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Objective
– To learn to handle arbitrary matrix sizes in tiled matrix multiplication

– Boundary condition checking
– Regularizing tile contents
– Rectangular matrices
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Handling Matrix of Arbitrary Size
• The tiled matrix multiplication kernel we presented so far can 

handle only square matrices whose dimensions (Width) are 
multiples of the tile width (TILE_WIDTH)
• However, real applications need to handle arbitrary sized matrices.
• One could pad (add elements to) the rows and columns into multiples 

of the tile size, but would have significant space and data transfer time 
overhead.

• We will take a different approach.
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Phase 1 Loads for Block (0,0) for a 3x3 Example 
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Threads (1,0) and (1,1) need special 
treatment in loading N tile 

Threads (0,1) and (1,1) need 
special treatment in loading M tile
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Phase 1 Use for Block (0,0) (iteration 0)
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Phase 1 Use for Block (0,0) (iteration 1)
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All Threads need special 
treatment. None of them should 

introduce invalidate contributions 
to their P elements.
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Phase 0 Loads for Block (1,1) for a 3x3 Example 
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Threads (0,1) and (1,1) need special 
treatment in loading N tile 

Threads (1,0) and (1,1) need 
special treatment in loading M tile
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Major Cases in Toy Example

– Threads that do not calculate valid P elements but still need to 
participate in loading the input tiles

– Phase 0 of Block(1,1), Thread(1,0), assigned to calculate non-existent P[3,2] but 
need to participate in loading tile element N[1,2] 

– Threads that calculate valid P elements may attempt to load non-
existing input elements when loading input tiles

– Phase 0 of Block(0,0), Thread(1,0), assigned to calculate valid P[1,0] but 
attempts to load non-existing N[3,0]
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A “Simple” Solution
– When a thread is to load any input element, test if it is in the valid index 

range
– If valid, proceed to load
– Else, do not load, just write a 0

– Rationale: a 0 value will ensure that that the multiply-add step does not 
affect the final value of the output element

– The condition tested for loading input elements is different from the test 
for calculating output P element

– A thread that does not calculate valid P element can still participate in loading input tile 
elements
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Phase 1 Use for Block (0,0) (iteration 1)
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Boundary Condition for Input M Tile
– Each thread loads

– M[Row][p*TILE_WIDTH+tx]
– M[Row*Width + p*TILE_WIDTH+tx]

– Need to test
– (Row < Width) && (p*TILE_WIDTH+tx < Width)
– If true, load M element
– Else , load 0
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Boundary Condition for Input N Tile
– Each thread loads

– N[p*TILE_WIDTH+ty][Col]
– N[(p*TILE_WIDTH+ty)*Width+ Col]

– Need to test
– (p*TILE_WIDTH+ty < Width) && (Col< Width)
– If true, load N element
– Else , load 0

B

T
IL

E
_W

ID
T

H
T

IL
E

_W
ID

T
H



13

Loading Elements – with boundary check
– 8    for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {
–
– ++       if(Row < Width && t * TILE_WIDTH+tx < Width) {
– 9               ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
– ++       } else {
– ++             ds_M[ty][tx] = 0.0;
– ++       }
– ++       if (p*TILE_WIDTH+ty < Width && Col < Width) {
– 10             ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
– ++       } else {
– ++             ds_N[ty][tx] = 0.0;
– ++       }
– 11      __syncthreads();
–
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Inner Product – Before and After
– ++    if(Row < Width && Col < Width) {
– 12     for (int i = 0; i < TILE_WIDTH; ++i) {
– 13            Pvalue += ds_M[ty][i] * ds_N[i][tx];
– }
– 14     __syncthreads();
– 15   } /* end of outer for loop */
– ++   if (Row < Width && Col < Width) 
– 16         P[Row*Width + Col] = Pvalue;
– } /* end of kernel */
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Some Important Points
– For each thread the conditions are different for 

– Loading M element
– Loading N element
– Calculating and storing output elements

– The effect of control divergence should be small for large matrices
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Handling General Rectangular Matrices
– In general, the matrix multiplication is defined in terms of rectangular 

matrices
– A j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix

– We have presented square matrix multiplication, a special case

– The kernel function needs to be generalized to handle general 
rectangular matrices

– The Width argument is replaced by three arguments: j, k, l
– When Width is used to refer to the height of M or height of P, replace it with j
– When Width is used to refer to the width of M or height of N, replace it with k
– When Width is used to refer to the width of N or width of P, replace it with l
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