Kotlin

Ferruccio Damiani

Universita di Torino
www.di.unito.it/~damiani

Mobile Device Programming
(Laurea Magistrale in Informatica, a.a. 2018-2019)

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming

1/110

www.di.unito.it/~damiani

KOtl In [bttps://kotlinlang.org/| [https://developer.android.com/kotlin/]

A modern language (like, e.g., Scala and Swift) with advantages over Java:
@ More concise: Drastically reduce the amount of boilerplate code.
o Safer: Avoid entire classes of errors such as null pointer exceptions.
Moreover:
@ Interoperable: Leverage existing libraries for the JVM, Android, and the browser.

@ Tool-friendly: Choose any Java IDE or build from the command line.

See a |SO [https://kotlinlang.org/docs/reference/comparison-to-java.html]

Ferruccio Damiani (Universita di Torino)

Kotlin Mobile Device Programming

2/110

https://kotlinlang.org/
https://developer.android.com/kotlin/
https://kotlinlang.org/docs/reference/comparison-to-java.html

Outline

© Basic Syntax

© Basic Types

© Classes and Objects
@ Generics
@ Object Expressions and Declarations

@ Functions and Lambdas

Kotlin

Ferruccio Damiani (Universita di Torino)

Mobile Device Programming

3/110

Outline

© Basic Syntax

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 4/110

Coding conventions

A coding style guide about:

Source code organization
Naming rules

Formatting

Documentation comments
Avoiding redundant constructs

Idiomatic use of language features

Coding conventions for libraries

IS aValIa ble at [https://kotlinlang.org/docs/reference/coding-conventions.html]

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 5/110

https://kotlinlang.org/docs/reference/coding-conventions.html

Defining packages

A source file may start with a package declaration:

package foo.bar
import java.util.=x

fun baz() { ... }
class Goo { ... }

W N O U AW N R

/7

@ Source files can be placed arbitrarily in the file system.

@ All the contents (such as classes and functions) of the source file are contained by the
package declared. So, in the example above, the full name of baz() is foo.bar.baz, and
the full name of Goo is foo.bar.Goo.

o If the package is not specified, the contents of such a file belong to "default” package
that has no name.

@ A number of packages are imported into every Kotlin file by default.

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 6/110

Defining functions

Function having two Int parameters with Int return type:

fun sum(a: Int, b: Int): Int {
return a + b

w N e

}

Function with an expression body and inferred return type:

1| fun sum(a: Int, b: Int) = a + b

Function returning no meaningful value:

fun printSum(a: Int, b: Int): Unit {
println("sum of $a and $b is ${a + b}")

w N e

}

Unit return type can be omitted:

fun printSum(a: Int, b: Int) {
println("sum of $a and $b is ${a + b}")

w N =

}

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 7/110

Default Arguments

1| fun read(b: Array<Byte>, off: Int = 0, len: Int = b.size) {
Named Arguments
1| fun foo(bar: Int = 0, baz: Int) { }

3| foo(baz = 1) // The default value bar

0 is used

With named arguments we can make the code much more readable:

reformat (str,

1

2 normalizeCase = true,

3 upperCaseFirstLetter = true,
4 divideByCamelHumps = false,
5 wordSeparator = ’_°

6])

and if we do not need all arguments:

1| reformat (str, wordSeparator = ’_’)

Ferruccio Damiani (Universita di Torino)

Kotlin

Mobile Device Programming

8/110

Defining variables

Assign-once (read-only) local variable:

val a: Int = 1 // immediate assignment

val b = 2 // ‘Int‘ type is inferred

val c: Int // Type required when no initializer is provided
c =3 // deferred assignment

ENC I S

Mutable variable:

-

var x = 5 // ‘Int‘ type is inferred
X += 1

N

Top-level variables:

val PI = 3.14
var x = 0

fun incrementX () {
X += 1

D U h W N R

}

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 9/110

Local Functions (i.e. a function inside another function)

fun dfs(graph: Graph) {
fun dfs(current: Vertex, visited: Set<Vertex>) {
if (!visited.add(current)) return
for (v in current.neighbors)
dfs(v, visited)
}
dfs(graph.vertices[0], HashSet ())

W N O U AW N R

}

Local function can access local variables of outer functions (i.e. the closure), so in the case
above, the visited can be a local variable:

fun dfs(graph: Graph) {
val visited = HashSet<Vertex>()
fun dfs(current: Vertex) {
if ('visited.add(current)) return
for (v in current.neighbors)
dfs(v)

B W N =

}
dfs(graph.vertices[0])

© 0w ~N o o

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 10 /110

Using nullable values and checking for null

A reference must be explicitly marked as nullable when null value is possible.
Return null if str does not hold an integer:

1| fun parseInt(str: String): Int? {
//

N

31}

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 11/110

Use a function returning nullable value:

1| fun printProduct(argl: String, arg2: String) {

2 val x = parselnt(argl)

3 val y = parselnt(arg2)

