Towards Aggregate Programming in Scala

Roberto Casadei
Universita di Bologna, ltaly

roberto.casadeil2@studio.unibo.it

ABSTRACT

Recent works in the context of large-scale adaptive systems,
such as those for the Internet of Things (IoT) scenario, pro-
mote aggregate programming [3], a development approach
for distributed systems in which one programs the aggregate
of computational devices instead of individual ones. This
makes the resulting behaviour highly insensitive to network
size, density, and topology, and as such, intrinsically robust
to failures and changes to working conditions (e.g., location
of computational load, communication technology, and com-
putational infrastructure).

In this paper we are concerned with how this approach
can impact mainstream software development, and hence
outline a Scala-based support of aggregate programming,
leveraging Scala advanced type system, DSL support, and
actors mechanisms.

Keywords

aggregate programming; Scala; DSL; distributed platform:;
complex adaptive systems

1. INTRODUCTION

Building distributed systems is known to be hard in gen-
eral, due to the ineluctable need to take into account issues
such as concurrency, failure, consistency, and communica-
tion. The situation is then becoming harder and harder
especially in recently emerging distributed computing sce-
narios, such as pervasive computing or IoT (Internet of
Things), due to the number of computational entities, the
complexity of interactions, the presence of natural limita-
tions related to energy, communication and processing, and
the tight connection with the physical world and human
users—quintessential sources of entropy and unpredictabil-
ity. Achieving a sound development of applications in this
context, so as to ensure desired properties of robustness and
scalability, calls not just for better algorithms and comput-
ing frameworks, but possibly for whole new paradigms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PMLDC ’16, July 17 2016, Rome, Italy

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4775-4/16/07. .. $15.00

DOL: http://dx.doi.org/10.1145,/2957319.2957372

Mirko Viroli
Universita di Bologna, Italy
mirko.viroli@unibo.it

Recent research in collective adaptive software systems
(CASS) has proposed aggregate computing [3] as a promis-
ing approach generalising over several prior models and lan-
guages addressing computations over collections of spatially-
situated systems [4]. Essentially, aggregate computing al-
lows one to express complex system-wide, global-level com-
putations involving large sets of devices in a fully declarative
way, promoting decomposition and resiliency: such specifi-
cations are then compiled back to individuals’ behaviour—
this approach is formally grounded in the computational
fields calculus [7] and its concrete programming language
named Protelis.

In order to more deeply investigate the impact of this
new paradigm to software development, in this paper we
report on an ongoing project to support a tighter integration
of aggregate programming with mainstream programming
platforms, called scafi®. This is a Scala framework that
provides both an internal domain-specific language (DSL)
for specifying aggregate computations via a simple API, and
a platform support for the execution of distributed aggregate
systems based on actors.

2. AGGREGATE PROGRAMMING

Aggregate programming [3] is a novel approach to (large-
scale) distributed systems programming that supports the
specification of collective behaviours in a simple, high-level,
and composable way. The key idea is to shift programming
from the traditional single-device viewpoint to a global view-
point where the programmable entity is the aggregate body
of computational elements constituting a system. This way,
programmers are no longer required to solve the intricate
local-to-global problem, i.e., building the desired emergent
phenomenon by specifying how each component behaves and
interacts with others in a fully bottom-up fashion; instead, it
is possible to focus on what the system should exhibit, and
let the computational platform define — under-the-hood —
how the intended behaviour should be achieved by means
of a coordinated set of computation and communication
acts. It essentially solves the inverse, global-to-local map-
ping problem, though in a way that is different from more
standard works such as those of choreography [13], as it is de-
signed to work independently of the number of involved com-
ponents. An immediate consequence is the independence of
aggregate computations from the physical implementation
details of systems, which is realised by suitably abstracting
spatial distribution, topology and interaction. Most specifi-
cally, as realised by space-time programming approaches [4],

"http:/ /scafi.apice.unibo.it

logical or physical neighbouring of nodes can be exploited to
make interaction implicit—*I don’t know who you are, but
I know where you are” [18]. This notion is instrumental for
the conceptual connection with systems where locality might
play a major role in communication.

