
Analysis Algorithms

for

Stochastic Models

Computer Science 512 Lecture Notes

Spring 2017

Andrew Miner

Last updated: May 9, 2017

i

ii

Table of Contents

I Core topics 1

1 Introduction 3

1.1 Model taxonomy . 3

1.2 Model construction and analysis . 5

2 Review of Propositional Logic 7

2.1 Syntax . 7

2.2 Semantics . 7

2.2.1 Negation . 7

2.2.2 Conjunction . 8

2.2.3 Disjunction . 8

2.2.4 Conditional . 8

2.2.5 Biconditional . 8

2.3 Manipulating formulas . 9

2.4 Adequate sets of operators . 10

2.5 Satisfiability . 10

3 Introduction to model checking 11

3.1 Kripke structures . 11

3.2 Image operations . 13

3.3 Internal representation . 13

3.3.1 Graph representation . 13

3.3.2 Subset representation . 15

3.4 Matrix descriptions . 16

4 Computation Tree Logic 19

4.1 CTL syntax . 19

4.2 CTL semantics . 20

4.3 Translating English to CTL . 22

4.3.1 Safety properties . 23

4.3.2 Liveness properties . 23

4.4 Equivalences . 23

4.4.1 Adequate sets of operators for CTL . 26

4.5 Algorithms for CTL operators . 26

4.5.1 Labeling for ¬ . 26

iii

4.5.2 Labeling for ∧ . 26

4.5.3 Labeling for AX . 26

4.5.4 Labeling for EX . 27

4.5.5 Labeling for AF . 27

4.5.6 Labeling for EG — iterative algorithm . 28

4.5.7 Labeling for EG — strongly connected components 29

4.5.8 Labeling for EU . 30

4.6 Counter examples and witnesses . 31

4.6.1 Witnesses for EX . 31

4.6.2 Witnesses for EG . 31

4.6.3 Witnesses for EU . 32

4.6.4 Nested formulas . 33

4.7 Fixed points . 33

4.7.1 Sets satisfying CTL state formulas . 35

4.7.2 Fixed points and AF . 36

4.7.3 Fixed points and EG . 37

4.7.4 Fixed points and EU . 38

4.8 Fairness . 39

4.8.1 Labeling algorithm for ECG . 41

5 High–level Formalisms 43

5.1 Requirements of a formalism . 43

5.2 Petri nets . 44

5.2.1 Informal introduction . 44

5.2.2 Petri net extensions . 47

5.2.3 Expressive power of Petri nets . 48

5.2.4 Formal definition . 49

6 Reachability 51

6.1 Coverability . 51

6.1.1 The coverability tree . 51

6.1.2 The coverability graph . 53

6.2 The reachability graph . 54

6.3 State explosion . 56

6.4 Model checking with Petri nets . 57

7 Decision diagrams 61

7.1 Multi-value decision diagrams . 61

7.1.1 Definition . 61

7.1.2 Terminology . 62

7.1.3 Number of nodes and variable order . 64

7.2 Operations . 65

7.2.1 Apply operation . 66

7.2.2 Complexity of Apply operation . 71

7.3 Using MDDs for CTL model checking of Petri nets 72

7.3.1 Generating reachable states . 75

iv

7.3.2 CTL model checking . 76

8 Linear Temporal Logic 77

8.1 LTL syntax . 77

8.2 LTL semantics . 77

8.3 Equivalences . 80

8.3.1 Negations . 80

8.3.2 Conjunctions and disjunctions . 81

8.3.3 Redundant nesting . 81

8.3.4 Recursion . 81

8.4 LTL model checking by tableau . 82

8.4.1 Building the tableau graph . 82

8.4.2 Model checking with the tableau graph: theory 84

8.4.3 Model checking with the tableau graph: algorithm 87

8.5 LTL model checking with Büchi Automata . 89

8.5.1 Büchi Automata . 89

8.5.2 Some important algorithms for Büchi Automata 92

8.5.3 LTL model checking . 97

8.6 Is a faster algorithm possible? . 107

8.6.1 Model checking Φ(¬,∧,F) . 107

8.6.2 Summary of other results . 109

8.7 Fairness . 109

9 CTL∗ 111

9.1 CTL∗ syntax . 111

9.2 CTL∗ semantics . 111

9.3 Expressive power of CTL, LTL, and CTL∗ . 112

9.4 Comparing CTL and LTL formulas . 113

9.5 CTL∗ model checking . 113

10 Review of Probability 115

10.1 Definition . 115

10.2 Probability axioms and properties . 115

10.3 Conditional probability . 117

10.4 Law of total probability . 117

10.5 Independence . 118

11 Review of Random Variables 121

11.1 Definition . 121

11.2 Discrete Random Variables . 123

11.2.1 Important discrete distributions . 124

11.2.2 Examples . 125

11.2.3 Expected value . 127

11.2.4 PDFs and CDFs . 128

11.3 Continuous Random Variables . 128

11.3.1 Important continuous distributions . 129

v

11.3.2 Expected value . 130

11.4 Independence . 131

12 Stochastic processes 133

12.1 Definition . 133

12.2 Markov processes . 134

13 Introduction to DTMCs 135

13.1 Example DTMCs . 136

13.1.1 Land of Oz . 136

13.1.2 A “birth–death” chain . 136

13.1.3 University graduation . 137

13.2 Transient analysis of DTMCs . 137

13.3 Multiplication on the right . 141

13.4 Storage of Markov chains . 142

14 DTMC properties 145

14.1 State classification for finite DTMCs . 145

14.2 Periodicity . 147

14.2.1 Definition and properties . 147

14.2.2 Algorithm to determine the period . 149

15 Ergodic DTMCs 151

15.1 Computing the steady–state distribution . 153

15.1.1 Power method . 153

15.1.2 Linear algebra . 154

15.2 Examples . 154

16 Absorbing DTMCs 157

16.1 Structure of absorbing DTMCs . 157

16.2 Fundamental matrix . 159

16.3 Expected number of visits to each state . 160

16.4 Computational considerations . 161

16.5 Limiting distribution . 163

II Advanced topics 165

17 Introduction to CTMCs 167

17.1 Intuitive meaning of the rates . 169

18 Analyzing CTMCs 173

18.1 Transient analysis . 173

18.1.1 Uniformization . 176

18.2 Irreducible CTMCs . 180

18.2.1 Argument 1 . 181

18.2.2 Argument 2 . 181

vi

18.2.3 Argument 3 . 181
18.3 Absorbing CTMCs . 183

18.3.1 Time spent in each transient state . 183
18.3.2 Probability of reaching each absorbing state 184

18.4 Reducible CTMCs and measures . 184

19 Stochastic Petri Nets 185
19.1 Extending Petri nets to include stochastic behavior 185

19.1.1 Pre-selection priorities . 185
19.1.2 Firing distributions . 185
19.1.3 Post-selection priorities . 186
19.1.4 Analysis . 186

19.2 Exponential firing times . 186
19.2.1 Multiple transitions between markings . 187
19.2.2 Self loops . 188
19.2.3 Measures . 188
19.2.4 Examples . 188

19.3 SPNs in Smart . 190

vii

viii

Part I

Core topics

1

Chapter 1

Introduction

1.1 Model taxonomy

We assume a “model” is a collection of “state variables” which are modified by “actions”. We can
characterize the following types of models:

Deterministic:

Actions are deterministic; no choices; nothing “random”.

Examples:

• Execution of (single–threaded) code, with no inputs.

• Turing machines with fixed input.

Typical questions:

• Can a certain (type of) state be reached?

• Can a certain action or actions occur?

• E.g., “Will the Turing machine halt?”

Non-deterministic:

There may be arbitrary choices between actions. Can be used to model an unknown “envi-
ronment” or user interactions.

Examples:

• Execution of (multi–threaded) code, with no inputs. (arbitrary choice of thread
interleavings)

• Execution of code with user interaction. (arbitrary choice of user keystrokes)

• Games of strategy, e.g., chess or checkers. (arbitrary choice for each player’s move)

• Puzzles, e.g., Rubik’s cube (arbitrary choice for which face to turn)

Typical questions:

• Is there a sequence of choices that will cause a certain (type of) state to be reached?

• Will a certain (type of) state be reached, or certain actions occur, regardless of
choices?

3

• E.g., “will the program halt regardless of user input”

• E.g., “will 2 threads modify a file simultaneously (regardless of thread interleaving)”

• E.g., “if a thread wants to enter critical section, will it eventually be able to do so?”

• Can a certain state be reached, regardless of choices for some subset of actions?

• E.g., “can I win regardless of the other player’s choice of moves?”

Stochastic (and deterministic):

Choices between actions are resolved by “random choice” or “random time” to execute actions.

Examples:

• Random inputs to deterministic algorithms

• Randomized algorithms

• Games of chance with no strategy. (Roulette, craps)

• Failure / repair models: failure times are “random”, repair times are “random”

Typical questions:

• Probability of reaching a certain state “eventually”

• E.g., “what is the probability to win craps?”

• Probability of reaching a certain state by a given time

• E.g., “what is the probability of a deadlock before 100 hours?”

• Expected time to reach a state, execute an action

• E.g., “what is the expected time of system failure?”

• Other performance queries

• E.g., “what is the average number of requests processed per second?”

Stochastic and nondeterministic:

The model contains both “random choices” and “nondeterministic choices”.

Examples:

• Games of chance with strategy. (Backgammon, Parcheesi, Monopoly)

Typical questions:

• Probability or performance, based on a given strategy.

• E.g., “If both players make optimal choices, what is the probability to win?”

• Find a strategy to optimize a performance measure.

• E.g., “what strategy will give me the best chance to win?”

We will spend most of our time discussing “nondeterministic” and “stochastic” models, but
not mixed. Note that “deterministic” is a special case of both: deterministic is equivalent to
“nondeterministic where there is always at most one choice” and to “stochastic where random
choices are not really random”.

Also, we will focus on models with

• Discrete states (e.g., all state variables are integers)

• Actions occur at discrete time instances (rather than continuously). Continuous actions (e.g.,
rocket flight, aerodynamics, weather) typically require differential equations.

4

1.2 Model construction and analysis

One way to study a system is to build a model and analyze it “from scratch” each time, e.g.,
following the algorithm given by Leemis and Park from Simulation class:

1. Determine the goals and objectives of analysis. Can be queries about a specific system
(e.g., want to know mean time until failure, is a deadlock possible). Can be design questions
(e.g., how many redundant components are needed to keep the expected time until failure
above 1000 hours).

2. Build a conceptual model. Typically an informal diagram. Model must be detailed enough
to meet objectives in first step. But, too much detail leads to unnecessary complexity. Need
to determine the important state variables.

3. Build a specification model. Fill in all the details of the conceptual model (usually requires
much more information). E.g., machine failure times are “random”, what is the distribution?
E.g., threads use a locking protocol to prevent simultaneous writes; what are the details of
the protocol?

4. Build a computational model. I.e., write a computer program to analyze the specification
model. In ComS 555, this was a simulation, based on empirical probability measurements
and generating random variates. In this class: numerical analysis of the underlying stochastic
process, and/or model checking.

5. Verify. Make sure the computational model matches the specification model. In other words,
debug your program.

6. Validate. Is the computational / specification model an accurate representation of reality?
(Can compare results against the real system if it exists.)

The above approach may require several iterations.
The most expensive steps are implementation and debugging. For this class, we will instead

develop a general–purpose implementation that must be debugged only once. Thus, the program
must be able to read a specification model. As such, we need:

A specification “language” for models. These may differ slightly based on the type of model
(i.e., stochastic or nondeterministic). These are typically called “modeling formalisms”.

A specification “language” for queries. We need to express the quantities of interest (e.g., “is
a deadlock possible”, “what is the probability of a deadlock before time 1000”) in a formal
way.

So, we want a tool that takes a model and queries as input, and gives the answers as output.

