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Who Am I?

• Professor of ECE and Computer Science
• From Duke University

– In Durham, North Carolina

• My research and teaching interests
– Cache coherence protocols and memory consistency
– Fault tolerance
– Verification-aware computer architecture
– Special-purpose processors
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Who Are You?

• People interested in memory consistency models
– Important topic for computer architects and writers of parallel 

software

• People who could figure out the Swedish train system 
to get here from Arlanda Airport

– SJ?  SL??  UL???
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Optional Reading

• Daniel Sorin, Mark Hill, and David Wood.  “A Primer 
on Memory Consistency and Cache Coherence.” 
Synthesis Lectures on Computer Architecture, 
Morgan & Claypool, 2011.

http://www.morganclaypool.com/doi/abs/10.2200/S0034
6ED1V01Y201104CAC016
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Outline

• Overview: Shared Memory & Coherence
– Chapters 1-2 of book that you don’t have to read

• Intro to Memory Consistency
• Weak Consistency Models
• Case Study in Avoiding Consistency Problems
• Litmus Tests for Consistency
• Including Address Translation
• Consistency for Highly Threaded Cores
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Baseline Multicore System Model
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What is (Hardware) Shared Memory?

• Take multiple microprocessor cores
• Implement a memory system with a single global 

physical address space
• Hardware provides illusion of single shared address 

space
– Even when cores have caches (next slide)

• Single address space sounds great …
– … but what happens when cores have caches?

Let’s see how caches can lead to incoherence …
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Cache Coherence Problem (Step 1)

P1 P2

x

Interconnection Network

Main Memory

Ti
m

e

load r2, x
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Cache Coherence Problem (Step 2)

P1 P2

x

Interconnection Network

Main Memory

load r2, x

Ti
m

e

load r2, x
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Cache Coherence Problem (Step 3)

P1 P2

x

Interconnection Network

Main Memory

load r2, x
add r1, r2, r4
store x, r1Ti

m
e

load r2, x
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Cache Coherence Protocol

• Cache coherence protocol (hardware) enforces two 
invariants with respect to every block

• We’ll think about both invariants in terms of epochs
– Divide lifetime of each block into epochs of time

• So what are the two invariants?

time
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Cache Coherence Invariant #1

1. Single Writer Multiple Reader (SWMR) invariant
SWMR: at any time, a given block either:
– has one writer à one core has read-write access
– zero or more readers à some cores have read-only access

read-only
cores: 1,4

read-write
core: 3

time

read-only
cores: 1, 3, 6
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Cache Coherence Invariant #2

2. Data invariant: up-to-date data transferred
The value at the beginning of each epoch is equal to 
the value at the end of the most recently completed 
read-write epoch

read-only
cores: 1,4
value = 2

read-write
core: 3

value = 2à3

time

read-only
cores: 1, 3, 6

value=3
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Cache Coherence Protocols

• All any coherence protocol does is enforce these 
two invariants at runtime

• Many possible ways to do this
• Tradeoffs between performance, scalability, power, 

cost, etc.
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Implementing Cache Coherence Protocols

• But fundamentally all protocols do same thing
• Cache controllers and memory controllers send 

messages to coordinate who has each block and 
with what value

• For now, just assume we have a coherence protocol
– This is one of my favorite topics, so I’ll have to refrain for now
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Why Cache-Coherent Shared Memory?

• Pluses
– For applications - looks like multitasking uniprocessor
– For OS - only evolutionary extensions required
– Easy to do inter-thread communication without OS
– Software can worry about correctness first and then performance

• Minuses
– Proper synchronization is complex
– Communication is implicit so may be harder to optimize
– More work for hardware designers (i.e., me!)

• Result
– Most modern multicore processors provide cache-coherent shared 

memory
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Outline

• Overview: Shared Memory & Coherence
• Intro to Memory Consistency

– Chapter 3

• Weak Consistency Models
• Case Study in Avoiding Consistency Problems
• Litmus Tests for Consistency
• Including Address Translation
• Consistency for Highly Threaded Cores
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Coherence vs. Consistency

• Programmer’s intuition says load should return most 
recent store to same address

– But which one is the “most recent”?