2.1 Computational fields

The main programming abstraction in aggregate program-
ming is the computational field [7]. Generalising the notion
of field in physics, a computational field (or field for short) is
a function that, at a given moment in time, maps each point
in space — which, by considering a networked computational
system immersed in the space-time fabric, is a particular
node/device — to a computational object representing the
outcome of computation at that device.

The basic primitives for the manipulation of fields are de-
fined by the computational field calculus [7]. The key in-
sight of the approach consists in the ability to specify collec-
tive behaviors (i.e., aggregate computations) by algorithms
expressed as composable functions manipulating fields. In
other words, aggregate computations are represented by a
declarative specification of functional operations involving
fields, though, under-the-hood, they are turned into repeti-
tive, gossip-like interactions between individual devices.

This approach is shown to support a solid programming
methodology in which composable and reusable high-level
library components of aggregate behaviour can be defined.
Most notably, a number of resilient coordination operators
have been identified [16] on top of the field calculus; these op-
erators capture recurrent self-organisation patterns [9] and
also exhibit useful properties, such as self-stabilisation [17].

2.2 Computational Model

An aggregate system consists of a (possibly large) number
of computational devices (also called nodes, as a system can
often be seen as a network of elements; things, as in the IoT
interpretation; or points, as in a space), all executing the
same aggregate program at asynchronous rounds of com-
putation. According to contextual information (e.g, sensor
values or neighbourhood data), different devices may take
different branches of computation, i.e., computing sub-fields
in different domains of execution. The state of the whole
system, thus, can be represented as the field of values com-
puted at each device. Interaction depends on a notion of
locality, i.e., a device can only directly communicate to all
its neighbours, as defined by an application-specific proxim-
ity relation. The communication is carried out by repeatedly
broadcasting the latest computed state (called an export) to
the entire neighbourhood: the shape of this state, and how it
affects and is affected by computations, is precisely defined
by our language semantics [7], as described in the following.

In each device, a computation round consists of the fol-
lowing steps:

1. Creation of the execution context state—which in-
cludes the latest computed local value, the most re-
cent exports received from neighbours, and a snapshot
of local sensor values.

2. Local execution of the aggregate program, which, based
int context state, yields the new state (or export).

3. Propagation of the computed export to the entire neigh-
bourhood, done by a broadcast.

4. Activation of the actuators, with the input given by
the result of computation.

How can the system exhibit the intended global behaviour
if every device is given the same aggregate program spec-
ification? Intuitively, the computational model embodied
by the field calculus is able to make sense of the context-
sensitiveness and the different local conditions (deltas) at the
device-site and hence to construct and constrain the global
phenomenon.

3. AGGREGATE PROGRAMMING 1IN
scafi

For what concerns development support, aggregate pro-
gramming is currently provided by Protelis [15], an external
DSL developed in Xtext and hosted in Java, integrating with
the biochemically-inspired Alchemist simulator [14]. In the
attempt to provide a more integrated development toolchain
aimed at the construction of actual systems, a new aggre-
gate programming framework, called scafi (Scala Fields),
is under construction.

scafi is a framework that consists of two main pieces:
(i) aggregate programming support, by a Scala-internal DSL
that provides a syntax and the semantics for the basic con-
structs of the computational field calculus, by which ag-
gregate computations are naturally expressed and combined
with standard code; and (ii) aggregate platform support, al-
lowing configuration and execution of distributed aggregate
systems.