5

6

Chapter 2

Review of Propositional Logic

2.1 Syntax

Propositional logic consists of

• propositional constants

tt (true)
ff (false)

• propositional variables

• operators

¬ : negation
∧ : conjunction (and)
∨ : disjunction (or)
→ : conditional (implies)
↔ : biconditional (if and only if)

• complex formulas of the form

f ::= constant | variable | ¬f | f ∧ f | f ∨ f | f→ f | f↔ f

2.2 Semantics

Operators can be defined by specifying, for all possible operands, the result of the operator on
those operands. Truth tables are a natural way to do this. Truth tables may also be used to prove
properties about complex formulas (this is a form of “proof by exhaustive enumeration”).

2.2.1 Negation

The negation operator inverts the truth value of its operand:

a ¬a
ff tt

tt ff

The negation operator has highest precedence.

7

2.2.2 Conjunction

The conjunction of two formulas is true if and only if both of the formulas evaluate to true:

a b a ∧ b
ff ff ff

ff tt ff

tt ff ff

tt tt tt

Note that the conjunction operator commutes.

2.2.3 Disjunction

The disjunction of two formulas is true if and only if at least one of the formulas evaluates to true:

a b a ∨ b
ff ff ff

ff tt tt

tt ff tt

tt tt tt

Note that the disjunction operator commutes.

2.2.4 Conditional

The conditional, or implication, operator is used to express statements of the form, “if A then B”.
The operator is defined as:

a b a→ b

ff ff tt

ff tt tt

tt ff ff

tt tt tt

Note that a → b evaluates to true when a evaluates to false. Also, note that this operator does
not commute.

2.2.5 Biconditional

The biconditional operator is used to express equivalence, or “if and only if”. The operator is
defined as:

a b a↔ b

ff ff tt

ff tt ff

tt ff ff

tt tt tt

Note that the biconditional operator commutes.

8

2.3 Manipulating formulas

It is possible to express a formula in several different ways. To check if two formulas are equivalent,
one sure method is to generate the truth tables for the two formulas: the formulas are equivalent
if and only if the truth tables are identical. In practice, this can be done only for formulas with a
few variables.

Property 2.1

a→ b ≡ (a ∧ b) ∨ ¬a ≡ ¬a ∨ b

Proof: construct the truth table

a b a→ b (a ∧ b) ∨ ¬a ¬a ∨ b
ff ff tt tt tt

ff tt tt tt tt

tt ff ff ff ff

tt tt tt tt tt

Property 2.2

¬(a→ b) ≡ a ∧ ¬b

Property 2.3

a↔ b ≡ (a ∧ b) ∨ (¬a ∧ ¬b)

Proof: construct the truth table

a b a↔ b (a ∧ b) ∨ (¬a ∧ ¬b)
ff ff tt tt

ff tt ff ff

tt ff ff ff

tt tt tt tt

Formulas can be manipulated just like algebraic expressions, where operator ∧ acts like mul-
tiplication, and operator ∨ acts like addition. However, there are several extra rules that may be
used to simplify or manipulate logic formulas; these are listed below.

¬¬x ≡ x

x ∧ ff ≡ ff x ∨ ff ≡ x
x ∧ tt ≡ x x ∨ tt ≡ tt

x ∧ x ≡ x x ∨ x ≡ x
x ∧ ¬x ≡ ff x ∨ ¬x ≡ tt

¬(a ∧ b) ≡ ¬a ∨ ¬b a ∧ b ≡ ¬(¬a ∨ ¬b)
¬(a ∨ b) ≡ ¬a ∧ ¬b a ∨ b ≡ ¬(¬a ∧ ¬b) (De Morgan’s Laws)

All of these are simple to prove using truth tables.

9

Example 2.1

Prove a↔ b ≡ (a→ b) ∧ (b→ a).

Solution:

(a→ b) ∧ (b→ a) ≡
(

(a ∧ b) ∨ ¬a
)
∧
(

(b ∧ a) ∨ ¬b
)

≡ (a ∧ b) ∧ (b ∧ a) ∨ (a ∧ b) ∧ ¬b ∨ ¬a ∧ (b ∧ a) ∨ ¬a ∧ ¬b
≡ (a ∧ b) ∨ ff ∨ ff ∨ ¬a ∧ ¬b
≡ (a ∧ b) ∨ (¬a ∧ ¬b)
≡ a↔ b (from Property 2.3)

2.4 Adequate sets of operators

Note that some operators may be expressed in terms of other operators. For example, the bicon-
ditional operator can be expressed in terms of conjunction and conditional operators. Thus, the
biconditional operator does not add any expressive power to propositional logic. An adequate set
of operators is a (minimal) set that is powerful enough to express any formula. Often, logics are
defined in terms of an adequate set.

Example 2.2

Propositional logic may be defined as

f ::= tt | variable | ¬f | f ∧ f |

because {¬,∧} is an adequate set for propositional logic:

ff ≡ ¬tt
a ∨ b ≡ ¬(¬a ∧ ¬b)
a→ b ≡ (a ∧ b) ∨ ¬a ≡ ¬

(
¬(a ∧ b) ∧ a

)
a↔ b ≡ (a ∧ b) ∨ (¬a ∧ ¬b) ≡ ¬

(
¬(a ∧ b) ∧ ¬(¬a ∧ ¬b)

)

2.5 Satisfiability

The Satisfiability problem, or SAT, may be expressed as follows.

Given a formula over propositional variables, determine if it is possible to assign values
to the variables so that the entire formula evaluates to true.

This problem is well–known to be NP–complete. All known algorithms that solve this problem have
worst–case running times that are at least exponential in the number of propositional variables.
However, many SAT solver tools work quite well in practice.

10

Chapter 3

Introduction to model checking

The idea behind model checking is as follows. Given

• a model of the system, specified via some formalism; and

• properties of the system, specified via some logic;

determine whether the model satisfies the properties. We begin with a basic, “low–level” formalism
for describing systems. We will discuss logics starting in the next chapter.

3.1 Kripke structures

A Kripke structure is a formalism that consists of a directed graph, where graph vertices represent
states of the system and graph edges represent transitions, along with propositions that may or
may not hold depending on the current state of the system. Formally, we have the following.

Definition 3.1 A Kripke structure is a tuple M = (S,S0,R, L) where

• S is a finite set of states;

• ∅ ⊂ S0 ⊆ S is the set of initial states;

• R ⊆ S × S is the transition relation, such that each state has at least one outgoing edge:
∀s ∈ S,∃(s, s′) ∈ R for some s′ ∈ S;

• L : S → 2P is a labeling function, where L(s) gives the subset of propositions P that hold in
state s.

Example 3.1

As an example, consider the following simple CD player. There are three buttons:

1. open / close

2. stop

3. play

We can model this using a Kripke structure with:

11

• S = {s0, s1, s2, s3} with

– s0: the tray is closed, without a CD

– s1: the tray is open

– s2: the tray is closed, with a CD, stopped

– s3: the tray is closed, with a CD, playing

• S0 = {s0}
• R = {(s0, s0), (s0, s1), (s1, s0), (s1, s2), (s2, s1), (s2, s2), (s2, s3), (s3, s1), (s3, s2), (s3, s3)}
• Propositions P = {p, q, r} with

– p : playing

– q : tray is closed with a CD

– r : tray is open

• Labeling:

– L(s0) = {}
– L(s1) = {r}
– L(s2) = {q}
– L(s3) = {p, q}

Normally, Kripke structures are drawn. We can do this by drawing the graph, indicating the
start states, and indicating L() beneath each state. Alternatively, when state names are unim-
portant, L(s) can be drawn inside the graph vertex for state s. We will usually specify Kripke
structures by drawing them in either of these ways.

Example 3.2

We can draw the Kripke structure for the CD player from Example 3.1:

s0 s1 s2 s3

r q p, q

Definition 3.2 A path in a Kripke structure M = (S,S0,R, L) is an infinite sequence of states
π = (p0, p1, p2, . . .) ∈ Sω such that

∀i ≥ 0, (pi, pi+1) ∈ R.

Example 3.3

For the Kripke structure for the CD player from Example 3.1, π = (s0, s1, s1, s2, . . .) is
not a path in the Kripke structure, because (s1, s1) 6∈ R. π = (s3, s3, s2, s1, s2, s2, s1, s0, s1, s0, s0, . . .)
is a path in the Kripke structure1.

1Technically it is the prefix of a path, because I did not write out infinitely many states.

12

3.2 Image operations

Two fundamental computations that we will need for Kripke structures are pre-image and post-
image.

Pre-image: Given a set of states X ⊆ S, representing possible states of the system, “now”. The
Pre-image of X is the set of possible states for the system, “previously” (one step prior to
the current state). Formally, we have

PreImage(X ,R) = {s : ∃s′ ∈ X , (s, s′) ∈ R}

Post-image: Given a set of states X ⊆ S, representing possible states of the system, “now”.
The Post-image of X is the set of possible states for the system, after the next transition.
Formally, we have

PostImage(X ,R) = {s′ : ∃s ∈ X , (s, s′) ∈ R}

Whatever data structures we use to represent the Kripke structure and sets of states, will need to
support these computations efficiently.

Example 3.4

For the CD player from Example 3.1, consider X = {s0, s1}. The pre-image of X is
{s0, s1, s2, s3}, and the post-image of X is {s0, s1, s2}.

3.3 Internal representation

For practical models, the Kripke structure can be very large (millions of states is not uncommon).
A typical representation uses

• an efficient graph data structure for representing R, and

• an efficient data structure for representing subsets of S,

where subsets of S are used to encode the labeling function L.

3.3.1 Graph representation

For now we will consider only the “classical” graph data structures.

Adjacency matrix:

• Large Kripke structures are usually quite sparse, so a matrix representation is normally not
used.

• The adjacency matrix is useful for describing operations. More on this, later.

13

Adjacency list:

• We can use a straightforward linked list for the outgoing edges from each state, while building
the Kripke structure.

• Once the Kripke structure is complete, it often makes sense to convert to a more compact
(less dynamic) representation.

Example 3.5

For the CD player from Example 3.1, using a linked list to store the outgoing edges for
each state gives the following data structure.

s0

s1

s2

s3

s0 s1

s0 s2

s2 s3

s2 s3s1

s1

The storage requirement is |S|+ |R| pointers, and |R| integers (state indexes).

Example 3.6

The data structure in Example 3.5 can be compacted into a less dynamic structure by
replacing each linked list with a null–terminated array, as follows.

s0

s1

s2

s3 s1 s2 s3 ⊥

s1 s2 s3 ⊥

s0 s2 ⊥

s0 s1 ⊥

The storage requirement is |S| pointers, and |S| + |R| integers (state indexes). With
this data structure, it is more difficult to add new edges.

Example 3.7

The separate arrays from Example 3.6 can be merged into a single array, and the pointers
for each state can be replaced by array offsets, giving us the following data structure.

s0 s1 s2 s3

s1 s2 s3 ⊥s1 s2 s3 ⊥s0 s2 ⊥s0 s1 ⊥

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 3 6 10

14

The storage requirement is |S| array offsets, and |S|+ |R| integers (state indexes). With
this data structure, it is even more difficult to add new edges.

Example 3.8

Looking at the data structure from Example 3.7, we notice that the “⊥” sentinels serve
only to indicate the end of a list. However, since the next list starts immediately after,
it is possible to know the end of a list without using sentinels, as follows.

s0 s1 s2 s3

s1 s2 s3s1 s2 s3s0 s2s0 s1

0 1 2 3 4 5 6 7 8 9 10

7420 10
offset:

Since list i ends just before list i + 1 begins, we have that list i runs from offset [i] to
offset [i+ 1]− 1. The storage requirement here is |S|+ 1 array offsets, and |R| integers
(state indexes). This is known as compressed sparse row format.

3.3.2 Subset representation

To store a subset of S, in practice2 we need a way to store subsets of the integers {0, 1, . . . , |S|−1}.
There are two straightforward ways to store X ⊆ S (we will look at more advanced structures
later).

• Use some dictionary structure or list of elements; this requires O(|X |) storage. If we simply
use a null–terminated array, then |X |+ 1 integers are required.