• Coherence concerns each memory location 
independently

• Consistency concerns apparent ordering for ALL
memory locations
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Why Coherence != Consistency

// initially, A = B = flag = 0 
Thread 1 Thread 2

Store A = 1; while (Load flag==0); // spin
Store B = 1; Load A;
Store flag = 1; Load B;

print A and B;

• Intuition says Thread 2 should print A = B = 1
• Yet, in some consistency models, this isn’t required!
• Coherence doesn’t say anything … why?
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Why Memory Consistency is Important

• Memory consistency model defines correct behavior
– It is contract between system and programmer
– Analogous to ISA specification
– Consistency is part of architecture à software-visible

• Coherence protocol is only a means to an end
– Coherence is not visible to software (i.e., not architectural)
– Enables new system to present same consistency model despite 

using newer, fancier coherence protocol
– Systems maintain backward compatibility for consistency (like ISA)

• Reminder to architects: consistency model restricts 
ordering of loads/stores

– Does NOT care at all about ordering of coherence messages
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Sequential Consistency (SC)

• Leslie Lamport 1979:
“A multiprocessor is sequentially consistent if the 

result of any execution is the same as if the 
operations of all the processors were executed in 
some sequential order, and the operations of each 
individual processor appear in this sequence in the 
order specified by its program”

• First precise definition of consistency
• Most restrictive consistency model
• Most intuitive model for (most) humans



22
(C) Daniel J. Sorin

UPMARC 2016

The Memory Model

P1 P2 Pn

switch randomly set
after each memory op

sequential 
processor 
cores
issue 
memory ops
in program 
order

Memory
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SC: Definitions

• Sequentially consistent execution
– Result is same as one of the possible interleavings on uniprocessor

• Sequentially consistent system
– Any possible execution corresponds to some possible total order

• Preferred (and equivalent) definition of SC
– There exists a total order of all loads and stores (across all threads), 

such that the value returned by each load equals the value of the 
most recent store to that location
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SC: More Definitions
• Memory operation

– Load, store, or atomic read-modify-write (RMW) to memory location

• Issue (different from “issue” within core!)
– An operation is issued when it leaves core and is presented to memory 

system (usually the L1 cache or write-buffer)

• Perform
– A store is performed wrt to a processor core P when a load by P returns 

value produced by that store or a later store
– A load is performed wrt to a processor core when subsequent stores 

cannot affect value returned by that load

• Complete
– A memory operation is complete when performed wrt all cores.

• Program execution
– Memory operations for specific run only (ignore non-memory-referencing 

instructions)
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SC: Table-Based Definition
• I like tabular definitions of models

– Specify which program orderings are enforced by consistency model
» Remember: program order defined per thread

– Includes loads, stores, and atomic read-modify-writes (RMWs)
– “X” denotes ordering enforced
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SC and Out-of-Order (OOO) Cores

• At first glance, SC seems to require in-order cores
• Conservative way to support SC

– Each core issues its memory ops in program order
– Core must wait for store to complete before issuing next memory 

operation
– After load, issuing core waits for load to complete, and store that 

produced value to complete before issuing next op
– Easily implemented if cores connected with shared (physical) bus

• But remember: SC is an abstraction
– Difference between architecture and micro-architecture

• Can do whatever you want, if illusion of SC!
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Optimized Implementations of SC

• Famous paper by Gharachorloo et al. [ICPP 1991] 
shows two techniques for optimization of OOO core

– Both based on consistency speculation
– That is: speculatively execute and undo if violate SC
– In general, speculate by issuing loads early and detecting whether 

that can lead to violations of SC

• MIPS R10000-style speculation
– Non-speculatively issue & commit stores at Commit stage (in order)
– Speculatively issue loads at Execute stage (out-of-order)
– Track addresses of loads between Execute and Commit
– If other core does store to tracked address (detected via coherence 

protocol) à mis-speculation
– Why does this work?
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Optimized Implementations of SC, part 2

• Data-replay speculation
– Non-speculatively issue & commit stores at Commit stage (in order)
– Speculatively issue loads at Execute stage (out-of-order)
– Replay loads at Commit
– If load value at Execute doesn’t equal value at Commit  à mis-

speculation
– Why does this work?