The rationale for the choice of Scala as the host language
for building an aggregate programming platform is both
technical and pragmatic. Scala is a modern language, in-
teroperable with Java, which integrates the object-oriented
and functional paradigms in a seamless way, has a power-
ful and expressive type system, and offers advanced features
supporting the design of high-level software libraries and
fluent APIs. In particular, Scala combines the advantages
of a static type checking with features allowing for produc-
tivity and syntactical conciseness, such as: type inference,
implicits, generic and functional programming features, and
syntactic sugar. This allows library designers to design and
implement APIs with a DSL-like flavour, which do appear
to users as “embedded languages.” Additionally, Scala also
provides standard libraries and community support for dis-
tributed systems engineering, with toolkits like the Akka
actor framework.

3.1 The basic field calculus constructs

Syntax and typing of the basic primitives of the field cal-
culus are declared by the methods of the Constructs trait,
and follow the formalisation in [8]:

trait Constructs {
def rep[A] (init: A) (fun: (A) => A): A
def nbr[A] (expr: => A): A
def foldhood[A] (init: => A) (acc: (A,A)=>A) (expr: => A):
def branch[A] (cond: => Boolean) (th: => A) (el: => A): A
def aggregate[A] (f: => A): A
def sense[A] (name: LSNS): A
def nbrvar[A] (name: NSNS): A
}

The field calculus interpreter provided with scafi imple-
ments the above interface, which is also mixed-in any API
of aggregate programs. In Scala, methods can have mul-
tiple parameter lists, type parameters in square brackets,

and by-name parameters (specified via = T'), which are
passed unevaluated and get calculated every time they are
referenced. Function types take form (Ti1,...,T1n) = ... =
(T, .., Tkm) = R, where T;; is the type of i-th parameter
of j-th parameter list, and R is the return value type.

The field calculus constructs can be explained according
to two complementary viewpoints:

1. Local viewpoint — it corresponds to the operational se-
mantics and refers to the conventional device-centric
interpretation where aggregate computations are con-
sidered in the context of a single device: there, a value
is the result of computation in a node at a given time.

2. Global viewpoint — it corresponds to the natural seman-
tics and refers to the aggregate-level interpretation of
programs as manipulations of dynamic computational
fields: there, a value is a system-wide snapshot of a
computational field at a given time.

A scafi aggregate program consists of a set of function
definitions and a body of variable declarations and expres-
sions, all of which can mix core field constructs with any
Scala existing library. A result of a program is the field of
the values obtained by evaluating its last expression. The
most trivial expression is one that simply evaluates to a con-
stant value, such as a boolean, a number or a string. For
instance, value

"Hello, World"

should be interpreted as a constant field that holds that
value at any point; this means that the result of the local
computation of every device will be the "Hello, World"
string.

Construct sense is used for reading a value from a local
sensor. Expression

sense[Double] ("temperature")
// Generic type for ’sense’ is instantiated to ’Double’

yields, in any device, a Double value from the
temperature sensor, effectively producing a field of tem-
perature reads. Sensing is important because it enables for
context-sensitive behaviours, and is the main mechanism for
extracting inputs from the environment. The concrete ac-
cess to the sensor is handled at the platform level, using the
appropriate technology. The programmer can assume that
the execution context for a round includes a map from sen-
sor names to the corresponding values, e.g., as obtained by
sampling sensors before computation.

The rep construct allows to build a field that evolves over
time, round by round, by starting from init and repeatedly
applying a state-transformation function fun that expresses
the intended dynamics. A simple example involves counting
the number of computational rounds performed by a device
since the beginning of computation:

// Initially 0; state is incremented at each round
rep(0){ _+1 } // or equivalently: rep(0){ x => x+1 }

where we use curly brackets instead of parentheses (they
are interchangeable) for the second parameter list, whose
argument is a l-ary function expressed via the shorthand
lambda syntax, also using underscores _ for denoting pa-
rameters (each occurrence of the symbol denotes a succes-
sive parameter). As the frequency at which devices compute
rounds (and hence send messages) to neighbours can vary
over time and from agent to agent, the resulting field will

change over time, from 0 everywhere, to numeric integer val-
ues increasing over space and time heterogeneously. In fact,
the aggregate computing model generally assumes partial
synchronicity [1], though in most cases even full asynchrony
of rounds can be assumed [6].