• Use an array x where

x[i] =

{
1 iff i ∈ X
0 otherwise

Using a straightforward implementation (for example, an array of type bool or char), this
requires |S| bytes. However, with a more sophisticated implementation (using bitwise opera-
tors) we can “pack” the array and get a requirement of |S| bits.

For model checking, the sets X can be quite large (close or equal to S in size), in part because set
complementation is a common operation. A vector of bits is more efficient when

|S| < |X | · (number of bits for an integer)

which happens frequently.

2If states have significant names, then we should use a data structure that gives an efficient mapping from S to
{0, 1, . . . , |S| − 1}.

15

3.4 Matrix descriptions

Let E be the adjacency matrix for a Kripke structure, where E[i, j] is one if and only if (i, j) ∈ R.
Let x,y be vectors of bits representing X and Y, subsets of S, where x[i] is one iff i ∈ X , and y[j]
is one iff j ∈ Y. Then we have

Y = PreImage(X ,R) = {s : ∃s′ ∈ X , (s, s′) ∈ R}
Y = {i : ∃j,E[i, j]x[j] 6= 0}

y[i] =

{
1 if

∑
j E[i, j]x[j] > 0

0 otherwise

If we treat multiplication as conjunction and addition as disjunction, and use 0 for ff and 1 for tt,
then we obtain

y[i] =

{
1 if

∑
j E[i, j]x[j] > 0

0 otherwise

y[i] = E[i, •] · x
where E[i, •] is the vector corresponding to row i of E, and “·” denotes vector dot product (using
conjunction and disjunction, instead of multiplication and addition). But this gives us

y = Ex (3.1)

as a concise way to describe the pre-image operation.
Similarly, for post-image, we have

Y = PostImage(X ,R) = {s′ : ∃s ∈ X , (s, s′) ∈ R}
Y = {j : ∃i,x[i]E[i, j] 6= 0}

y[j] =

{
1 if

∑
i x[i]E[i, j] > 0

0 otherwise

y[j] = x ·E[•, j]
y = xE (3.2)

where E[•, j] is the vector corresponding to column j of E.

Example 3.9

For the CD player from Example 3.1, compute the pre-image of X = {s0, s1}.

Set X corresponds to vector x = [1, 1, 0, 0]. Using the matrix–vector multiplication
operation, we have

y =


1 1 0 0
1 0 1 0
0 1 1 1
0 1 1 1

 ·


1
1
0
0



= 1 ·


1
1
0
0

+ 1 ·


1
0
1
1

+ 0 ·


0
1
1
1

+ 0 ·


0
0
1
1

 =


1
1
1
1


16

Therefore, the pre-image of X is {s0, s1, s2, s3}.

Example 3.10

For the CD player from Example 3.1, compute the post-image of X = {s0, s1}.

Using the vector–matrix multiplication operation, we have

y = [1, 1, 0, 0] ·


1 1 0 0
1 0 1 0
0 1 1 1
0 1 1 1


= 1 · [1, 1, 0, 0] + 1 · [1, 0, 1, 0] + 0 · [0, 1, 1, 1] + 0 · [0, 1, 1, 1]

= [1, 1, 1, 0]

Therefore, the post-image of X is {s0, s1, s2}.

17

18

Chapter 4

Computation Tree Logic

Computation Tree (Temporal) Logic (CTL) is also known as Branching Time Temporal Logic. It
is a popular logic for expressing properties, partly because it is powerful enough to be useful, but
weak enough that its model checking algorithms are simple to implement. We will discuss CTL as
applied to Kripke structures; later we will use different types of models.

4.1 CTL syntax

CTL formulas are state formulas, meaning we can determine if they hold or not for each state. A
state formula φ in CTL has the form:

φ ::= tt | ff | p | ¬φ | φ ∧ φ | φ ∨ φ | AXφ | EXφ

| AFφ | EFφ | AGφ | EGφ | A (φ U φ) | E (φ U φ)

where p ∈ P is an atomic proposition. Operators A and E are path quantifiers:

• A: “for all paths”,

• E: “for at least one path (there exists a path)”.

Operators X, F, G, and U are temporal operators:

• X: “in the neXt state”,

• F: “in a Future state” (existential),

• G: “in all states (Globally)” (universal),

• U: “Until”

Note that according to CTL syntax, the path quantifiers and temporal operators must be paired
together. For example, AX p is a valid CTL formula, but AGX p and AFGX p are not valid CTL
formulas. AX p means “for all paths, the next state satisfies p”.

19

4.2 CTL semantics

We must give the rules for which states in a Kripke structure M = (S,S0,R, L) satisfy a CTL state
formula φ. If a state s ∈ S satisfies φ, we write

M, s |= φ

although often the model M is omitted (if there is only one model, for instance). We write

M, s 6|= φ

if state s does not satisfy φ. We give the rules for each type of formula in the syntax:

1. M, s |= tt, for all s ∈ S

2. M, s 6|= ff, for all s ∈ S

3. M, s |= p, if and only if p ∈ L(s)

4. M, s |= ¬φ, if and only if M, s 6|= φ

5. M, s |= φ1 ∧ φ2, if and only if M, s |= φ1 and M, s |= φ2

6. M, s |= φ1 ∨ φ2, if and only if M, s |= φ1 or M, s |= φ2

7. M, s |= AXφ, if and only if, for all paths (s, p1, p2, . . .), M,p1 |= φ.

8. M, s |= EXφ, if and only if, there exists a path (s, p1, p2, . . .) such that M,p1 |= φ.

9. M, s |= AFφ, if and only if, for all paths (p0, p1, p2, . . .) with p0 = s, there exists an i ≥ 0
such that M,pi |= φ.

10. M, s |= EFφ, if and only if, there exists a path (p0, p1, p2, . . .) with p0 = s, and an i ≥ 0 such
that M,pi |= φ.

11. M, s |= AGφ, if and only if, for all paths (p0, p1, p2, . . .) with p0 = s, we have M,pi |= φ for
all i ≥ 0.

12. M, s |= EGφ, if and only if, there exists a path (p0, p1, p2, . . .) with p0 = s, such that M,pi |= φ
for all i ≥ 0.

13. M, s |= Aφ1 Uφ2, if and only if, for all paths (p0, p1, p2, . . .) with p0 = s, there exists an i ≥ 0
such that

(a) M,pi |= φ2, and

(b) M,pj |= φ1, for all 0 ≤ j < i

14. M, s |= Eφ1 Uφ2, if and only if, there exists a path (p0, p1, p2, . . .) with p0 = s, and an i ≥ 0
such that

(a) M,pi |= φ2, and

(b) M,pj |= φ1, for all 0 ≤ j < i

20

Finally, we say that the model satisfies a formula if all (or some) of its starting states satisfy the
formula:

M |= φ ⇔ ∀s ∈ S0, M, s |= φ

where M = (S,S0,R, L) is the Kripke structure.

Example 4.1

Recall the CD player Kripke structure from Example 3.1:

s0 s1 s2 s3

r q p, q

For this model, does state s2 satisfy:

1. EX q ?

2. AX q ?

3. EF (¬r ∧ ¬q) ?

4. AF r ?

5. E pU q ?

6. E qU r ?

7. A qU r ?

Solutions

1. EX q: Yes, because there exists a path of the form (s2, s3, . . .) and s3 |= q.

2. AX q: No, because there is some path that starts with s2, where q does not hold
in the next state. Specifically, a path of the form (s2, s1, . . .) has s1 6|= q.

3. EF (¬r∧¬q): Yes, because using path (p0 = s2, p1 = s1, p2 = s0, . . .) and i = 2, we
have pi |= (¬r ∧ ¬q).

4. AF r: No. Consider the path (p0 = s2, p1 = s2, p2 = s2, . . .). For this path, there
does not exist a j such that pj |= r.

5. E pU q: Yes. Using path (p0 = s2, . . .) and i = 0, we have

• p0 |= q, and

• pj |= p, for all 0 ≤ j < 0.

6. E qU r: Yes. Using path (p0 = s2, p1 = s1, . . .) and i = 1, we have

• p1 |= r, and

• pj |= q, for all 0 ≤ j < 1.

7. A qU r: this looks promising, because any path that starts in s2 and ends up in s1
will satisfy q until s1 is reached. However, consider the path (p0 = s2, p1 = s2, p2 =
s2, . . .). There is no such i where

• pi |= r, and

• pj |= q, for all 0 ≤ j < i.

The second condition holds for any i, but not the first.

21

4.3 Translating English to CTL

English is not a formal language, so it does not make sense to write an algorithm to convert from
English to CTL. However, there are common English patterns that can be mapped to CTL. Here
are several useful examples.

1. “The system never reaches a deadlocked state”

AG ¬deadlocked

Technically, the above property is “the system always remains in a non-deadlocked state”.

2. “Is it possible to reach a state where condition C holds?”

EF C

Putting the first two together, we might have. . .

3. “Is it possible to reach a state from which the system never deadlocks?”

EF AG ¬deadlocked

Putting the first two together in the opposite order, we might have. . .

4. “It is always possible to reach a deadlocked state.”

AG EF deadlocked

5. “The system will eventually reach a deadlocked state, and remain deadlocked.”

AF AG deadlocked

6. “Condition C holds infinitely often.”

AG AF C

7. “Whenever we reach a state where condition B holds, we eventually reach a state where
condition C holds.”

AG (B → AF C)

Note that we effectively rewrote the original statement as “For every state, if condition B
holds, then we eventually reach a state where condition C holds.”

8. “Once condition B holds, it holds until condition C holds (and C must eventually hold).”

AG (B → AB UC)

9. “Whenever condition B holds, condition C holds after 2 or more steps.”

AG (B → AX AX AF C)

22

4.3.1 Safety properties

A safety property is one that specifies that some undesired behavior never happens. For example,
in a system of traffic lights, we would like to be sure that lights are never simultaneously green for
northbound and westbound traffic. Safety properties can be expressed easily in CTL.

Example 4.2

The property

¬EF(north green ∧ west green)

says that, it is not possible to eventually reach a state where the northbound and
westbound lights are both green.

4.3.2 Liveness properties

A liveness property is one that specifies that some desired behavior eventually happens. For
example, in a system of traffic lights, we would like to be sure that the northbound traffic will
eventually get a green light. Furthermore, we might like this to always be the case. Liveness
properties of various strengths can be expressed in CTL.

Example 4.3

The property

AG AF north green

says that, from every state, we will always eventually reach a state where the northbound
light is green.

Example 4.4

The property

AG EF north green

says that, from every state, it is always possible to reach a state where the northbound
light is green.

4.4 Equivalences

As with propositional logic, some properties may be expressed in several different ways in CTL.
Given a Kripke structure M and a property to express, sometimes the structure of M itself in-
troduces equivalences. In this section, we discuss formulas that are equivalent in CTL, for any
Kripke structure. We can manipulate CTL formulas in the same way that we did propositional
logic formulas. To prove that formula φ1 is equivalent to formula φ2, we must show that, for any
Kripke structure M and any state s, M, s |= φ1 if and only if M, s |= φ2. Conversely, to show that
formulas φ1 and φ2 are not equivalent, it is sufficient to find a Kripke structure M and a state s
such that M, s |= φ1 and M, s 6|= φ2.