• Key idea: consistency is interface (illusion)
– If software can’t tell hardware violated consistency, it’s OK
– Analogous to cores that execute out-of-order while presenting in-

order (von Neumann) illusion



29
(C) Daniel J. Sorin

UPMARC 2016

Outline

• Overview: Shared Memory & Coherence
• Intro to Memory Consistency
• Weak Consistency Models

– Chapters 4-5

• Case Study in Avoiding Consistency Problems
• Litmus Tests for Consistency
• Including Address Translation
• Consistency for Highly Threaded Cores
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Why Relaxed Memory Models?

• Recall SC requires strict ordering of reads/writes
– Each processor generates a local total order of its reads and writes

(RàR, RàW, WàW, & RàW)
– All local total orders are interleaved into global total order
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Why Relaxed Memory Models?

• Relaxed models relax some of these constraints
– TSO: Relax ordering from writes to reads (to diff addresses)
– XC: Relax all read/write orderings (but add “fences”)

• Why do we care?
– May allow hardware optimizations prohibited by SC
– May allow compiler optimizations prohibited by SC

• Many possible models weaker than SC

Let’s start with Total Store Order (TSO) …
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TSO/x86

• Total Store Order (TSO)
– First defined by Sun Microsystems
– Later shown that Intel/AMD x86 is nearly identical à “TSO/x86”

• Less restrictive than SC
– Tabular ordering of loads, stores, RMWs, and FENCEs
– X=ordered
– B=data value bypassing required if to same address 
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TSO/x86: Relax Write to Read Order

// initially, A = B = 0
Thread 1 Thread 2

Store A = 1; Store B = 1
Load r1 = B; Load r2 = A;

• TSO/x86
– Allows r1==r2==0 (not allowed by SC)

• Why do this?
– Allows FIFO write buffers à performance!
– Does not confuse programmers (too much)

cache

core

loads

stores
FIFO 
write 
buffer
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Write Buffers w/ Read Bypass

Shared Bus

P1

Write Flag 1
Read
Flag 2
t1

t3

P2

Write Flag 2 
Read
Flag 1
t2

t4

Flag 1: 0
Flag 2: 0

Thread 1 Thread 2
Flag 1 = 1 Flag 2 = 1
if (Flag 2 == 0) if (Flag 1 == 0)

critical section critical section
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TSO/x86: Adding Order When Needed

// initially, A = B = 0
Thread 1 (T1) Thread 2 (T2)

Store A = 1; Store B = 1
FENCE FENCE
Load r1 = B; Load r2 = A;

• Need to add explicit ordering if you want it
– Unlike SC, where everything ordered by default

• FENCE instruction provides ordering
– FENCE is part of ISA
– No instructions can be reordered across FENCE

» E.g., FENCE prohibits Ld r1=B from occurring before St A=1
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TSO Also Provides “Causality” (Transitivity)

// initially all locations are 0
T1 T2 T3
St A = 1; while (Ld flag1==0) {};   while (Ld flag2==0) {};
St flag1 = 1; St flag2 = 1; Ld r3 = A;

• We expect T3’s Ld r3=A to get value 1
• All commercial versions of TSO guarantee causality
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So Why Not Relax All Order?

// initially all 0
T1 T2

L1: Ld r1 = flag;   // spin
St A=1; if (r1 != 1) goto L1  // loop
St B=1; Ld r1 = A;
St flag = 1; Ld r2 = B;

• SC and TSO always order red ops & order green ops
– But that’s overkill à we don’t need to order them
– Reordering could allow for OOO processors, non-FIFO write buffers, 

some coherence optimizations, etc.
• Opportunity: instead of ordering everything by 

default, only order when you need it
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But What’s the Catch?