The nbr construct supports interaction by means of bi-
directional communication between a device and its neigh-
bourhood. The neighbourhood (of a node) consists of the
set of devices included by the neighbouring relation, which
is often the euclidean distance over a metric space, as to
reflect the physical analogue of devices immersed in an en-
vironment such as that of a smart building or a urban area
in a smart city—still, the underlying platform may handle
the neighbouring relationship in various ways. The result
of a nbr operation is a map from neighbours to the result
of evaluating the argument at their side; in other words, it
works as a primitive for neighbourhood observation. Con-
struct nbr has to be nested inside a foldhood operation,
which essentially reduces one such map (expr) to a single
value by applying an aggregator function acc with identity
init; on top of it, derived operations such as minHood or
sumHood can be defined. Consider the following examples:
// Counting number of neighbours at each device
foldhood (0) (_+_){ nbr{l} } // sum 1 across neighbours

// Is sensor "sns" active in every neighbour?
foldhood (true) (_&&_) { nbr{ sense[Boolean] ("sns") } }

Locally, foldhood works by evaluating nbr in the con-
text of the very current device (by executing the expression
passed along to nbr) and of all its neighbours (by reading the
corresponding value that has been recently communicated)
and then operating as the conventional fold function of func-
tional programming on the resulting structure. The first ex-
ample sums value 1 computed in each neighbour, hence the
resulting field maps each device to the result of counting
its number of neighbours; the second example is the field
mapping each device to a boolean value, holding true if any
neighbour has sensor sns holding itself true.

Another perception feature is provided through the
nbrvar construct. This operator is used to query a neigh-
bouring sensor, which is a kind of “environmental probe”
that produces a field mapping each neighbour to some value.
Just like nbr, the result of nbrvar have to be reduced point-
wise by a foldhood operation. The typical example of en-
vironmental sensor is one that estimates, for each node, the
distances of neighbours:

def nbrRange(): Double = nbrvar[Double] (NBR_RANGE_NAME)
// Compute the maximum distance of a neighbour
foldhood (Double.MinValue) (max(_,_)) { nbrRange() }

// equivalently: maxHood{ nbrRange() }

Up to now, we have seen that interaction is achieved by
observing neighbours, according to a platform-dependent
proximity relation. However, it is often useful to further reg-
ulate admissible interactions by defining separate branches
of computation, dynamically assigned to subgroups of de-
vices. This feature, called domain restriction, is supported
by the branch construct, which splits the domain of devices
into two parts according to a boolean field cond expressing
some condition. Each of the two parts compute a different
sub-field in complete isolation, th and el. The execution
engine (via field calculus’ operational semantics) ensures
that devices belonging to one partition compute the same

branch expression—this process is known as alignment, and
we say two devices are aligned when evaluating a given sub-
expression. Dually, the engine also ensures that devices in
separate partitions are restricted compute the two branches
without interactions between them. Note that, in general,
(i) the alignment between two devices can vary from round
to round, and that (ii) the selection of a branch happens
in the scope of evaluating a certain sub-expression—
elsewhere interaction is generally possible. As an example
of branch, consider the case we want to execute some
aggregate computation only on a subset of the devices of the
network, while the complementary subset must not partic-
ipate; for the purpose, we have to create a domain partition:
branch (sense[Boolean] ("flag")) {
Double.MaxValue // not computing

H

compute (...) // sub-computation

}

Note that both the then expression and the else expression
are thunks (i.e., they are passed non-evaluated to branch).
branch behaves much like the typical if construct of
programming languages, except that it also deals with
alignment.