23

Property 4.1

¬EXφ ≡ AX¬φ

Proof:

M, s |= ¬EXφ ⇔ M, s 6|= EXφ

⇔ 6 ∃π = (s, p1, . . .), M, p1 |= φ

⇔ ∀π = (s, p1, . . .), M, p1 6|= φ

⇔ ∀π = (s, p1, . . .), M, p1 |= ¬φ
⇔ M, s |= AX¬φ

Property 4.2

¬EFφ ≡ AG¬φ

Proof:

M, s |= ¬EFφ ⇔ M, s 6|= EFφ

⇔ 6 ∃ i, π = (p0 = s, p1, p2, . . .), M, pi |= φ

⇔ ∀π = (p0 = s, p1, p2, . . .), M, pi 6|= φ,∀i
⇔ ∀π = (p0 = s, p1, p2, . . .), M, pi |= ¬φ,∀i
⇔ M, s |= AG¬φ

Property 4.3

¬EGφ ≡ AF¬φ

Proof:

M, s |= ¬EGφ ⇔ M, s 6|= EGφ

⇔ 6 ∃π = (p0 = s, p1, p2, . . .), M, pi |= φ ∀i
⇔ ∀π = (p0 = s, p1, p2, . . .), ∃i, M, pi 6|= φ

⇔ ∀π = (p0 = s, p1, p2, . . .), ∃i, M, pi |= ¬φ
⇔ AF¬φ

Property 4.4

E ttUφ ≡ EFφ

Property 4.5

A ttUφ ≡ AFφ

Property 4.6

¬Aφ1 Uφ2 ≡ E((φ1 ∧ ¬φ2) U (¬φ1 ∧ ¬φ2)) ∨ EG¬φ2

24

Property 4.7

φ ∨ EX EFφ ≡ EFφ

Proof:

M, s |= φ ∨ EX EFφ ⇔ M, s |= φ ∨ M, s |= EX EFφ

⇔ M, s |= φ ∨ ∃π = (s, p1, . . .), M, p1 |= EFφ

⇔ M, s |= φ ∨ ∃π = (s, p1, . . .),∃i, π′ = (p′0 = p1, p
′
1, p
′
2, . . .), M, p′i |= φ

⇔ M, s |= φ ∨ ∃i, π = (s, p′0, p
′
1, . . .), M, p′i |= φ

⇔ ∃i, π = (p0 = s, p1, . . .), M, pi |= φ

⇔ M, s |= EFφ

Property 4.8

φ ∨ AX AFφ ≡ AFφ

Property 4.9

φ ∧ EX EGφ ≡ EGφ

Property 4.10

φ ∧ AX AGφ ≡ AGφ

Property 4.11

φ2 ∨ (φ1 ∧ EX Eφ1 Uφ2) ≡ Eφ1 Uφ2

Property 4.12

φ2 ∨ (φ1 ∧ AX Aφ1 Uφ2) ≡ Aφ1 Uφ2

Example 4.5

Is the formula EX(p ∧ q) equivalent to (EX p) ∧ (EX q)?

Solution: It is easy to show that EX(p ∧ q) → (EX p) ∧ (EX q). However, the reverse
is not true. Consider the following Kripke structure:

p q

Clearly, both EX p and EX q hold in the initial state, but EX(p ∧ q) does not.

25

4.4.1 Adequate sets of operators for CTL

From the above properties, and from the adequate sets for propositional logic, we see that the
following operations are adequate to express all CTL formulas:

1. ¬

2. ∧

3. AX or EX

4. EG or AF

5. EU (meaning, Eφ1Uφ2)

4.5 Algorithms for CTL operators

To automatically determine the set of states that satisfy an arbitrary CTL state formula φ, we
need algorithms for all of the CTL operators. These are sometimes called labeling algorithms. For
example, if we know which states are labeled with φ1, and which states are labeled with φ2, then
we need an algorithm to label states satisfying φ = φ1 ∧ φ2. We will discuss algorithms only for
some operators (namely, the adequate ones: ¬,∧,AX,EX,AF,EG,EU).

4.5.1 Labeling for ¬
There is a trivial algorithm for ¬: given the labeling for φ1, we can determine the labeling for
φ = ¬φ1 as follows:

For each state s, label s with φ if and only if s is not labeled with φ1.

Complexity is O(|S|).

4.5.2 Labeling for ∧
There is also a simple algorithm for labeling φ = φ1 ∧ φ2:

For each state s, label s with φ if and only if s is labeled with both φ1 and φ2.

Complexity is O(|S|).

4.5.3 Labeling for AX

We can label φ = AXφ1 using the following algorithm:

For each state s, label s with φ if and only if every successor of s (i.e., all states s′ with
(s, s′) ∈ R) is labeled with φ1.

Complexity is O(|S|+ |R|).

26

4.5.4 Labeling for EX

We can label φ = EXφ1 using an algorithm similar to the one for AX:

For each state s, label s with φ if and only if some successor of s is labeled with φ1.

Using preimage

Note that this algorithm is exactly the pre-image operation. Thus, if bit vector x has entries where
x[i] is one if and only if state i is labeled with φ1, then the bit vector y given by

y = Ex

where E is the adjacency matrix corresponding toR, has entries one for states labeled with φ. Com-
plexity is O(|S|+ |R|); to obtain this complexity using Ex, a suitable matrix–vector multiplication
algorithm must be used (one that exploits the fact that E is sparse).

4.5.5 Labeling for AF

We can label φ = AFφ1 using an algorithm based on Property 4.8:

1. Any state labeled with φ1 is also labeled with φ.

2. If all successors of state s are labeled with φ, then label s with φ

3. Repeat step (2) until no more changes are possible.

Note that the algorithm is guaranteed to eventually terminate, since at most |S| states can be
labeled. This algorithm, if implemented cleverly, has a complexity of O(|S|+ |R|).

Example 4.6

Compute the labeling for φ = AF p for the following Kripke structure:

s1 s2 s3

s4 s5

p

s6

p

s0

Solution: Using the algorithm, in step (1) we label s3 and s6 with φ. In step (2),
we can label s5 with φ. There was a change, so we repeat. In step (2), we can label
s2 with φ. There was a change, so we repeat. But no more states have all their
successors labeled with φ, so the algorithm terminates. We therefore have that the
states {s2, s3, s5, s6} satisfy AF p.

Verify: States s3 and s6 satisfy p, so they trivially satisfy AF p. State s5 has only one
possible path, and state s2 has only two possible paths, both of which eventually reach
a state satisfying p. But what about the other states? State s4 has a self loop, and
therefore there exists a path, namely (s4, s4, s4, . . .) that never reaches a state satisfying
p. Similarly, states s0 and s1 can loop forever and never reach a state satisfying p.

27

4.5.6 Labeling for EG — iterative algorithm

We can label φ = EGφ1 using an algorithm based on Property 4.9:

1. Any state labeled with φ1 is labeled with φ.

2. If no successors of state s are labeled with φ, then remove the φ label from state s.

3. Repeat step (2) until no more changes are possible.

Note that the algorithm will eventually terminate, since in step 2 we are only removing labels from
states, and there are only finitely many states. Also, note that this is essentially the opposite of
the algorithm for AF.

Example 4.7

Compute the labeling for φ = EG¬p for the following Kripke structure:

s1 s2 s3

s4 s5

p

s6

p

s0

Solution: Using the algorithm, in step (1) we label s0, s1, s2, s4, and s5 with φ. In step
(2), we remove label φ from s5, since none of its successors are labeled with φ. There
was a change, so we repeat. In step (2), we remove label φ from s2. There was a change,
so we repeat. But the remaining states all have at least one successor labeled with φ, so
the algorithm terminates. We therefore have that the states {s0, s1, s4} satisfy EG¬p.
Verify: It is easy to see that, starting from states s0, s1, and s4, it is possible to
remain in states where p is not satisfied. This is not possible from states s2, s3, s5, and
s6.

Using preimage

We can rewrite the above algorithm in terms of the pre-image operation, as follows. Assume we
have a bitvector x that encodes the states satisfying φ1. Then we can build the bitvector y that
encodes the states satisfying φ = EGφ1 using the iteration

y0 = x

yn+1 = yn ∧ (Eyn)

and stopping when yn+1 = yn, and using y = yn. It can be shown that the iteration

y0 = x

yn+1 = x ∧ (Eyn)

produces exactly the same sequence of bitvectors. (Hint: yn is the set of all starting states from
which it is possible to find a path where the first n states on the path satisfy φ1.)

28

4.5.7 Labeling for EG — strongly connected components

Another algorithm for labeling φ = EGφ1 is based on the observation that, the only way an
infinitely–long path satisfying φ1 can occur is if there is a cycle of states satisfying φ1. The cycles
of states are determined using strongly–connected components (SCCs). Recall that a SCC is a
group of states such that, for any pair of states i and j in the SCC, there is a path from state i to
state j.

1. Create a graph M ′ by removing all states that do not satisfy φ1, and any edges associated
with those states. (Note: this might not be a Kripke structure, because it is possible for a
state to have no outgoing edges.)

2. Determine the SCCs for M ′.

3. For each SCC,

• if the SCC contains more than one state, then label all states in the SCC with φ

• if the SCC contains only one state, and the state has an edge to itself1, then label it
with φ.

4. Any state that can reach (in M ′) a state labeled with φ should also be labeled with φ.

There is an algorithm to determine all SCCs for a graph, with complexity O(|S|+ |R|). Thus, this
algorithm has complexity O(|S|+ |R|).
Example 4.8

Compute the labeling for φ = EG¬p for the following Kripke structure:

s1 s2 s3

s4 s5

p

s6

p

s0

Solution: Using the algorithm, in step (1) we build a new graph containing only the
states satisfying ¬p; this gives us:

s1 s2

s4 s5

s0

This graph has the following SCCs: {s0, s1}, {s2}, {s4}, {s5}. Following step (3) of the
algorithm, we label {s0, s1} and {s4} with φ. No new states are labeled in step (4);
therefore, the states {s0, s1, s4} satisfy EG¬p.
Verify: This is the same set as the previous example.

1This check is necessary because, the SCC algorithm will put every state into some SCC.

29

4.5.8 Labeling for EU

We can label φ = Eφ1 Uφ2 based on Property 4.11:

1. Any state labeled with φ2 is labeled with φ.

2. If state s is labeled with φ1, and some successor of s is labeled with φ, then label s with φ.

3. Repeat step (2) until no more changes are possible.

Since we never remove labels from states, the algorithm will eventually terminate, since S is finite.
This algorithm, if implemented cleverly (using a single graph traversal), has complexityO(|S|+|R|).

Example 4.9

Compute the labeling for φ = E pU q for the following Kripke structure:

s4s1 s2 s3

s6 s7

p

s8

p

s0

s5

p

s9

q q

p p

Solution: In step (1) of the algorithm, we label states s1 and s4 with φ, because
they satisfy q. Then, during the first iteration of step (2), we can label states s2 and
s6 with φ, because these states satisfy p and have a successor labeled with φ. In the
next iteration, we can label state s7 with φ. No more changes are possible after that;
therefore, the states {s1, s2, s4, s6, s7} satisfy E pU q.

Verify: From each of (and only) {s1, s2, s4, s6, s7}, there is a path that

• leads to2 a state satisfying q, and

• for every state on the path before q is satisfied, p is satisfied.

Using preimage

We can rewrite the above algorithm in terms of the pre-image operation. Suppose the bitvector p
encodes states satisfying p, and q encodes the states satisfying q. Then, we can build the bitvector
y satisfying φ = E pU q using the iteration

y0 = q

yn+1 = yn ∨ ((E · yn) ∧ p)

and stopping when yn+1 = yn, and using y = yn.

2Starting with a state satisfying q is also allowed.

30

4.6 Counter examples and witnesses

Suppose we have a Kripke structure, and we want to verify the property AG(¬deadlocked), but it
turns out the answer is “no”. Now what?

For debugging of the model or the underlying system, it would be nice to know “why not”. In
the case of this property, because we have

¬AG(¬deadlocked) ≡ EF deadlocked

we can see that the property does not hold because there exists a path that eventually reaches a
deadlocked state. Such a path is a called a counter example to the property AG(¬deadlocked). In
general, whenever an “A” property does not hold, then the corresponding “E” property holds and
can be used to give a counter example. Summarizing earlier properties, we have:

s 6|= AXφ → s |= EX¬φ
s 6|= AFφ → s |= EG¬φ
s 6|= AGφ → s |= EF¬φ
s 6|= Aφ1 Uφ2 → s |= EG¬φ2 ∨ s |= E (φ1 ∧ ¬φ2) U (¬φ1 ∧ ¬φ2)

What about “E” properties? If EGφ does not hold, can we give a counter example? This would
require us to show that AF¬φ holds, and in general we cannot give a single path to show this. For
“E” properties, an example path that satisfies the formula is called a witness. Thus, a witness for
EGφ is an example path where φ holds in every state, and is also a counter example for AF¬φ. We
therefore need witness generation algorithms for EX, EG, and EU.

