
Accelerated Computing

GPU Teaching Kit

Handling Arbitrary Matrix Sizes in Tiled Algorithms

Module 4.5 - Memory and Data Locality

2

Objective
– To learn to handle arbitrary matrix sizes in tiled matrix multiplication

– Boundary condition checking
– Regularizing tile contents
– Rectangular matrices

3

Handling Matrix of Arbitrary Size
• The tiled matrix multiplication kernel we presented so far can

handle only square matrices whose dimensions (Width) are
multiples of the tile width (TILE_WIDTH)
• However, real applications need to handle arbitrary sized matrices.
• One could pad (add elements to) the rows and columns into multiples

of the tile size, but would have significant space and data transfer time
overhead.

• We will take a different approach.

4

Phase 1 Loads for Block (0,0) for a 3x3 Example

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

Threads (1,0) and (1,1) need special
treatment in loading N tile

Threads (0,1) and (1,1) need
special treatment in loading M tile

5

Phase 1 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

6

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

All Threads need special
treatment. None of them should

introduce invalidate contributions
to their P elements.

7

Phase 0 Loads for Block (1,1) for a 3x3 Example

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M2,1M2,0

N0,2

N1,2
Shared Memory

Shared Memory

Threads (0,1) and (1,1) need special
treatment in loading N tile

Threads (1,0) and (1,1) need
special treatment in loading M tile

8

Major Cases in Toy Example

– Threads that do not calculate valid P elements but still need to
participate in loading the input tiles

– Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but
need to participate in loading tile element N[1,2]

– Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles

– Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but
attempts to load non-existing N[3,0]

9

A “Simple” Solution
– When a thread is to load any input element, test if it is in the valid index

range
– If valid, proceed to load
– Else, do not load, just write a 0

– Rationale: a 0 value will ensure that that the multiply-add step does not
affect the final value of the output element

– The condition tested for loading input elements is different from the test
for calculating output P element

– A thread that does not calculate valid P element can still participate in loading input tile
elements

10

Phase 1 Use for Block (0,0) (iteration 1)

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

0M0,2

M1,2 0

N2,1N2,0

0 0
Shared Memory

Shared Memory

11

Boundary Condition for Input M Tile
– Each thread loads

– M[Row][p*TILE_WIDTH+tx]
– M[Row*Width + p*TILE_WIDTH+tx]

– Need to test
– (Row < Width) && (p*TILE_WIDTH+tx < Width)
– If true, load M element
– Else , load 0

A

TILE_WIDTHTILE_WIDTH

12

Boundary Condition for Input N Tile
– Each thread loads

– N[p*TILE_WIDTH+ty][Col]
– N[(p*TILE_WIDTH+ty)*Width+ Col]

– Need to test
– (p*TILE_WIDTH+ty < Width) && (Col< Width)
– If true, load N element
– Else , load 0

B

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H

13

Loading Elements – with boundary check
– 8 for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {
–
– ++ if(Row < Width && t * TILE_WIDTH+tx < Width) {
– 9 ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
– ++ } else {
– ++ ds_M[ty][tx] = 0.0;
– ++ }
– ++ if (p*TILE_WIDTH+ty < Width && Col < Width) {
– 10 ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
– ++ } else {
– ++ ds_N[ty][tx] = 0.0;
– ++ }
– 11 __syncthreads();
–

14

Inner Product – Before and After
– ++ if(Row < Width && Col < Width) {
– 12 for (int i = 0; i < TILE_WIDTH; ++i) {
– 13 Pvalue += ds_M[ty][i] * ds_N[i][tx];
– }
– 14 __syncthreads();
– 15 } /* end of outer for loop */
– ++ if (Row < Width && Col < Width)
– 16 P[Row*Width + Col] = Pvalue;
– } /* end of kernel */

15

Some Important Points
– For each thread the conditions are different for

– Loading M element
– Loading N element
– Calculating and storing output elements

– The effect of control divergence should be small for large matrices

16

Handling General Rectangular Matrices
– In general, the matrix multiplication is defined in terms of rectangular

matrices
– A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix

– We have presented square matrix multiplication, a special case

– The kernel function needs to be generalized to handle general
rectangular matrices

– The Width argument is replaced by three arguments: j, k, l
– When Width is used to refer to the height of M or height of P, replace it with j
– When Width is used to refer to the width of M or height of N, replace it with k
– When Width is used to refer to the width of N or width of P, replace it with l

Accelerated Computing

GPU Teaching Kit

The GPU Teaching Kit is licensed by NVIDIA and the University of Illinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.

http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 4.5 - Memory and Data Locality
	Objective
	Handling Matrix of Arbitrary Size
	Phase 1 Loads for Block (0,0) for a 3x3 Example
	Phase 1 Use for Block (0,0) (iteration 0)
	Phase 1 Use for Block (0,0) (iteration 1)
	Phase 0 Loads for Block (1,1) for a 3x3 Example
	Major Cases in Toy Example
	A “Simple” Solution
	Phase 1 Use for Block (0,0) (iteration 1)
	Boundary Condition for Input M Tile
	Boundary Condition for Input N Tile
	Loading Elements – with boundary check
	Inner Product – Before and After
	Some Important Points
	Handling General Rectangular Matrices
	Slide Number 17