// initially all 0
T1 T2

L1: Ld r1 = flag;      // spin
St A=1; if (r1 != 1) goto L1  // loop
St B=1; Ld r1 = A;
St flag = 1; Ld r2 = B;

• What if St flag=1 can be reordered before St A=1?
• Or if Ld r1=A can be reordered before loading flag=1?
• We want some order

– Red ops before St flag=1
– Green ops after loading flag=1
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Order with FENCE Operations

// initially all 0
T1 T2

L1: Ld r1 = flag;   // spin
St A=1; if (r1 != 1) goto L1  // loop
St B = 1; FENCE;
FENCE; Ld r1=B;
St flag = 1; Ld r2 = B;

• FENCE orders everything above it before everything 
after it

– T1’s FENCE: If thread sees flag=1, must also see A=1, B=1
– T2’s FENCE: T2 can’t do loads of r1,r2 before seeing flag set
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Many Flavors of Weak Models

• Many possible models weaker than SC and TSO
– Most differences pretty subtle

• XC in primer (like what is often called Weak Ordering)
– One type of FENCE
– X=order, A=order if same address, B=bypassing if same address
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Release Consistency (RC)

• Like XC but two types of one-way FENCEs
– Acquire and Release

• Acquire: AcquireàLd, St
• Release: Ld, St à Release
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XC Example

Read / Write
…

Read/Write

Read / Write
…

Read/Write

Read / Write
…

Read/Write

FENCE

FENCE
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Release Consistency Example

Read / Write
…

Read/Write

Read / Write
…

Read/Write

Read / Write
…

Read/Write

Acquire

Release
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The Programming Interface

• XC and RC require synchronized programs

• All synchronization operations must be labeled and 
visible to the hardware

– Easy (easier!) if synchronization library used
– Must provide language support for arbitrary Ld/St synchronization 

(event notification, e.g., flag)

• Program written for weaker model OK on stricter
– E.g., SC is a valid implementation of TSO, XC, or RC
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SC for Data-Race-Free

• Data race: two accesses by two threads where:
– At least one is a write
– They’re not separated by synchronization operations

• Data-race-free (DRF) program has no data races
– Most correct programs are DRF – can you think of counter-

examples?

IMPORTANT RESULT
• TSO, XC, and RC all provide “SC for DRF”

– If program is DRF, then behavior is sequentially consistent
– Allows programmer to reason about SC system!

• But what if program isn’t DRF (i.e., has a bug)?
– Debugging becomes much more … interesting
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Outline

• Overview: Shared Memory & Coherence
• Intro to Memory Consistency
• Weak Consistency Models
• Case Study in Avoiding Consistency Problems
• Litmus Tests for Consistency
• Including Address Translation
• Consistency for Highly Threaded Cores
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Why Architects Must Understand Consistency: 
A Case Study

• What happens when memory consistency interacts 
with value prediction?

• Hint: it’s not obvious!

• Note: this is not an important problem in itself à the 
key is to show you how you must think about 
consistency when designing multicore processors
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Informal Example of Problem, part 1

• Student #2 predicts grades are on bulletin board B
• Based on prediction, assumes score is 60

Grades for Class

Student ID score

1 75

2 60

3                    85

Bulletin Board B
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Grades for Class

Student ID score

1 75 50

2 60 80

3                    85 70

slide 49

Informal Example of Problem, part 2

• Professor now posts actual grades for this class
– Student #2 actually got a score of 80

• Announces to students that grades are on board B
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Informal Example of Problem, part 3

• Student #2 sees prof’s announcement and says,
“ I made the right prediction (bulletin board B),
and my score is 60”!

• Actually, Student #2’s score is 80

• What went wrong here?
– Intuition: predicted value from future

• Problem is concurrency
– Interaction between student and professor
– Just like multiple threads, cores, or devices
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Linked List Example of Problem (initial state)

head
A

null

42

60

nullA.data

B.data

A.next

B.next

• Linked list with single writer and single reader

• No synchronization (e.g., locks) needed

Initial state of list
Uninitialized node
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Linked List Example of Problem (Writer)

head
B

null

42

80

A

• Writer sets up node B and inserts it into list  

A.data

B.data

A.next

B.next

Code For Writer Thread

W1: store mem[B.data] ß 80

W2: load reg0 ß mem[Head]

W3: store mem[B.next] ß reg0

W4: store mem[Head] ßB
In

se
rt

{
Se

tu
p 

no
de
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Linked List Example of Problem (Reader)

head
?

null

42

60

null

• Reader cache misses on head and value predicts head=B.

• Cache hits on B.data and reads 60.  

• Later “verifies” prediction of B.  Is this execution legal?