4.6.1 Witnesses for EX

Given a state s |= EXφ, how do we generate a witness for EXφ that starts in state s? This is
trivial: check all successors of s for an s′ |= φ; the witness is a path (s, s′, . . .), where of course we
only display the “interesting” portion of the path.

4.6.2 Witnesses for EG

Given a state s |= EGφ, how do we generate a witness for EGφ that starts in state s? Note that
a witness will contain a cycle of states that satisfy φ; it suffices to terminate the displayed path
with such a cycle (preferably a minimal cycle), rather than displaying an infinitely–long path. The
SCC–based algorithm for labeling EG can inspire a witness generation algorithm. Consider the
graph M ′ obtained by removing all states that do not satisfy φ, and their incoming and outgoing
edges. If s has a self loop in this graph, then trivially (s, s, . . .) is a witness. If s belongs to a SCC
with at least 2 states, then from any successor s′ of s, there must exist a path in the graph from s′

to s. Find and display such a path (ideally, find a shortest path). Otherwise, find a path from s to
some state s′ that either contains a self loop or belongs to a SCC with at least 2 states. Note that
s′ |= EGφ. Display the path from s to s′, and then display a witness for EGφ that starts in state
s′.

Example 4.10

For the following Kripke structure, give a witness for EG¬p starting in state s0.

31

s1 s2 s3

s4 s5

p

s6

p

s0

Solution: From an earlier example, removing the states that do not satisfy ¬p gives
us the graph:

s1 s2

s4 s5

s0

Note that s0 belongs to the SCC {s0, s1}. Therefore, a witness is s0, followed by a path
in the graph from s1 (a successor of s0) to s0, which turns out to be trivial because
there is an edge from s1 to s0. This gives us the witness

(s0, s1, s0, . . .)

4.6.3 Witnesses for EU

Given a state s |= Eφ1 Uφ2, a witness for Eφ1 Uφ2 starting from s can be generated by finding a
path from s to a state satisfying φ2, along only states satisfying φ1. One way to do this is to find
a shortest path from s to a state satisfying φ2 in the graph obtained from the Kripke structure by
removing all states (and their incoming and outgoing edges) that do not satisfy Eφ1 Uφ2.

Example 4.11

For the following Kripke structure, give a witness for E pU q starting in state s2.

s4s1 s2 s3

s6 s7

p

s8

p

s0

s5

p

s9

q q

p p

Solution: From an earlier example, we know the set of states satisfying E pU q is
exactly {s1, s2, s4, s6, s7}; restricting the Kripke structure to these states gives us the
graph:

32

s4s1 s2

s6 s7

pq q

p p

Finding a shortest path from s2 to a state satisfying q (states s1 and s4) will generate
the path s2, s1; that gives us the witness

(s2, s1, . . .)

4.6.4 Nested formulas

Automatically generating a “complete” witness or counter example for a nested formula turns out
to be impossible in general.

For instance, suppose we generate a witness for a formula EGφ using the method discussed
above. That gives us a path where each state satisfies φ. But if φ is a complex formula, it might
not be obvious for each state that it satisfies φ. We should then generate witnesses for φ, starting
from each state used in the witness for EGφ. Unfortunately, this is not always possible: if φ contains
an “A” formula, then we cannot generate a witness for it.

However, in the case that a formula φ contains only E path quantifiers and holds for some state,
we can recursively generate witnesses. Similarly, if the formula contains only A path quantifiers
and does not hold, we can recursively generate counter examples.

4.7 Fixed points

In this section, we will discuss some of the theory behind the algorithms for the CTL operators.
We consider functions f of the form f : 2S → 2S , i.e., functions that take a set of states and return
a set of states.

Definition 4.13 A function f : 2S → 2S is called monotonic if

X ⊆ Y → f(X) ⊆ f(Y), ∀X ,Y ⊆ S

Example 4.12

For S = {s0, s1, s2, s3}, is the function f(X) = X ∪ {s0} monotonic?

Solution: This example is small enough to enumerate, but let’s try a proper proof
instead. For any sets X ,Y with X ⊆ Y, we must show that f(X) ⊆ f(Y):

f(X) = X ∪ {s0} ⊆ Y ∪ {s0} = f(Y)

Example 4.13

33

For S = {s0, s1, s2, s3}, the function

f(X) =

{
{s0} If s1 ∈ X
{s0, s1} Otherwise

is not monotonic, because ∅ ⊆ {s1} but f(∅) = {s0, s1} is not a subset of f({s1}) = {s0}.

Property 4.14 The function fR(X) = PreImage(X ,R) is monotonic.

Proof: Suppose X ⊆ Y, and consider s ∈ fR(X). Then there must exist some s′ ∈ X such that
(s, s′) ∈ R. But X ⊆ Y, so we must have s′ ∈ Y also. This implies s ∈ fR(Y).

Definition 4.15 For any function f : 2S → 2S , X is a fixed point of f if f(X) = X .

Example 4.14

For the monotonic function f(X) = X ∪ {s0}, there are several fixed points, including

f({s0, s1}) = {s0, s1}
f(S) = S

Definition 4.16 For any function f : 2S → 2S , define fn, for n ≥ 0, inductively as

f0(X) = X
fn+1(X) = f(fn(X))

Property 4.17 (Tarski–Knaster Theorem) If f is monotonic over 2S , where |S| = n, then

1. fn(∅) is the least fixed point of f

2. fn(S) is the greatest fixed point of f

Proof: Since ∅ ⊆ X for any X , we have

∅ ⊆ f(∅)
f(∅) ⊆ f(f(∅)) because f is monotone

...

f i(∅) ⊆ f i+1(∅) ∀i

Because S is finite, there exists a j ≥ 0 such that f j(∅) = f j+1(∅), and we have

f0(∅) ⊂ f1(∅) ⊂ f2(∅) ⊂ · · · ⊂ f j(∅) = f j+1(∅) = f j+2(∅) = · · ·

Furthermore, we know j ≤ n. Therefore, f(fn(∅)) = fn(∅), and fn(∅) is a fixed point. Now we
must show that it is the least fixed point. Consider any fixed point X . Then we have

∅ ⊆ X
f(∅) ⊆ f(X) = X

...

fn(∅) ⊆ X

and the proof of part (1) is complete. The proof for part (2) is similar.

34

Example 4.15

For the monotonic function f(X) = X ∪ {s0}, we have

f(∅) = {s0}
f({s0}) = {s0}

and therefore the least fixed point is {s0}. Similarly, since f(S) = S, the greatest fixed
point is S.

4.7.1 Sets satisfying CTL state formulas

Definition 4.18 For any CTL state formula φ, let

[[φ]]M denote the set of states in M satisfying φ

where the Kripke stucture M may be dropped if it is clear from context.

Using this notation, we can express the labeling algorithms in terms of the sets of states satis-
fying the formulas. For example, for Kripke structure M = (S,S0,R, L), we have:

• [[tt]]M = S

• [[ff]]M = ∅

• [[¬φ]]M = S \ [[φ]]M

• [[φ1 ∧ φ2]]M = [[φ1]]M ∩ [[φ2]]M

• [[φ1 ∨ φ2]]M = [[φ1]]M ∪ [[φ2]]M

• [[EXφ]]M = PreImage([[φ]]M ,R)

Now, define function aR : 2S → 2S as

aR(X) = {s : ∀(s, s′) ∈ R, s′ ∈ X}

and note that

• [[AXφ]]M = aR([[φ]]M).

Property 4.19 For any R, function aR is monotonic.

Proof: Suppose X ⊆ Y, and consider s ∈ aR(X). Then we must have ∀(s, s′) ∈ R, s′ ∈ X . Since
X ⊆ Y, we also have ∀(s, s′) ∈ R, s′ ∈ Y. Therefore, we must have s ∈ aR(Y).

35

4.7.2 Fixed points and AF

Property 4.20 For any Kripke structure M = (S,S0,R, L) and any state formula φ, define
Fφ(X) = [[φ]] ∪ aR(X). Then [[AFφ]] is the least fixed point of Fφ.

Proof: First, note that when X ⊆ Y, we have [[φ]]∪aR(X) ⊆ [[φ]]∪aR(Y) because aR is monotonic.
Therefore, Fφ is monotinic.

Now, using Property 4.8, we have

[[AFφ]] = [[φ ∨ AX AFφ]]

= [[φ]] ∪ [[AX AFφ]]

= [[φ]] ∪ aR([[AFφ]])

= Fφ([[AFφ]])

and therefore [[AFφ]] is a fixed point of Fφ.

Finally, we show that it is the least fixed point. Let X be some fixed point, and we will prove by
contradiction that [[AFφ]] ⊆ X . Consider some s ∈ [[AFφ]] = [[φ]] ∪ aR([[AFφ]]), and suppose s 6∈ X .
Because X = Fφ(X) = [[φ]] ∪ aR(X), we have

s ∈ [[φ]] ∪ aR([[AFφ]]) ∧ s 6∈ [[φ]] ∪ aR(X)

which implies
s ∈ aR([[AFφ]]) ∧ s 6∈ [[φ]] ∧ s 6∈ aR(X).

Now, s 6∈ aR(X) implies that, for some edge (s, s′) ∈ R, s′ 6∈ X . But we again obtain that s′ 6∈ [[φ]]
and there is some edge (s′, s′′) ∈ R with s′′ 6∈ X . Repeating this argument forever, we can obtain
an infinite path (s, s′, s′′, . . .) where none of the states satisfy φ. But this is impossible if s |= AFφ.
We have a contradiction, and our assumption s 6∈ X must be false, and therefore s ∈ X .

Example 4.16

Show that X = {s2, s3, s4, s5, s6} is a fixed point for Fp for the following Kripke struc-
ture:

s1 s2 s3

s4 s5

p

s6

p

s0

(recall that [[AF p]] = {s2, s3, s5, s6}).
Solution:

Fp({s2, s3, s4, s5, s6}) = [[p]] ∪ aR({s2, s3, s4, s5, s6})
= {s3, s6} ∪ {s2, s3, s4, s5, s6}
= {s2, s3, s4, s5, s6}

36

Example 4.17

What is the greatest fixed point of Fφ?

Solution: Fφ(S) = [[φ]] ∪ aR(S) = [[φ]] ∪ S = S. Therefore, S is the greatest fixed
point of Fφ.

Property 4.21

AF AFφ ≡ AFφ

Proof: From Property 4.20, [[AFφ]] is the least fixed point of Fφ(X) = [[φ]] ∪ aR(X), which implies
[[φ]] ∪ aR([[AFφ]]) = [[AFφ]] and therefore aR([[AFφ]]) ⊆ [[AFφ]]. Now, consider the least fixed point
of FAFφ(X) = [[AFφ]] ∪ aR(X):

FAFφ(∅) = [[AFφ]] ∪ aR(∅) = [[AFφ]]

F 2
AFφ(∅) = [[AFφ]] ∪ aR([[AFφ]]) = [[AFφ]]

It follows that the least fixed point of FAFφ is [[AFφ]]. But Property 4.20 says [[AF AFφ]] is the least
fixed point of FAFφ. Therefore, [[AF AFφ]] = [[AFφ]].

4.7.3 Fixed points and EG

Property 4.22 For any Kripke structure M = (S,S0,R, L) and any state formula φ, define
Gφ(X) = [[φ]] ∩ PreImage(X ,R). Then [[EGφ]] is the greatest fixed point of Gφ.

Proof: First, note that Gφ is monotonic since PreImage is monotonic. Using Property 4.9, we
have

[[EGφ]] = [[φ ∧ EX EGφ]]

= [[φ]] ∩ [[EX EGφ]]

= [[φ]] ∩ PreImage([[EGφ]],R)

= Gφ([[EGφ]])

and therefore [[EGφ]] is a fixed point of Gφ.