4

5 // Using ‘x * y‘ yields error because they may hold nulls.
6 if (x != null && y != null) {

7 // x and y are automatically cast to non-nullable after null check
8 println(x * y)

9 }

10 else {

11 println("either ’$argl’ or ’$arg2’ is not a number")
12 }

13| }

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 12/110

or

/...

if (x == null) {
println("Wrong number format in argl: ’$argl’")
return

if (y == null) {
println("Wrong number format in arg2: ’$arg2’")
return

©O© 00 N O OB W N =
-

}

- =
= o

// x and y are automatically cast to non-nullable after null check
println(x * y)

-
N

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 13 /110

Generic functions and Variable number of arguments

Generic Functions
fun <T> singletonList(item: T): List<T> { ... } ‘

1

Variable number of arguments: at most one parameter of a function (normally the last one)
may be marked with vararg modifier:

1| fun <T> asList(vararg ts: T): List<T> {
2 val result = ArrayList<T>()

3 for (t in ts) // ts is an Array

4 result.add(t)

5 return result

6

}

allowing a variable number of arguments to be passed to the function:

1‘val list = asList (1, 2, 3)

Inside a function a vararg-parameter of type T is visible as an array of T, i.e. the ts variable in
the example above has type Array<out T>.
QUESTION: what is the meaning of the “out” keyword?

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 14 /110

Outline

© Basic Types

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 15 /110

Everything is an object

Everything is an object: we can call member functions and properties on any expression.
QUESTION: what are “member functions” and “properties”?
Some of the types can have a special internal representation (e.g., numbers, characters and
booleans can be represented as primitive values at runtime) but to the user they look like
ordinary classes
A presentation about:
@ Numbers
Characters
Booleans
Arrays
Unsigned integers

e 6 6 o6 o

Strings

is available at:
https://kotlinlang.org/docs/reference/basic-types.html

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 16 /110

https://kotlinlang.org/docs/reference/basic-types.html

[T

aR W N R

Representation

On the Java platform, numbers are physically stored as JVM primitive types, unless we need a
nullable number reference (e.g. Int?) or generics are involved. In the latter cases numbers are
boxed.

Note that boxing of numbers does not necessarily preserve identity:

val a: Int = 10000

println(a === a) // Prints ’true’

val boxedA: Int? = a

val anotherBoxedA: Int? = a

println(boxedA === anotherBoxedA) // !!!Prints ’false’!!!

On the other hand, it preserves equality:

val a: Int = 10000

println(a == a) // Prints ’true’

val boxedA: Int? = a

val anotherBoxedA: Int? = a

println(boxedA == anotherBoxedA) // Prints ’true’

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 17 /110

N = BwW N =

N =

Explicit Conversions

Due to different representations, smaller types are not subtypes of bigger ones. If they were,
we would have troubles of the following sort:

// Hypothetical code, does not actually compile:

val a: Int? = 1 // A boxed Int (java.lang.Integer)

val b: Long? = a // implicit conversion yields a boxed Long (java.lang.Long)

print(b == a) // Surprise! This prints "false" as Long’s equals() checks whether the
other is Long

Smaller types are NOT implicitly converted to bigger types. This means that we cannot assign
a value of typeByte to an Int variable without an explicit conversion

val b: Byte = 1 // 0K, literals are checked statically
val i: Int = b // ERROR

We can use explicit conversions to widen numbers

val i: Int = b.toInt() // OK: explicitly widened
print (i)

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 18 /110

Arrays

Arrays are represented by the Array class, that has get and set functions (that turn into []
by operator overloading conventions), and size property, along with a few other useful
member functions:

1| class Array<T> private constructor() {

2 val size: Int

3 operator fun get(index: Int): T

4 operator fun set(index: Int, value: T): Unit
5

6 operator fun iterator(): Iterator<T>

7 //

8}

To create an array, we can use a library function array0f () and pass the item values to it, so
that array0f (1, 2, 3) creates an array [1, 2, 3]. Alternatively, the array0fNulls()
library function can be used to create an array of a given size filled with null elements.

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 19 /110

Another option is to use the Array constructor that takes the array size and the function that
can return the initial value of each array element given its index:

-

// Creates an Array<String> with values ["O", "1", "4", "9" "16"]
val asc = Array(s5, { i -> (i * 1i).toString() 1)
asc.forEach { println(it) 1}

w N

Unlike Java, arrays in Kotlin are invariant. This means that Kotlin does not let us assign an
Array<String> to an Array<Any>, which prevents a possible runtime failure (but you can
use Array<out Any>.

QUESTION: what is Any?