A.data

B.data

A.next

B.next

Predict head=B
Code For Reader Thread

R1: load reg1 ß mem[Head] = B

R2: load reg2 ß mem[reg1] = 60
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Why This Execution Violates SC

• Recall Sequential Consistency
– Must exist total order of all operations
– Total order must respect program order at each processor

• Our example execution has a cycle
– No total order exists
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Trying to Find a Total Order

• What orderings are enforced in this example?

Code For Writer Thread

W1: store mem[B.data] ß 80

W2: load reg0 ß mem[Head]

W3: store mem[B.next] ß reg0

W4: store mem[Head]  ß B

Code For Reader Thread

R1: load reg1 ß mem[Head]

R2: load reg2 ß mem[reg1]

In
se

rt

{

Se
tu

p 
no

de
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Program Order

Code For Writer Thread

W1: store mem[B.data] ß 80

W2: load reg0 ß mem[Head]

W3: store mem[B.next] ß reg0

W4: store mem[Head] ß B

Code For Reader Thread

R1: load reg1 ß mem[Head]

R2: load reg2 ß mem[reg1]

• Must enforce program order
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Data Order

• If we predict that R1 returns the value B, we can violate SC

Code For Writer Thread

W1: store mem[B.data] ß 80

W2: load reg0 ß mem[Head]

W3: store mem[B.next] ß reg0

W4: store mem[Head] ßB

Code For Reader Thread

R1: load reg1 ß mem[Head] = B

R2: load reg2 ß mem[reg1]  = 60
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Value Prediction and Sequential Consistency

• Key: value prediction reorders dependent operations
– Specifically, read-to-read data dependence order

• Execute dependent operations out of program order

• Applies to almost all consistency models
– Models that enforce data dependence order

• Must detect when this happens and recover
• Similar to other optimizations that complicate SC
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How to Fix SC Implementations w/Value Pred

• Two options from “Two Techniques for …”
– Both adapted from ICPP ‘91 paper
– Originally developed for out-of-order SC cores

• (1) Address-based detection of violations
– Student watches board B between prediction and verification
– Like existing techniques for out-of-order SC processors
– Track stores from other threads 
– If address matches speculative load, possible violation

• (2) Value-based detection of violations
– Student checks grade again at verification
– Also an existing idea
– Replay all speculative instructions at commit
– Can be done with dynamic verification (e.g., DIVA [MICRO ‘99])
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Outline

• Overview: Shared Memory & Coherence
• Intro to Memory Consistency
• Weak Consistency Models
• Case Study in Avoiding Consistency Problems
• Litmus Tests for Consistency
• Including Address Translation
• Consistency for Highly Threaded Cores
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Litmus Tests

• Goal: short code snippets to test consistency model
• Run litmus test many times (hoping for many different 

inter-thread interleavings)
– Make sure no execution produces result that violates consistency 

model

• We’ve already seen a few litmus tests
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Litmus Test #1: SC vs. TSO

// initially, A = B = 0
T1 T2

Store A = 1; Store B = 1
Load r1 = B; Load r2 = A;

• SC: r1=r2=0 not allowed à cyclic dependence graph
• TSO/x86: all outcomes allowed, including r1=r2=0
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Litmus Test #2: TSO vs. XC

// initially, A = B = flag = 0
T1 T2

St A = 1; while (Ld flag == 0); // spin
St B = 1; Ld A;
St flag = 1; Ld B;

print A and B

• TSO requires T2 to print A = B = 1
• XC permits other results
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Litmus Test #3: Transitivity

// initially all locations are 0
T1 T2 T3
St A = 1; while (Ld flag1==0) {};   while (Ld flag2==0) {};
St flag1 = 1; St flag2 = 1; Ld r3 = A;

• We expect T3’s Ld r3=A to get value 1
• All commercial versions of TSO guarantee causality
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Litmus Test #4: IRIW

// Independent Read, Independent Write
// initially all locations are 0

T1 T2 T3 T4
St A = 1; St B=1;   Ld A; // =1 Ld B; // =1

FENCE; FENCE;
Ld B; // =1? Ld A; // =1?