Finally, we must show that it is the greatest fixed point. Let X be some fixed point of Gφ. Since
X = Gφ(X), it follows that X ⊆ [[φ]]. Furthermore, we have X ⊆ PreImage(X ,R), which says that,
from any state s ∈ X , there is an edge (s, s′) ∈ R with s′ ∈ X . Therefore, for each state s ∈ X ,
there exists a path which remains forever in the states in X , which all satisfy φ. Thus, all states in
X satisfy EGφ, and therefore X ⊆ [[EGφ]].

Example 4.18

Show that X = {s0, s1} is a fixed point for G¬p for the following Kripke structure:

s1 s2 s3

s4 s5

p

s6

p

s0

37

(recall that [[EG¬p]] = {s0, s1, s4}).
Solution:

G¬p({s0, s1}) = [[¬p]] ∩ PreImage({s0, s1})
= {s0, s1, s2, s4, s5} ∩ {s0, s1}
= {s0, s1}

Example 4.19

What is the least fixed point of Gφ?

Solution: Gφ(∅) = [[φ]] ∩ PreImage(∅,R) = [[φ]] ∩ ∅ = ∅. Therefore, ∅ is the least
fixed point of Gφ.

Property 4.23

EG EGφ ≡ EGφ

4.7.4 Fixed points and EU

Property 4.24 For any Kripke structure M = (S,S0,R, L) and any state formulas φ1 and φ2,
define Uφ1φ2(X) = [[φ2]]∪([[φ1]]∩PreImage(X ,R)). Then [[Eφ1 Uφ2]] is the least fixed point of Uφ1φ2.

Proof: First, note that Uφ1φ2 is monotonic. From Property 4.11, we have

[[Eφ1 Uφ2]] = [[φ2 ∨ (φ1 ∧ EX Eφ1 Uφ2)]]

= [[φ2]] ∪ ([[φ1]] ∩ [[EX Eφ1 Uφ2]])

= [[φ2]] ∪ ([[φ1]] ∩ PreImage([[Eφ1 Uφ2]],R)

= Uφ1φ2([[Eφ1 Uφ2]])

and therefore [[Eφ1 Uφ2]] is a fixed point of Uφ1φ2.

Finally, we must show that it is the least fixed point by showing that [[Eφ1 Uφ2]] ⊆ X . Consider
some s ∈ [[Eφ1 Uφ2]]. By definition, this says there exists a j ≥ 0 and a path (s0 = s, s1, s2, . . .)
such that

• sj |= φ2, and

• ∀i < j, si |= φ1.

We show that s ∈ X by induction on j. In the base case, j = 0 and s |= q. But by definition of
Uφ1φ2 and the fact that X = Uφ1φ2(X), we know [[φ2]] ⊆ X and trivially s ∈ X .

Now, assume it holds for j ≤ k and prove it holds for j = k+1. Considering the path (s′0 = s1, s
′
1 =

s2, . . . , s
′
k = sk+1), we have s1 ∈ [[Eφ1 Uφ2]], and by the inductive hypothesis (since this path uses

j = k), we have s1 ∈ X . But then s0 = s ∈ X , because s0 ∈ [[φ1]] and s0 ∈ PreImage(X ,R).

Example 4.20

Show that X = {s1, s2, s4, s6, s7, s8, s9} is a fixed point for Upq for the following Kripke
structure:

38

s4s1 s2 s3

s6 s7

p

s8

p

s0

s5

p

s9

q q

p p

(recall that [[E pU q]] = {s1, s2, s4, s6, s7})
Solution:

Upq(X) = [[q]] ∪ ([[p]] ∩ PreImage({s1, s2, s4, s6, s7, s8, s9},R)

= {s1, s4} ∪ ({s2, s6, s7, s8, s9} ∩ {s0, s1, s2, s3, s4, s6, s7, s8, s9})
= {s1, s2, s4, s6, s7, s8, s9}

Property 4.25

Eφ1 U (Eφ1 Uφ2) ≡ Eφ1 Uφ2

Property 4.26

EF EFφ ≡ E ttU (E ttUφ)

≡ E ttUφ

≡ EFφ

Property 4.27

AG AGφ ≡ AG¬EF¬φ
≡ ¬EF EF¬φ
≡ ¬EF¬φ
≡ AGφ

4.8 Fairness

Suppose we have a system of three interacting processes, where each process

1. computes,

2. waits for the semaphore,

3. updates a shared data structure,

4. releases the semaphore,

39

and repeats those steps forever. Suppose we model the choice of “who gets the semaphore” when
multiple processes are waiting as a non-deterministic choice. Now, suppose we would like to check
that a process can always eventually enter the critical section, something like

EG(“process one waits”→ AF “processs one updates”).

It is likely that this property will not hold, because there will be a computation path where the
semaphore alternates between processes two and three, and process one will wait forever. The
problem here is that we would like to have an additional constraint, namely, that the semaphore
operates “fairly”. In CTL, the issue of fairness can be addressed using fairness constraints, which
are sometimes3 simply sets of states.

Definition 4.28 A fair path for constraint C is a path (s0, s1, s2, . . .) such that some states in C
are visited infinitely often. Formally, there is an infinite set {i1, i2, . . .} where, for all k, sik ∈ C.

We then treat the issue of fairness by quantifying over the fair paths, i.e.,

• AC : for all fair paths for constraint C.

• EC : for some fair path for constraint C.
For example, we have:

M, s |= ACXφ, if and only if, for all fair paths (s0 = s, s1, . . .) for constraint C, s1 |= φ.

Example 4.21

Consider the following Kripke structure:

s0 s2

s1 p

p, q

For the constraint C = [[¬p]] = {s0}, we have

M, s0 |= ACX (p ∧ q)

because the only fair path for constaint C is (s0, s2, s0, s2, . . .).

We only need the operator ECG, because all other “fair” operators can be expressed in terms of
their unfair conterparts, and ECG. Specifically, we will use ECG tt for “there exists a fair path for
constraint C”.

1. ECXφ ≡ EX(φ ∧ ECG tt)

2. EC φ1 Uφ2 ≡ E(φ1 U (φ2 ∧ ECG tt))

Since EX, EU, and EG are an adequate set of temporal operators, we are done.

3There are other ways to specify fairness constraints that are also useful. We will see a different one, later.

40

4.8.1 Labeling algorithm for ECG

Recall that one algorithm for labeling φ = EGφ1 was to use strongly connected components (SCCs),
based on the observation that, for φ1 to occur in every state on an infinitely–long path, we need to
have cycles of states satisfying φ1. We only need a small modification if we want an infinitely–long
fair path: we need to have SCCs where at least one state in the SCC is in set C. We have the
following algorithm.

1. Create a new graph M ′ by removing all states that do not satisfy φ1, and any edges associated
with those states.

2. Determine the SCCs for M ′.

3. For each SCC that contains at least one state in C,

• if the SCC contains more than one state, then label all states in the SCC with φ

• if the SCC contains only one state, and the state has an edge to itself, then label it with
φ.

4. Any state that can reach (in M ′) a state labeled with φ should also be labeled with φ.

Example 4.22

s0 s2

s1 p

p, q

For the above Kripke structure and constraint C = [[¬p]] = {s0}, which states satisfy
ACX(p ∧ q)?
Solution: We have the equivalence

¬ACXp ≡ ECX¬p ≡ EX(¬p ∧ ECG tt)

which says that, ACX p does not hold if there is a fair path with a next state satisfying
¬p. Rewriting our formula, we obtain

ACX(p ∧ q) ≡ ¬EX(¬(p ∧ q) ∧ ECG tt)

Using the labeling algorithm for ECG, we determine SCCs and check for states in C:

• SCC {s0, s2} has one state, s0, in C
• SCC {s1} has no states in C

Therefore, [[ECG tt]] = {s0, s2}. Also, we have [[¬(p ∧ q)]] = {s0, s1}. We next determine

PreImage({s0, s1} ∩ {s0, s2},R) = PreImage({s0},R) = {s2}

41

Finally, taking the complement, we have

[[ACX(p ∧ q)]] = {s0, s1}

Verify: We already determined s0 ∈ [[ACX(p ∧ q)]] in the previous example. But what
about s1? This is a correct solution because there are no fair paths from s1. Thus, the
statement, “for all fair paths, the next state satisfies p ∧ q” is trivially true. If this is
not as intended, then the issue is how to define AC when there are no fair paths. If
the intended definition is, “there are some fair paths, and for all of them . . . ”, then the
equivalence

¬ACXp ≡ ECX¬p
does not hold.

42

Chapter 5

High–level Formalisms

We can verify properties of a system via the following steps.

1. Construct an appropriate Kripke structure.

2. Express the properties we want in a suitable logic.

3. Use an automatic tool to model check the Kripke structure against the properties.

We have seen how to do steps 2 and 3 above. What about step 1? This can be done in a few ways:

• By hand. That’s what we have done so far, in class. However, step 1 can be difficult if the
system is large and/or complex.

• Write a program to generate a Kripke structure for a particular system, and analyze it. While
this works, for each new system to analyze, you need to write a new program, which means
more time spent debugging.

• Use another, more compact and convenient model to describe the system. For this to be
effective, we must be able to automatically construct a Kripke structure described by the
model. That way, we can write, debug, test, etc., one program that reads a model as input
and constructs its underlying Kripke structure.

These compact models are called high–level formalisms.

5.1 Requirements of a formalism

What does a high–level formalism need to be able to do? For model checking, it must

1. Describe a finite set of states.

2. Provide the initial state(s) of the system.

3. Provide formal rules (thus the name “formalism”) for changing states. I.e., if we are currently
in state s, what state(s) can be reached from here in one step?

4. Be easier to use than describing a Kripke structure by hand. This is simply a practical
requirement. This is the “high–level” part of “high–level formalisms”.

43

Note that the first three requirements will allow us to construct a Kripke structure. We then
write queries in terms of the high–level formalism. In particular, the atomic propositions will be
expressed in terms of features in the high–level model.

There are many high–level formalisms. Why? If you think of a high–level formalism as a high–level
language, then it is like the several high–level programming languages:

• certain tasks are easier in certain languages

• people have preferences

• they are easy to invent for a particular application

For us, the choice of formalism is mostly irrelevant. (Think of writing a compiler; this task is
basically the same for a C compiler as for a Pascal compiler.)

5.2 Petri nets

Petri nets are one of many high–level formalisms. We will study these because

• They are graphical (easier to learn?)

• They are fairly powerful and expressive

• They have a rich underlying theory1

• They are fairly well–known

• Analysis is relatively easy (more features usually implies more difficult to analyze)

5.2.1 Informal introduction

A Petri net is a directed graph with two types of nodes:

Places, drawn as circles, which contain a non-negative integer number of tokens.

Transitions, drawn as rectangles or bars, which cause the tokens to “move”.

Arcs connect places to transitions and transitions to places, never places to places or transitions to
transitions. (This is a special type of graph called bipartite.)

So, let’s see how Petri nets are a high-level formalism by checking the list of requirements:

1. How does a Petri net describe a discrete set of states?

Each place can contain a non-negative integer number of tokens. The tokens cannot be
distinguished. The state of the Petri net is completely described by its marking, which
determines, for each place, how many tokens it contains. So, if P is the set of places, a
marking m is a function m : P → IN. Or, equivalently, a marking m is a vector of naturals,
m ∈ IN|P|, where m[p] is the number of tokens in place p. So, at most, the discrete set of
states described by a Petri net is the set IN|P|.

1T. Murata. “Petri Nets: Properties, Analysis, and Applications”, in Proceedings of the IEEE, 77 (4), April 1989,
pages 541–580

44

2. How to specify the initial state of a Petri net?

This is done by giving the initial marking of the Petri net.