Finally, scafi supports an higher-order version of the
field calculus [8] which introduces first-class aggregate func-
tions. Construct aggregate is used to wrap a function
body that should work on whole fields. Essentially, this
operator labels a function so that it can be used to define
a whole new computation from fields to fields: when such
functions are combined so as to create fields of functions,
then alignment is based on the function identity, and de-
vices are structurally aligned only when they execute the
same aggregate function. As an example, let’s consider an
implementation of branch that uses aggregate:
def branch[A] (cond: => Boolean) (th: => A) (el: => A): A =

mux (cond, () => aggregate{ th }, () => aggregate{ el }) ()

where mux is a purely functional multiplexer. The devices
running the same aggregate function (e.g., the one returned
by the then part of the mux) constitute a partition, i.e.,
they can interact to each other via nbr only within that
restriction of the domain.

3.2 From primitives to building blocks

The primitives of the field calculus form a minimal set of
moves capturing distributed, situated field-based computa-
tions. As such, they are somewhat low-level, and one easily
wants to raise the abstraction level to better reason about
complex collective adaptive systems. The intrinsic compos-
ability of the functional paradigm fosters a systematic fac-
torisation of behaviour into reusable building blocks out of
the basic constructs, and a coherent set of aggregate be-
haviours can then be packaged into a software library. In
scafi, which is a fully featured function framework, generic
parts of aggregate program logic can be encapsulated into
standard Scala functions. As an example, consider the def-
inition of a function foldhoodMinus, which behaves as
foldhood except that it excludes the device itself from the
evaluation of expr.

// mid is a special sensor yielding the device unique id
def isMe = nbr{ mid() } == mid(

def foldhoodMinus[A] (init: => A)
(aggr: (A, A) => A)

(expr: => A): A =

foldhood (init) (aggr) { mux(isMe){ init }{ expr } }

The paradigmatic example of computational field is
known as gradient [9]. In a gradient field, each node com-
putes its distance (e.g., hop-by-hop or estimated) from the
nearest node where a source field holds a true value:
def gradient (source: Boolean): Double =

rep (Double.PositiveInfinity) { dist =>

mux (source){ 0.0 } { minHood(nbr{dist} + nbrRange()) }

}

Here is how it works: starting from an estimated distance
d that is infinity everywhere, on source nodes we compute
distance 0; the other devices compute the minimum value
among the neighbours’ value increased by node-to-neighbour
distance; immediate neighbours to a source node, hence,
compute their distance to that node (if that is the nearest
one), and iteratively, all others get progressively updated.
In the absence of network changes, this process ultimately
stabilises into a field of values that are increasing along the
distance to source nodes and are indeed an estimation of
that distance. Moreover and most notably, the algorithm
is able to adapt to network change (which may be due to
node mobility or temporary environmental conditions affect-
ing the neighbouring relation) and it does so by refreshing
(in the rep) the computed distances from the change point.

The gradient algorithm is a very general one and finds
wide application. By exploiting similarly created library
functions such as managementRegions (partitioning the
network), average (distributed sensing), and the like [3],
one can elegantly express very complex behaviour, like a
whole crowd sensing service. E.g., according to [10], the
following function checks whether in a region with radius
r there are at least n people experiencing high density of
crowd (2.17 people/square meter):

def crowd(r: Double, n: Int): Boolean = {
val mr = managementRegions(grain = r=%2)
average (mr, localDensityEstimation()) > 2.17 &&
summarize (mr, (_:Double)+(_:Double), 1) > n

}

where grain=r=2 is used to make explicit the parameter name
for documentation purposes. Note (i) the degree to which
the provided specification completely abstracts from indi-
vidual node’s behaviour and network shape, and (ii) how a
useful application is declaratively built out of composable
and reusable pieces of behaviour.

3.3 Generic building blocks

We now see how to approach the development of layers of
building blocks, from more low-level/general to more high-
level/specific. A first step is to identify useful recurrent com-
binations of the primitives and abstract them into functions.
In addition, by capturing common patterns of distributed
computation and giving them a name, we can provide some
guidance for the design of aggregate behaviour. Research in
the context of bio-inspired computing has provided signifi-
cant results in this direction, by determining a handful of
self-organisation mechanisms [9] where functional and non-
functional properties at the system-level are achieved by
means of decentralised, local interactions among a (large)
number of (simple) agents.