• Well-known litmus test to check for “write atomicity”
– Store is logically seen by all cores at once
– Some relaxed models enforce write atomicity

• What happens if last two loads both equal 0?
– No order of stores exists à no write atomicity
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More Litmus Tests

• Many more litmus tests exist
• Useful for testing and debugging hardware
• Useful for reasoning about consistency models
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Outline

• Overview: Shared Memory & Coherence
• Intro to Memory Consistency
• Weak Consistency Models
• Case Study in Avoiding Consistency Problems
• Litmus Tests for Consistency
• Including Address Translation
• Consistency for Highly Threaded Cores
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Translation-oblivious Memory Consistency

• Lamport’s definition of Sequential Consistency
– Operations of individual processor appear in program order

– The total order of operations executed by different processors obeys 
some sequential order

• Memory system includes Address Translation 
(AT)

– We need AT-aware specifications

on Physical or Virtual addresses?
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Memory Consistency – Traditional View

• Monolithic interface between hardware and software

Software

Hardware

Memory
Consistency 

Model



70
(C) Daniel J. Sorin

Memory Consistency – Multi-level View

• Memory consistency 
represents a set of 
interfaces

– Supports different layers of 
software

• AT supports mapped 
software

– Interacts with PAMC and 
VAMC

– How does AT impact their 
specifications?

Compiler User-level binaries

Mapped software

Hardware

Unmapped software

HLL Memory Consistency

User Process 
Memory Consistency

Virtual Address 
Memory Consistency

(VAMC)

Physical Address 
Memory Consistency

(PAMC)
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PAMC – Physical Address Consistency
• Supports unmapped software

– Relies only on hardware
– Fully specified by the architecture

• Adapting AT-oblivious specifications straightforward
– All operations refer to physical addresses

Weak Order
PAMC

Operation 2

LD ST MemBar

O
pe

ra
tio

n 
1 LD A X

ST A A X

MemBar X X X

Legend
X = enforced order
A = order if samephys phys

phys

phys

physical addressaddress
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From PAMC to VAMC

VAMC
Ordering

Op 2

LD ST

O
p 

1 LD Virtual 
addressesST

PAMC
Ordering

Op 2
LD ST

O
p 

1 LD Physical
addressesST

Address 
Translation+ →

Mapping Permissions StatusTranslation

• Translations
– Regulate Virtual→Physical address conversions through mappings
– Include permissions and status bits
– Defined in memory page table, cached in TLBs for expedited 

access
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AT’s Impact on VAMC

• Intuitively, PAMC + AT = VAMC 
• Three AT aspects impact VAMC

– Synonyms - multiple virtual addresses for same data
– Mappings/permissions changes

» Map/Remap Functions (MRFs)
» Maintain coherence between page table and TLBs

– Status bit updates

VAMC
Ordering

Op 2

LD ST

O
p 

1 LD Virtual 
addressesST

PAMC
Ordering

Op 2
LD ST

O
p 

1 LD Physical
addressesST

AT

Translations+ →
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Invalidate barrier

Why MRF Ordering Matters

Map VA1 to PA2
Invalidate TLB  copies for VA1

Mem. barrier

Load x = VA1

MRF

Store VA1 = C

Initially VA1→PA1; PA1=0; PA2= 0

Thread1 Thread2

X = C

• Two threads 
operating on 
same virtual 
address VA1

• TLB 
Invalidation 
ordering 
impacts final 
result

• Enforcing 
MRF ordering 
eliminates 
ambiguity

or  X = 0 ?

PA1=C

x=PA2

PA2=C

TLB 1 TLB 2
VA1→PA1VA1→PA1VA1→PA2

Pending Invalidate VA1

x=PA2

Sync threads

Sync threads
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Specifying AT-Aware VAMC

• Possible VAMC specification based on Weak Order

Weak Order
VAMC

Operation 2

LD ST MemBar

O
pe

ra
tio

n 
1 LD A X

ST A A X
MemBar X X X

Legend
X = enforced order
A = order if same

syn

syn
syn

syn MRF

X
X
X

XMRF X X X

synonym setaddress

n Correct AT is critical for VAMC correctness

q LD/ST refer to synonym sets of virtual addresses
q MRFs are serialized wrt. any other operation

X

X
X X

SB

SB

q Status bits updates ordered only wrt. to MemBar and MRF
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Framework for AT Specifications