3. What are the rules for changing states in a Petri net?

The marking of the net is changed by transitions. A transition is said to be enabled if all of
its input places (the places with an arc to this transition) have at least one token. An enabled
transition may fire by removing a token from each input place and adding a token to each
output place. Note that tokens are not necessarily “conserved”.

Example 5.1

p1

p2 p3

p4 p5

t1

t2

t5

t3

t4

P = {p1, p2, p3, p4, p5}

T = {t1, t2, t3, t4, t5}

In the above example Petri net, suppose the current marking is

p1 p2 p3 p4 p5
[3 0 0 0 0]

Which transitions are enabled in this marking?

t1: enabled because its input places (p1) contain tokens.

t2: disabled because its input places (p2) do not contain tokens.

t3: disabled because its input places (p5) do not contain tokens.

t4: disabled because its input places (p4) do not contain tokens.

t5: disabled because its input places (p3, p5) do not contain tokens.

If t1 fires, what is the new marking?

• Remove 1 token from p1

• Add 1 token to p2

• Add 1 token to p4

This gives a new marking of

p1 p2 p3 p4 p5
[2 1 0 1 0]

45

In the new marking, transitions {t1, t2, t4} are enabled. Any of these may fire. If t1 fires
again, the new marking is

p1 p2 p3 p4 p5
[1 2 0 2 0]

and now transitions {t1, t2, t4} are enabled. If t4 fires, the new marking is

p1 p2 p3 p4 p5
[1 2 0 1 1]

and now transitions {t1, t2, t3, t4} are enabled. If t2 fires, the new marking is

p1 p2 p3 p4 p5
[1 1 1 1 1]

and now all transitions are enabled. Note: in this marking,

• if t3 fires, then t5 will become disabled.

• if t5 fires, then t3 will become disabled.

This is called “conflict”.

The above example illustrates that Petri nets can model the following.

conflict: firing of one transition may disable another (e.g., t3 and t5).

choice: one place (e.g., p1) as input to multiple transitions.

concurrency: firing of one transition does not affect firing of the other (e.g, t2 and t4).

synchronization: one transition (e.g., t5) with multiple input places.

Example 5.2

jobsarrive depart

The above Petri net models a single–server service node with an unbounded queue. The
number of tokens in place jobs is the number of customers in the node.

• Transition arrive has no input places; therefore it is always enabled, and it “cre-
ates” tokens. This is called a source transition.

• Transition depart has no output places; it “consumes” tokens. This is called a sink
transition.

46

5.2.2 Petri net extensions

The Petri nets described above are “ordinary” Petri nets. Several extensions have been proposed
(these are commonly used):

Inhibitor arcs: these allow the presence of tokens in places to disable a transition. Below, t is
disabled if there is a token in q.

qtp

Arc weights: these specify a number of tokens to be added/removed or considered to inhibit a
transition. Below, t is enabled iff p has at least 2 tokens; firing of t removes 2 tokens from p
and adds 3 tokens to q.

qtp

2 3

Transition guards: these are functions that must be true for a transition to be enabled.

Marking–dependent arc weights: arc weights can be functions of the current marking, instead
of constants. These are also known as “self-modifying nets”.

Color: Tokens have colors (called “Colored Petri Nets”). Colors are used to store data (i.e., distin-
guish tokens). There can be multiple “dimensions” of colors. This makes things significantly
more complex, so we will ignore colors and study “uncolored” nets for a while.

Example 5.3

jobsarrive depart

B

The above Petri net models a single–server service node with a bounded queue. For the
given initial marking, the maximum number of tokens in place jobs is B, since transition
arrive becomes disabled when there are B (or more) tokens in place jobs. If an initial
marking specifies more than B tokens in place jobs, then transition arrive will remain
disabled until transition depart fires enough times that fewer than B tokens appear in
place jobs.

Example 5.4

choose

q1c1 s1

arrive

q2c2 s2

#q1 <= #q2

#q2 <= #q1

47

The above Petri net models the arrival of customers, where each customer joins either
queue 1 or queue 2, based on which is shorter. This is done via the guard #q1 ≤ #q2 on
transition c1, and the guard #q2 ≤ #q1 on transition c2, where #p means the number
of tokens currently in place p. Therefore, c1 is enabled only if the number of tokens in
q1 is not more than the number of tokens in q2, and vice–versa. Note that if the queues
have equal length, then both c1 and c2 are enabled.

Example 5.5

p t
#p

q
#p

We can remove all tokens from a place, and add them to another place, using marking–
dependent arc cardinalities, as above. When t fires, all tokens are removed from p and
added to q. Note that, technically, t is enabled even when p is empty, but its firing in
this case does not change the marking.

Example 5.6

p t

#q

q

#q

#p #p

We can exchange the number of tokens in two places, using marking–dependent arc
cardinalities as above. When t fires, all tokens are removed from p and q, and the
(previous) number of tokens in p is added to q, and the (previous) number of tokens in
q is added to p.

Example 5.7

q

p1

p2

t
f

f

f

The above can be used to synchronize f jobs. If f = 1, then transition t is “ordinary”
synchronization. If f = 2, then transition t synchronizes completing pairs of tasks, two
at a time. If f = min(#p1,#p2), then transition t synchronizes as many completing
pairs of tasks as possible.

5.2.3 Expressive power of Petri nets

Suppose we assign a symbol to each transition, and the firing of that transition produces the symbol.
Then we can ask “what is the language generated by the Petri net”? Or, equivalently, a word is
“accepted” if there exists a firing sequence that generates that word. The expressive power can
be measured by answering the question, “what types of languages are accepted by Petri nets”? It
turns out:

48

• Petri nets with inhibitor arcs are Turing equivalent.

• Ordinary Petri nets without inhibitor arcs are not Turing equivalent.

• Guards, marking-dependent weights, and inhibitor arcs are “equivalent” extensions, any of
them will give you Turing equivalence.

However, if the number of tokens in each place is bounded (and therefore, the total number of
markings that can be reached from the initial marking is finite), then the Petri net describes a
finite state machine (regardless of which extensions are allowed), and the above extensions serve
only to simplify the model description.

5.2.4 Formal definition

A Petri net is a tuple (P, T , I, O,H, g,m0) where

• P is a finite set of places.

• T is a finite set of transitions, with T ∩ P = ∅

• I : P×T × IN|P| → IN is a function to describe the marking-dependent input arc cardinalities

• O : T ×P×IN|P| → IN is a function to describe the marking-dependent output arc cardinalities

• H : P × T × IN|P| → IN ∪ {∞} is a function to describe the marking-dependent inhibitor arc
cardinalities

• g : T × IN|P| → {0, 1} are the transition guard functions

• m0 ∈ IN|P| is the initial marking

Definition 5.1 (Enabling rule) Transition t is enabled in marking m if:

g(t,m) = true and ∀p ∈ P, I(p, t,m) ≤m[p] < H(p, t,m)

Definition 5.2 (Firing rule) If transition t is enabled in marking m, its firing leads to a new
marking n, with

∀p ∈ P, n[p] = m[p]− I(p, t,m) +O(t, p,m)

49

50

Chapter 6

Reachability

We now consider a fundamental question for all high–level formalisms, but phrase the question in
terms of Petri nets.

The reachability problem: Given a Petri net with an initial marking m0, is it possible to
(eventually) reach a specified marking m?

This problem is known to be decidable1, but requires exponential space and time in the worst case.
We will look instead at a few “simple” algorithms.

6.1 Coverability

Definition 6.1 Given a Petri net, a marking m′ covers another marking m if

m′[p] ≥m[p]

for all places p ∈ P.

Note that a marking covers itself.

We will write m′ ≥m if m′ covers m.
We will write m′ > m if m′ covers m and m′ 6= m.

Definition 6.2 Given a Petri net, a marking m is said to be coverable if there exists a marking
m′ ≥m that is reachable from the initial marking m0.

6.1.1 The coverability tree

The coverability tree is a tree of markings that cover all markings reachable from the initial marking.
Within these markings, we use a special symbol, ω, to indicate “unbounded number of tokens”.
For any integer n, we have ω > n, ω + n = ω − n = ω, and ω ≥ ω. The coverability tree can be
constructed using the following algorithm:

1I don’t know which of the Petri net extensions are allowed in this decidability result.

51

Algorithm 6.1 Coverability Tree Construction

Set m0 as the root of the tree; tag it as “new”.
while ∃ “new” markings

Select some “new” marking m;
Give m a blank tag;
if ∃m′, on the path from m0 to m, with m′ = m then

Tag m as “old”;
continue;

endif
if no transitions are enabled in m then

Tag m as “dead end”;
continue;

endif
for each transition t enabled in m do

m′ ← the marking reached from m by firing t
if ∃m′′ on the path from m0 to m′ with m′ > m′′

for each p such that m′[p] > m′′[p] do
m′[p]← ω;

endfor
endif
m′ is a new node in the tree;
Draw an arc from m to m′ with label t;
Tag m′ as “new”;

endfor
endwhile

Example 6.1

p1 p3t2

p2
t1 t3

Consider the above Petri net, drawn with initial marking [1, 0, 0]. Note: t1 can fire
arbitrarily many times, until t2 fires; then, t3 can fire as many times as t1 fired. Using the
above algorithm, we can construct the coverability tree, drawn below at the beginning
of each iteration of the while loop.

52

Iteration 1 Iteration 2 Iteration 3 Iteration 4

[1, 0, 0]

new

[1, 0, 0]

new

[1, ω, 0] [0, 0, 1]

new

t1 t2

[1, 0, 0]

new

[1, ω, 0] [0, 0, 1]

new

t1 t2

t1 t2

[1, ω, 0] [0, ω, 1]

new

[1, 0, 0]

old

[1, ω, 0] [0, 0, 1]

new

t1 t2

t1 t2

[1, ω, 0] [0, ω, 1]

new

Iteration 5 Iteration 6 Iteration 7

[1, 0, 0]

old

[1, ω, 0] [0, 0, 1]

new

t1 t2

t1 t2

[1, ω, 0] [0, ω, 1]

[0, ω, 1]

new

t3

[1, 0, 0]

old

[1, ω, 0] [0, 0, 1]

new

t1 t2

t1 t2

[1, ω, 0] [0, ω, 1]

[0, ω, 1]

old

t3

[1, 0, 0]

old

[1, ω, 0] [0, 0, 1]

dead end

t1 t2

t1 t2

[1, ω, 0] [0, ω, 1]

[0, ω, 1]

old

t3

6.1.2 The coverability graph

The coverability graph is similar to the coverability tree. Nodes in the coverability graph correspond
to the unique markings in the coverability tree. In the coverability graph, there is an edge from m
to m′, labeled with transition t, if

• t is enabled in marking m, and

• the firing of t in m leads to marking m′′ with m′ ≥m′′.

Example 6.2

The coverability graph for the previous example is shown below.

[1, 0, 0]

[1, ω, 0] [0, 0, 1]

t1 t2

t1

t2

[0, ω, 1]

t3

The coverability graph (or tree) does not contain enough information to definitively solve the
reachability problem:

53

• A marking m is not reachable if there is no marking m′ ≥m in the coverability graph.

• A marking m may be reachable if there is a marking m′ ≥m in the coverability graph.

The inability to say for certain that a marking is reachable is due to the loss of information that
occurs due to the symbol ω.

6.2 The reachability graph

We can simplify the coverability graph algorithm by eliminating the symbol ω, and storing the
actual markings reached. This gives us instead the reachability graph, whose set of nodes is equal
to the markings that can be reached from the initial marking m0 in zero or more steps. This set
of markings is called the reachability set. The reachability graph can be constructed using the
following algorithm.

Algorithm 6.2 Reachability graph construction

U ← {m0}; // set of unexplored markings
S ← {m0}; // reachability set so far
E ← ∅; // edges in the reachability graph
while U 6= ∅

Remove some marking m from U ;
for each transition t enabled in m do

m′ ← the marking reached from m by firing t;
if m′ 6∈ S then

Add m′ to S;
Add m′ to U ;

endif
Add edge from m to m′ with label t to E ;

endfor
endwhile

Note:

• The algorithm terminates iff the reachability set is finite.

