 / 55

BETTER VERSION

7. In the sendMessage() method, to finish the intent, call the startActivity()

method, passing it the Intent object created in step 1.

With this new code, the complete sendMessage() method that’s invoked by the Send
button now looks like this:
java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 /** Called when the user taps the Send button */

2 fun sendMessage(view: View) {

3 val edit_message = findViewById<EditText>(R.id.edit_message)

4 val message = edit_message.text.toString()

5 val intent = Intent(this, DisplayMessageActivity::class.java).apply {

6 putExtra(EXTRA_MESSAGE, message)

7 }

8 startActivity(intent)

9 }

The system receives this call and starts an instance of the Activity specified by the

Intent.

Now we need to create the DisplayMessageActivity class in order for
this to work.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 48 / 55

BETTER VERSION

7. In the sendMessage() method, to finish the intent, call the startActivity()

method, passing it the Intent object created in step 1.

With this new code, the complete sendMessage() method that’s invoked by the Send
button now looks like this:
java/it.unito.di.educ.pdm18kotlin1/MainActivity.kt

1 /** Called when the user taps the Send button */

2 fun sendMessage(view: View) {

3 val edit_message = findViewById<EditText>(R.id.edit_message)

4 val message = edit_message.text.toString()

5 val intent = Intent(this, DisplayMessageActivity::class.java).apply {

6 putExtra(EXTRA_MESSAGE, message)

7 }

8 startActivity(intent)

9 }

The system receives this call and starts an instance of the Activity specified by the

Intent.

Now we need to create the DisplayMessageActivity class in order for
this to work.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 48 / 55

Create the Second Activity

All subclasses of Activity must implement the onCreate() method.

This method is where the activity receives the intent with the message, then
renders the message.

Also, the onCreate() method must define the activity layout with the
setContentView() method.

This is where the activity performs the initial setup of the activity components.

Android Studio includes a stub for the onCreate() method when you create a new
activity.

1. In Android Studio, in the java directory, select the package,
com.mycompany.myfirstapp, right-click, and select New > Activity > Empty
Activity.

2. In the Choose options window, fill in the activity details:

I Activity Name: DisplayMessageActivity
I Layout Name: activity display message
I Package name: it.unito.di.educ.PDM18kotlin1

Click Finish.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 49 / 55

3. Open the DisplayMessageActivity.kt file.
The class already includes an implementation of the required onCreate() method.
We will update the implementation of this method later.

With Android Studio, you can run the app now, but not much happens. Clicking the

Send button starts the second activity, but it uses a default ”Hello world” layout

provided by the template.

In the next slides we will update the activity to instead display a custom
text view.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 50 / 55

3. Open the DisplayMessageActivity.kt file.
The class already includes an implementation of the required onCreate() method.
We will update the implementation of this method later.

With Android Studio, you can run the app now, but not much happens. Clicking the

Send button starts the second activity, but it uses a default ”Hello world” layout

provided by the template.

In the next slides we will update the activity to instead display a custom
text view.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 50 / 55

Receive the Intent

Every Activity is invoked by an Intent, regardless of how the user navigated there.
You can get the Intent that started your activity by calling getIntent() and retrieve
the data contained within the intent.

1. In the java/it.unito.di.educ.pdm18kotlin1/ directory, open the
DisplayMesageActivity.kt file.

2. In the onCreate() method, remove the following line:

1 setContentView(R.layout.activity_display_message)

3. Get the intent and assign it to a local variable.

1 //Intent intent = getIntent(); // l’oggetto intent è definito nel Companion Object di Kotlin -

verificare

4. At the top of the file, import the Intent class.

5. Extract the message delivered by MainActivity with the getStringExtra()

method.

1 val message = intent.getStringExtra(EXTRA_MESSAGE)

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 51 / 55

Display the Message

1. In the onCreate() method, create a TextView object.

1 var textView = TextView(this)

2. Set the text size and message with setText().

1 textView.setTextSize(TypedValue.COMPLEX_UNIT_DIP, 40f)

2 textView.text = message

3. Then add the TextView as the root view of the activity’s layout by passing it to
setContentView().

1 setContentView(textView)

4. At the top of the file, import the TextView class.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 52 / 55

Run Your App

The complete onCreate() method for DisplayMessageActivity now
looks like this:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3
4 // Get the message from the intent

5 val message = intent.getStringExtra(EXTRA_MESSAGE)

6
7 // Create the text view

8 var textView = TextView(this)

9 textView.textSize = 40f

10 textView.text = message

11
12 // Set the text view as the activity layout

13 setContentView(textView)

14 }

You can now run the app. When it opens, type a message in the text field,
click Send, and the message appears on the second activity.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 53 / 55

Run Your App - BETTER VERSION

The complete onCreate() method for DisplayMessageActivity now
looks like this:

1 override fun onCreate(savedInstanceState: Bundle?) {

2 super.onCreate(savedInstanceState)

3
4 // Create and initialize the text view

5 var textView = TextView(this).apply {

6 textSize = 40f

7 text = intent.getStringExtra(EXTRA_MESSAGE)

8 }

9
10 // Set the text view as the activity layout

11 setContentView(textView)

12 }

You can now run the app. When it opens, type a message in the text field,
click Send, and the message appears on the second activity.

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 54 / 55

Example
[git clone https://<login>@gitlab2.educ.di.unito.it/ProgMob/PDM18kotlin1.git]

Ferruccio Damiani (Università di Torino) Android: Building Your First App Mobile Device Programming 55 / 55

	Creating a Project with Android Studio (the basic ``Hello World'' app)
	Running Your App
	Building a Simple User Interface (a text field and a button)
	Starting Another Activity