• Framework characterizes AT state, not specific 
implementation

• Translations defined in page table, cached in TLBs

Page Table
VP1→PP1
VP2→PP2
VP3→PP3

VP1->PP1
TLB

VP2→PP2
CoreVP1→PP1

n Invariant #2. Translations 
are coherent
q Hardware/software 

managed

n Invariant #1. Page 
table is correct
q Software-managed data 

structure
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AT Model - ATsc

• Sequential model of AT
– Similar, but not identical to AT models supported by x86 hardware 

running Linux 
– Translation accesses and status bit updates occur atomically with 

instructions
– MRFs are logically atomic

» Implementation uses locks

• Model supports PAMCsc + ATsc = VAMCsc
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UPMARC 2016

Outline

• Overview: Shared Memory & Coherence
• Intro to Memory Consistency
• Weak Consistency Models
• Case Study in Avoiding Consistency Problems
• Litmus Tests for Consistency
• Including Address Translation
• Consistency for Highly Threaded Cores



Overview

• Massively	Threaded	Throughput-Oriented	
Processors	(MTTOPs)	like	GPUs	are	being	
integrated	on	chips	with	CPUs	and	being	used	for	
general	purpose	programming

• Conventional	wisdom	favors	weak	consistency	on	
MTTOPs	

• We	implement	a	range	of	memory	consistency	
models	on	MTTOPs

• We	show	that	strong	consistency	is	viable	for	
MTTOPs
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What is an MTTOP?

• Massively	Threaded	Throughput-Oriented
– 4-16	core	clusters
– 8-64	threads	wide	SIMD
– 64-128	deep	SMT
ØThousands	of	concurrent	threads

• Massively	Threaded	Throughput-Oriented
– Sacrifice	latency	for	throughput

• Heavily	banked	caches	and	memories
• Many	cores,	each	of	which	is	simple
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Example MTTOP
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Cluster
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Cluster
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Cluster
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L2
Bank
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Core	
Cluster

Core	
Cluster

Core	
Cluster

Core	
Cluster

Core	
Cluster

Memory
Controller

Cache	Coherent	
Shared	Memory



(CPU) Memory Consistency Debate

• Conclusion	for	CPUs:	trading	off	~10-40%	
performance	for	programmability
– “Is	SC	+	ILP	=	RC?”	(Gniady ISCA99)
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Strong	
Consistency

Weak	
Consistency

Performance Slower Faster

Programmability Easier Harder

But	does	this	conclusion	apply	to	MTTOPs?



Memory Consistency on MTTOPs

• GPUs	have	undocumented	hardware consistency	
models

• Intel	MIC	uses	x86-TSO	for	the	full	chip	with	
directory	cache	coherence	protocol

• MTTOP	programming	languages	provide	weak	
ordering	guarantees
– OpenCL does	not	guarantee	store	visibility	without	a	
barrier	or	kernel	completion

– CUDA	includes	a	memory	fence	that	can	enable	global	
store	visibility
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MTTOP Conventional Wisdom

• Highly	parallel	systems	benefit	from	less	ordering
– Graphics	doesn’t	need	ordering

• Strong	Consistency	seems	likely	to	limit	MLP
• Strong	Consistency	likely	to	suffer	extra	latencies

Weak	ordering	helps	CPUs,	does	it	help	MTTOPs?		
It	depends	on	how	MTTOPs	differ	from	CPUs	…
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Diff	1:	Ratio	of	Loads	to	Stores
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MTTOPs	perform	more	loads	per	storeà store	latency	optimizations	will	not	
be	as	critical	to	MTTOP	performance

CPUs MTTOPs

Prior	work	shows	CPUs	
perform	2-4	loads	per	
store

1

10

100

1000

10000

Lo
ad

s	p
er
	S
to
re

Weak	Consistency	reduces	the	impact	of	store	latency	on	performance



Diff	2:	Outstanding	L1	cache	misses
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Weak	consistency	enables	more	outstanding	L1	misses	per	thread

E E E E E E E

Decode
Fetch

L1

SIMD	=	64
SMT	=	64
MLP	=	1-4
L1	Miss	rate	=	.5

E E E E

Decode
Fetch

L1

LSQ

SIMD	=	4
SMT	=	4
MLP	=	1-4
L1	Miss	rate	=	.1 R

O
B

Issue/Sel

CPU	core MTTOP	core	cluster

Misses	=	2048-8192
Misses	=	1.6-6.4

MTTOPs	have	more	L1	cache	misses	à thread	reordering	enabled	by	weak	
consistency	is	less	important	to	handle	the	latency	of	later	memory	stages