Moreover, there are some properties that we would like
our distributed algorithms to exhibit. One such property
is self-stabilisation [17], which ensures that a system, inde-

pendently of the current state, will eventually reach a stable
state in finite time that is not affected by transitory events.
Non-functional properties such as robustness and response
time are also very important and, especially in large-scale
systems, can make the difference between an application
that works and one that does not.

Also prominent is how these properties relate to compos-
ability: are they maintained by composition? If not, how
are they affected? Which combinations do conserve them?
In particular, it has been proved that self-stabilisation is
preserved by composition [17], i.e., it is formally guaranteed
that composite structures of self-stabilising algorithms also
self-stabilise. This result is significant because it means that
the benefits of low-level components propagate to combina-
tions of these up to higher levels and application-specific
logic.

An initial set of general self-stabilising coordination oper-
ators has been identified in [16]. Most notably, these include:

e Gradient-cast: accumulates values “outward” along a
gradient starting from source nodes.

e Converge-cast: collects data distributed across space
“inward” by accumulating values from edge nodes to
sink nodes down a “potential” field.

e Time-decay: information summarisation

across time.

supports

def G[V:OB] (src: Boolean, init: V,
acc: V=>V, metric: =>Double): V

def C[V:0B] (potential: V, acc: (V,V)=>V,
local: V, Null: V): V

def T[V:Numeric] (initial: V, floor: V, decay: V=>V): V

Next, we introduce one of such operators, G, explain its
details and show how it can be used to define other building
blocks supporting non-trivial distributed algorithms.

3.3.1 Gradient-cast

The G operator subsumes and generalises the gradient
functionality. It works by simultaneously performing two
tasks: i) construction of a distance-gradient from sources
(src) according to a metric expressing node-to-node in-
crements, and ii) accumulation of values (via acc) along the
gradient starting from init at the src points. In scafi,
it can be encoded as follows:

def G[V:0B] (src: Boolean,

init: Vv,
acc: V=>V,
metric: =>Double): V =
rep((Double.MaxValue, init)){ // (distance,value)
dv => mux(src) {

(0.0, init) //
oA
minHoodMinus { // minHood except myself
val (d, v) = nbr { dv }
(d + metric, acc(v))

..0ONn sources

}
}
}._2 // yielding the resulting field of values

where

e Syntax (a:A,b:B) is a shorthand syntax for a 2-
element tuple (i.e., a Tuple2[A,B] instance), whose

elements can accessed via getters _1 and _2, respec-
tively.

e Syntax V:0B espresses a particular constraint, called
context bound, on the type parameter V. It is a succint
alternative to extending the function signature with an
implicit parameter [12] of type OB [V]. An implicit pa-
rameter is one that can be provided — in addition to the
usual explicit manner by the programmer — implicitly
or automatically by the compiler.

e The OB[A] type class (where OB stands for Ordering,
Bounded) defines a bounded and totally ordered rep-
resentation for a type A:

trait OB[A] {
def top: A
def bottom: A
def compare(a: A, b: A): Int
def min(a:A, b:A): A = if (compare(a,b)<=0) a else
def max(a:A, b:A): A = if (compare(a,b)>=0)
}
// Classes/traits admit same-name companion objects
object OB { // Singleton object
implicit val of_d = new OB[Double] {
def top: Double = Double.MaxValue
def bottom: Double = Double.MinValue
def compare (a:Double, b:Double) = (a-b).signum
}
// others...

a else

Thus, in the above definition of G, an (implicit or ex-
plicit) instance of the OB type class must be available for
generic type V, so that minHoodMinus [T:0B] can work
out the minimum T-expression value on the neighbourhood
(by convention, *hoodMinus operators exclude the device
itself from the neighbours set). This must also be true for
Tuple2[+A, +B], given that an OB exists for both A and B.