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 20/110

Kotlin also has specialized classes to represent arrays of primitive types without boxing
overhead: ByteArray, ShortArray, IntArray and so on. These classes have no inheritance
relation to the Array class, but they have the same set of methods and properties. Each of
them also has a corresponding factory function:

val x: IntArray = intArray0f(1, 2, 3)
x[0] = x[1] + x[2]

N

Mobile Device Programming 21/110

Ferruccio Damiani (Universita di Torino) Kotlin

Strings

Strings are represented by the type String. Strings are immutable. Elements of a string are
characters that can be accessed by the indexing operation: s[i]. A string can be iterated over
with a for-loop:

for (c in str) {
println(c)

N =

31}

Escaping is done in the conventional way, with a backslash.
A raw string is delimited by a triple quote ("""), contains no escaping and can contain
newlines and any other characters:

val text = """
for (c in "foo")
print (c)

AW N

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 22/110

N =

N =

w N e

String Templates

Strings may contain template expressions, i.e. pieces of code that are evaluated and whose
results are concatenated into the string. A template expression starts with a dollar sign ($)
and consists of either a simple name:

val i = 10
println("i = $i") // prints "i = 10"

or an arbitrary expression in curly braces:

val s = "abc"
println("$s.length is ${s.length}") // prints "abc.length is 3"

Templates are supported both inside raw strings and inside escaped strings. If you need to
represent a literal $ character in a raw string (which doesn't support backslash escaping), you
can use the following syntax:

val price =

${°$°}9.99

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 23 /110

Outline

© Classes and Objects

Ferruccio Damiani niversita di Torino) Kotlin Mobile Device Programming 24 /110

Classes and Primary constructors

Classes in Kotlin are declared using the keyword class:

-

class Invoice { ... }
class Empty

N

A class can have a primary constructor and one or more secondary constructors. The

primary constructor is part of the class header: it goes after the class name (and optional type
parameters).

1‘class Person constructor(firstName: String) { ... } ‘

If the primary constructor does not have any annotations or visibility modifiers, the
constructor keyword can be omitted:

1‘c1ass Person(firstName: String) { ... } ‘

QUESTION: what are the available "annotations” and “visibility modifiers” ?

Ferruccio Damiani (Universita di Torino)

Kotlin Mobile Device Programming 25/110

Primary constructors and Initializers

The primary constructor cannot contain any code. Initialization code can be placed in
initializer blocks, which are prefixed with the init keyword.

During an instance initialization, the initializer blocks are executed in the same order as they
appear in the class body, interleaved with the property initializers:

Ferruccio Damiani (Universita di Torino)

Kotlin Mobile Device Programming 26 /110

© © N O U A W N R

Lol
o

AW N

class InitOrderDemo(name: String) {

val firstProperty = "First property: $name".also(::println)

init {

println("First initializer block that prints ${namel}")

}

val secondProperty = "Second property: ${name.length}".also(::println)
init {

println("Second initializer block that prints ${name.lengthl}")
}
}

QUESTION: what is the “also” method?
During the instance initialization the following text is printed:

First property: hello

First initializer block that prints hello
Second property: 5

Second initializer block that prints 5

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming

27 /110

Note that parameters of the primary constructor can be used in the initializer blocks. They
can also be used in property initializers declared in the class body:

-

class Customer(name: String) {
val customerKey = name.toUpperCase ()

N

3|

In fact, for declaring properties and initializing them from the primary constructor, there is a
concise syntax:

1| cllass Person(val firstName: String, val lastName: String, var age: Int) { ... }

Much the same way as regular properties, the properties declared in the primary constructor
can be mutable (var) or read-only (val).

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 28 /110

Secondary constructors

The class can also declare secondary constructors, which are prefixed with constructor:

class Person {
constructor (parent: Person) {
parent.children.add(this)
}

(S T NV R

}

If the class has a primary constructor, each secondary constructor needs to delegate
to the primary constructor, either directly or indirectly through another secondary
constructor(s). Delegation to another constructor of the same class is done using the this
keyword:

1| class Person(val name: String) {

2 constructor (name: String, parent: Person) : this(name) {
3 parent.children.add(this)

4 }

50}

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 29/110

N

5
6
7
8
9

Note that code in initializer blocks effectively becomes part of the primary constructor.
Delegation to the primary constructor happens as the first statement of a secondary
constructor, so the code in all initializer blocks is executed before the secondary constructor
body. Even if the class has no primary constructor, the delegation still happens implicitly, and
the initializer blocks are still executed:

class Constructors {
init {
println("Init block")
}
constructor(i: Int) {
println("Constructor")
}
}

Ferruccio Damiani (Universita di Torino) Kotlin Mobile Device Programming 30/110

If a non-abstract class does not declare any constructors (primary or secondary), it will have a
generated primary constructor with no arguments. The visibility of the constructor will be
public. If you do not want your class to have a public constructor, you need to declare an

empty primary constructor with non-default visibility:

1| class DontCreateMe private constructor O { ... }

NOTE: On the JVM, if all of the parameters of the primary constructor have default values,
the compiler will generate an additional parameterless constructor which will use the default

values.

1| class Customer(val customerName: String = "")

Kotlin Mobile Device Programming 31/110

Ferruccio Damiani (Universita di Torino)