Diff	3:	Memory	System	Latencies
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E E E E

Decode
Fetch

L1
LSQ

1-2	cycles

5-20	cycles

100-500	cycles

R
O
B

Issue/Sel

L2

Mem

CPU	core

EE E E EE E

Decode
Fetch

L110-70	cycles

100-300	cycles

300-1000	cycles

L2

Mem

MTTOP	core	cluster

MTTOPs	have	longer	memory	latencies	à small	latency	savings	will	not	
significantly	improve	performance

Weak	consistency	enables	reductions	of	store	latencies



Diff	4:	Frequency	of	Synchronization
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MTTOPs	have	more	threads	to	compute	a	problem	à each	thread	will	have	
fewer	independent	memory	operations	between	synchronization.

CPUs MTTOPs

spilt problem to regions

do:
work on local region
synchronize

Weak	consistency	only	re-orders	memory	operations	between	synchronization



Diff	5:	RAW	Dependences	
Through	Memory
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MTTOP	algorithms	have	fewer	RAW	dependencies	à there	is	little	benefit	
to	being	able	to	read	from	a	write	buffer

CPUs MTTOPs
• Blocking	for	cache	
performance

• Frequent	function	calls
• Few	architected	registers
ØMany	RAW	dependencies	
through	memory

• Coalescing	for	cache	
performance

• Inlined function	calls
• Many	architected	registers
Ø Few	RAW	dependencies	

through	memory

Weak	consistency	enables	store	to	load	forwarding



MTTOP	Differences	&	Their	Impact	

• Other	differences	are	mentioned	in	the	paper
• How	much	these	differences	affect	
performance	of	memory	consistency?
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Memory Consistency Implementations

91

EE E E EE E

Decode
Fetch

L1

SC	simple

EE E E EE E

Decode
Fetch

L1

SC	wb

EE E E EE E

Decode
Fetch

L1

TSO

EE E E EE E

Decode
Fetch

L1

RMO

No	write	buffer Per-lane	FIFO
write	buffer	
drained	on	
LOADS

Per-lane	FIFO
write	buffer	
drained	on	
FENCES

Per-lane	CAM for	
outstanding	
write	addresses

FIFO	WB FIFO	WB C
A
M

Strongest																																																																																																		Weakest



Methodology

• Modified	gem5	to	support	SIMT	cores	running	
a	modified	version	of	the	Alpha	ISA

• Looked	at	typical	MTTOP	workloads
– Had	to	port	workloads	to	run	in	system	model

• Ported	Rodinia benchmarks
– bfs,	hotspot,	kmeans,	and	nn

• Handwritten	benchmarks
– dijkstra,	2dconv,	and	matrix_mul
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Target MTTOP System
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Parameter Value
core clusters 16 core clusters; 8 wide SIMD
core in-order, Alpha-like ISA, 64 deep SMT
interconnection network 2D torus
coherence protocol Writeback MOESI protocol
L1I cache (shared by cluster) perfect, 1-cycle hit
L1D cache (shared by cluster) 16KB, 4-way, 20-cycle hit, no local memory
L2 cache (shared by all clusters) 256KB, 8 banks, 8-way, 50-cycle hit

consistency	model-specific	features	(give	benefit	to	weaker	models)
write buffer (SCwb and TSO) perfect, instant access
CAM for store address matching perfect, instant access



Results
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Upshot

• Improving	store	performance		with	write	
buffers	is	unnecessary

• MTTOP	consistency	model	should	not	be	
dictated	by	performance	or	hardware	
overheads

• Graphics-like	workloads	can	get	significant	
MLP	from	load	reordering	(dijkstra,	2dconv)
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Conventional	wisdom	may	be	wrong	about	MTTOPs
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UPMARC 2016

Outline

• Overview: Shared Memory & Coherence
• Intro to Memory Consistency
• Weak Consistency Models
• Case Study in Avoiding Consistency Problems
• Litmus Tests for Consistency
• Including Address Translation
• Consistency for Highly Threaded Cores