3.3.2 From G to channel

The goal of a channel algorithm is to draw a link from a
source area to a destination area. In other words, a channel
is a field that holds t rue for nodes located in the path from
a starting point to a target point, and false anywhere else.
More generally, each device has to compute an estimate of
the distance from itself to the unit-wide path, which ex-
presses the degree to which that node does not belong to
the channel. Now we see an implementation in scafi of
channel that builds on G-derived operators.

Using G, it is easy to implement a broadcast operation
to propagate a value across the whole network of devices:

def broadcast[V:0B] (source: Boolean, init: V): V =
G[V] (source, init, x=>x, nbrRange())

as well as a functional block distanceTo that computes,
in each node, the distance between that node and a source
point:

def distanceTo (source: Boolean): Double =
G[Double] (source, 0, _ + nbrRange(), nbrRange())

Finally, once we have a way to spread everywhere the
distance between the source and the target:

def distBetween (source: Boolean, target: Boolean): Double

broadcast (source, distanceTo (target))

we have all the ingredients for a width-wide channel op-
erator connecting a source and a destination:

b
b

Figure 1: Self-stabilising channel at work (with Al-
chemist simulator [14]): automatically bypassing ob-
stacles (left), and smoothly adapting to a smartcity
scenario. (right)

def isSource = sense[Boolean] ("source")
def isTarget = sense[Boolean] ("target")

def channel (src: Boolean, dest: Boolean, width: Double) =
distanceTo (src) + distanceTo (dest) <=
distBetween (src, dest) + width

channel (isSource, isTarget)

Note the degree to which the implementation of channel
looks like a global specification and how it naturally comes
out from composable high-level operators. Moreover, this
algorithm self-stabilise, i.e., it is able to refresh the chan-
nel after changes in the topology of the network (e.g., as a
consequence of mobility)—see Figure 1.

3.4 The distributed platform

For what concerns the distributed platform, scafi pro-
vides an object-oriented facade API that abstracts over the
underlying actor-based architecture. The support of the ac-
tor model of computation as provided by Akka has been
adopted as a starting point for the distributed middleware
implementation. According to the operational semantics as
developed in [8], an aggregate program can be turned into a
single function to be repetitively executed in each device/ac-
tor, taking previous state, sensor values, and neighbours’
states, and yielding a new state to be broadcasted to neigh-
bours. Few lines of code are to be used in each device to con-
figure, boot, and observe the resulting computational fields.
val settings = Settings(...) // platform settings
val platform = PlatformConfigurator.setupPlatform(settings)

val system = platform.newAggregateApplication {
channel (isSource, isTarget)

}

val device = system.newDevice (

id = Utils.newId(),

neighbourhood = Utils.discoverNbrs())
device.addSensor ("source", () => true)
device.addSensor ("target", () => false)

(device.actorRef ? GetExport) .onSuccess {
case MsgExport (isInChannel) => // ...
}

Aggregate computing is a high-level model that can work
with different architectures and be adopted in many dis-
tributed computing contexts: it can be used to build systems
working in a peer-to-peer or server-based fashion, and also
provides spatial abstractions to model situation and space-
aware neighbouring relations.

Conclusions

Aggregate programming is a paradigm that can significantly
contribute to the development of applications in a vari-
ety of domains which, besides, are not limited to spatially-
situated systems. In addition to crowd engineering and re-
lated services for mass public events, other typical scenarios
include: distributed coordination in auxiliary tactical net-
works supporting humanitarian interventions; self-recovery
of interdependent enterprise services [5]; and complex build-
ing automation. In fact, aggregate programming may be
a valuable tool whenever robust adaptivity, collective self-
organisation, and independence to underlying architectural
details are desirable. Aggregate programming is essentially
a generalisation of previous approaches falling under the um-
brella of so-called macro-programming, reviewed in [2].

Future works encompass deep investigation of founda-
tional aspects related to static and dynamic properties, de-
velopment of reusable APIs for effective and efficient en-
gineering of complex applications, and creating a whole
toolchain based on scafi, most notably, up to a scalable
edge and cloud-based support—using techniques such as
those in [11].

4. REFERENCES

[1] J. Beal and J. Bachrach. Infrastructure for engineered
emergence in sensor/actuator networks. IEFE
Intelligent Systems, 21:10-19, March/April 2006.

[2] J. Beal, S. Dulman, K. Usbeck, M. Viroli, and
N. Correll. Organizing the aggregate: Languages for
spatial computing. In Formal and Practical Aspects of
Domain-Specific Languages: Recent Developments,
chapter 16. IGI Global, 2013.

[3] J. Beal, D. Pianini, and M. Viroli. Aggregate
programming for the Internet of Things. IEEFE
Computer, 2015.

[4] J. Beal and M. Viroli. Space—time programming.
Philosophical Transactions of the Royal Society of
London A: Mathematical, Physical and Engineering
Sciences, 373(2046), 2015.

[5] S. S. Clark, J. Beal, and P. Pal. Distributed recovery
for enterprise services. In 2015 IEEE 9th International
Conference on Self-Adaptive and Self-Organizing
Systems, pages 111-120, Sept 2015.

[6] F. Damiani and M. Viroli. Type-based
self-stabilisation for computational fields. Logical
Methods in Computer Science, 11(4):1-53, 2015.

[7] F. Damiani, M. Viroli, and J. Beal. A type-sound
calculus of computational fields. Science of Computer
Programming, 117:17 — 44, 2016.

[8] F. Damiani, M. Viroli, D. Pianini, and J. Beal. Code
mobility meets self-organisation: A higher-order
calculus of computational fields. volume 9039 of
Lecture Notes in Computer Science, pages 113-128.
Springer International Publishing, 2015.

[9] J. L. Fernandez-Marquez, G. D. M. Serugendo,

S. Montagna, M. Viroli, and J. L. Arcos. Description
and composition of bio-inspired design patterns: a
complete overview. Natural Computing, 12(1):43-67,
2013.

[10] J. Fruin. Pedestrian and Planning Design.
Metropolitan Association of Urban Designers and
Environmental Planners, 1971.

[11]

C. Meiklejohn, S. H. Haeri, and P. V. Roy.
Declarative, sliding window aggregations for
computations at the edge. In 2016 13th IEEE Annual
Consumer Communications Networking Conference
(CCNC), pages 32-37, Jan 2016.

B. C. Oliveira, A. Moors, and M. Odersky. Type
classes as objects and implicits. In ACM Sigplan
Notices, volume 45, pages 341-360. ACM, 2010.

C. Peltz. Web services orchestration and
choreography. Computer, 36(10):46-52, 2003.

D. Pianini, S. Montagna, and M. Viroli.
Chemical-oriented simulation of computational
systems with Alchemist. Journal of Simulation, 2013.
D. Pianini, M. Viroli, and J. Beal. Protelis: Practical
aggregate programming. In Proceedings of ACM SAC
2015, pages 1846-1853, Salamanca, Spain, 2015. ACM.
M. Viroli, J. Beal, F. Damiani, and D. Pianini.
Efficient engineering of complex self-organising
systems by self-stabilising fields. In IFEE
Self-Adaptive and Self-Organizing Systems 2015, pages
81-90. IEEE, Sept 2015.

M. Viroli and F. Damiani. A calculus of self-stabilising
computational fields. In Coordination Languages and
Models, volume 8459 of LNCS, pages 163-178.
Springer-Verlag, June 2014.

F. Zambonelli and M. Mamei. Spatial computing: An
emerging paradigm for autonomic computing and
communication. In Autonomic communication, pages
44-57. Springer, 2005.