• If markings can be added to and removed from sets U and S in constant time (not a realistic
assumption), then the algorithm has complexity O(|S| · |T |), if we check each transition in
each marking.

• If markings are removed from U in FIFO order, we get “breadth–first” search.

• If markings are removed from S in LIFO order, we get “depth–first” search.

• The reachability graph contains enough information to answer any reachability question, and
can be used to determine a firing sequence from m0 to any reachable marking m.

Differences between the coverability graph and the reachability graph:

54

• The coverability graph can be used for unbounded Petri nets; the reachability graph will be
infinite in this case.

• If the coverability graph contains no markings with ω, then it is equal to the reachability
graph, and the reachability graph is finite.

• If the reachability graph is infinite, then the coverability graph will contain a marking with
ω.

Example 6.3

p1

p2 p3

p4 p5

t1

t2

t5

t3

t4

For the above Petri net, with initial marking

p1 p2 p3 p4 p5
[2 0 0 0 0]

construct the reachability graph.

Using the reachability graph construction algorithm and some patience, we obtain the
following graph.

20000

11010

11001

10110

10101

02020

02011

02002

01120

01111

01102

00220

00211

00202

t1

t1 t1

t1 t1

t3

t4

t3

t4

t3

t4

t3

t4

t3

t4

t3

t4

t3

t4

t3

t4

t2

t2

t2

t2

t2

t2

t2

t2

t5 t5

t5 t5

t5

55

6.3 State explosion

High level models (including Petri nets) often produce an extremely large number of reachable
states, even for “small” models. This is known as the “state explosion problem”. We will discuss
ways to cope with this problem later in the semester.

Example 6.4

p1

p2 p3

p4 p5

t1

t2

t5

t3

t4

For the above Petri net, with initial marking

p1 p2 p3 p4 p5
[N 0 0 0 0]

how many reachable states are there?

In general, it is unknown how to answer this question without constructing the reacha-
bility graph. However, this Petri net is simple enough that we can answer this question
by studying the Petri net, as follows. Note that, if transition t1 fires n more times than
transition t5, then

• The sum of tokens in places p2 and p3 is exactly n. There are n+ 1 ways that this
can occur.

• Similarly, the sum of tokens in places p4 and p5 is exactly n.

• The above two sums are completely independent.

Therefore, the number of reachable markings, given that transition t1 has fired n more
times than transition t5, is (n+1)2. For the given initial marking, the number of times t1
may fire, before t5 fires, is 0, 1, 2, . . . , N . The number of reachable markings is therefore

N∑
n=0

(n+ 1)2 =
N∑
n=0

n2 + 2
N∑
n=0

n+
N∑
n=0

1 = · · · =
(2N + 3)(N + 2)(N + 1)

6

In particular, note that (as a sanity check):

• If N = 0, the number of markings is (3 · 2 · 1)/6 = 1

• If N = 2, the number of markings is (7 · 4 · 3)/6 = 14

The size of the reachability set grows as O(N3).

56

Example 6.5

N

Tin1 Pm1 Tr1 Pb1 Tb1

Pkan1 Tg1 Pout1

N

Pm3 Tr3 Pb3 Tb3

Pkan3 Tg3 Pout3

N

Pm2 Tr2 Pb2 Tb2

Pkan2 Tg2 Pout2

N

Tout4

Pm4 Tr4 Pb4 Tb4

Pkan4 Tg4 Pout4

Ts23_4

Ts1_23

The above Petri net is a model of a kanban manufacturing system, comprised of four
components. In each component, a part is processed, which is either successful and the
part can move on to the next stage, or unsuccessful, which requires additional work to
“un-do” the previous processing. Component 1 is used by components 2 and 3, and
components 2 and 3 together are used by component 4. The initial marking specifies
the initial number of raw parts N for each component. It can be shown that the number
of reachable markings is exactly

|S| = (N + 1)3(N + 2)3(N + 3)3(3N2 + 12N + 10)

2160

which grows as O(N11).

6.4 Model checking with Petri nets

If the choice of which Petri net transition to fire is non-deterministic, and assuming the reachability
graph is finite, then a (high–level) Petri net model can be used to describe a Kripke structure: the
reachability graph becomes the Kripke structure. However, some care must be taken since the
reachability graph may have markings with no outgoing edges; this can be handled by either

1. defining an atomic proposition for the deadlocked states, and adding self loops, or

2. modifying the model checking algorithms to work with finite paths.

Also, we must define the atomic propositions and label the states in the Kripke structure accord-
ingly. Each atomic proposition p will be generated from a function fp : IN|P| → {0, 1}; this allows us
to describe the atomic propositions in terms of the Petri net itself. Finally, we can write properties
in our favorite logic.

Example 6.6

57

p1

p2 p3

p4 p5

t1

t2

t5

t3

t4

For the above Petri net, with initial marking

p1 p2 p3 p4 p5
[2 0 0 0 0]

is the property AF(Place p1 is empty) satisfied?

First, we build the Kripke structure, which we obtain from the reachability graph:

20000

11010

11001

10110

10101

02020

02011

02002

01120

01111

01102

00220

00211

00202

t1

t1 t1

t1 t1

t3

t4

t3

t4

t3

t4

t3

t4

t3

t4

t3

t4

t3

t4

t3

t4

t2

t2

t2

t2

t2

t2

t2

t2

t5 t5

t5 t5

t5

Then, we build atomic proposition p corresponding to “Place p1 is empty”; this can
be done with the function fp(m) = (m[p1] == 0). Rewriting the formula, we get
AF p ≡ ¬EG¬p. By inspection, we see that states satisfying atomic proposition ¬p are
[[¬p]] = {[20000], [11010], [11001], [10110], [10101]}. Since every state in the set [[¬p]] can
reach a state in [[¬p]] in one step, we have that the expression EG(¬p) is satisfied by
exactly the states in [[¬p]]. Finally, taking the complement of [[¬p]], we obtain the set of
states satisfying AF(Place p1 is empty), which is the set

{[02020], [02011], [02002], [01120], [01111], [01102], [00220], [00211], [00202]}.

58

Since this set does not contain the initial marking, we conclude that the Petri net does
not satisfy AF(Place p1 is empty).

59

60

Chapter 7

Decision diagrams

As discussed earlier, a high–level model can produce an extremely large reachability graph, easily
containing millions of states or more. One way to combat this problem is to utilize techniques that
can handle large numbers of states. Decision diagrams are one such technique.

7.1 Multi-value decision diagrams

A multi–value decision diagram, or MDD, is a data structure to represent functions over variables
with finitely many possible values:

f : SK × · · · × S1 → {0, . . . ,m− 1}

where sets Sk are finite, so for simplicity we will assume

Sk = {0, 1, . . . , nk − 1}

A popular special case is binary decision diagrams, or BDDs1, where nK = 2, . . . , n1 = 2,m = 2.

7.1.1 Definition

• An MDD is a directed, acyclic graph with two types of nodes: terminal nodes and non-
terminal nodes.

• Terminal nodes are labeled with values from the set {0, 1, . . . ,m − 1}. (Actually, any set of
values can be used.)

• Non-terminal nodes

– are labeled with one of the function variables, xk

– contain nk arcs to other nodes (the “decision” based on the value of xk).

• Every MDD node represents some function of the form

f : SK × · · · × S1 → {0, . . . ,m− 1}
1R. Bryant. “Graph–Based Algorithms for Boolean Function Manipulation”, IEEE Transactions on Computers,

C–35 (8), August 1986, pages 677–691.

61

– Terminal node a represents the constant function:

g(xK , . . . , x1) = a

– A non-terminal node represents some function f(xK , . . . , x1). If the node is labeled
with xk, then the outgoing arc corresponding to value v goes to a node representing the
function

fxk=v(xK , . . . , x1) ≡ f(xK , . . . , xk+1, v, xk−1, . . . , x1)

• To evaluate a function for a particular assignment to the variables, start at the MDD node
representing the function, and at each non-terminal node, follow the appropriate edge. The
terminal node reached is the value of the function.

Example 7.1

x3
0 1 2 3

0

x2
0 1 2 3

x2
0 1 2 3

x2
0 1 2 3

x1
0 1 2 3

x1
0 1 2 3

x1
0 1 2 3

1 2 3

Above, we have an MDD over K = 3 variables, with possible values

S3 = S2 = S1 = {0, 1, 2, 3}

The non-terminal node with label x3 represents the function

f(x3, x2, x1) = min(x3, x2, x1)

7.1.2 Terminology

Definition 7.1 An MDD is ordered if all paths through the MDD visit non-terminal nodes accord-
ing to the same variable ordering.

For an ordered MDD, we can define the level of a node as 0 for terminal nodes, or k for non-terminal
nodes labeled with variable xk. The ordering property guarantees that all outgoing arcs from a
level–k node are to nodes at a level less than k.

62

Definition 7.2 A non-terminal node is redundant if all of its outgoing arcs point to the same
node.

Note that a redundant node corresponds to a function that does not depend on the variable that
labels the node.

Definition 7.3 Two terminal nodes are duplicates if they have the same label. Two non-terminal
nodes are duplicates if they have the same variable label, and they have the same outgoing arcs for
each value:

A

xk
0 1 2 ...

xk
0 1 2 ...

B C

Definition 7.4 A reduced, ordered MDD, or ROMDD, is an ordered MDD that contains no du-
plicate nodes and no redundant nodes.

It can be shown that, for a fixed variable ordering, ROMDDs are a canonical form. This means that,
for any given function and a fixed variable ordering, there is exactly one ROMDD representation
of that function. As such, using ROMDDs, one can easily check if two functions are equivalent.

Example 7.2

The BDDs below are representations of the (boolean) function

f(x4, x3, x2, x1) = ¬x1 + (x4 + x3) · x2
Unordered Ordered Reduced

0 1

01 1 1 0 1

x1

x2

x3

x4

x1

x2x3

0 1

0 1

0 1

0 1

0 1 0 1

0

01 1 0 1

x2

x3

x1

0 1

0 1

0 1

0

x1

x4

x2

x3

1

0 1

1

0 1

0

0 1

x2

x3

x1

0 1

0 1

x4

1

01

The reduced, ordered BDD shown above is the ROBDD representing ¬x1+(x4+x3)·x2,
for the variable ordering x4, x3, x2, x1.

63

7.1.3 Number of nodes and variable order

We will now look at two fundamental questions about ROMDDs.

1. ROMDDs are a canonical representation, given a variable ordering. This means that two
different variable orders may give two different ROMDD representations. Does the choice of
variable ordering affect the number of nodes in the ROMDD, and if so, how significantly?

2. We can use ROBDDs to solve the Satisfiability problem: build an ROBDD representing the
formula to check; the formula is satisfiable if and only if the ROBDD representation is not
terminal node zero. What is the worst–case complexity of ROBDDs? If they are efficient,
then we could have P = NP , since the Satisfiability problem is known to be NP–complete.

We will answer the first question with examples taken from Bryant’s 1986 article.

Example 7.3

Build the ROBDD for the (boolean) function

f = x2N · x2N−1 + · · ·+ x4 · x3 + x2 · x1

for the variable ordering x2N , . . . , x2, x1. You should obtain
a BDD with 2N + 2 nodes (including the terminal nodes).
The case N = 4 is illustrated to the right.

0 1

x2

x1

0 1

0 1

0 1

0 1

x4

x3

0 1

0 1

x6

x5

0 1

0 1

x8

x7

Example 7.4

Build the ROBDD for the (boolean) function

f = x2N · xN + · · ·+ xN+2 · x2 + xN+1 · x1

for the variable ordering x2N , . . . , x2, x1. Note this is the same function as the previous
example, but with different variable ordering. The case N = 4 is illustrated below. We
use several terminal nodes to clarify the illustration:

64

0 1

1

0 1

1

0 1

1

0 1

1

0 1

1

0 1

1

0 10 1

0 1

1

0 1

0 1

0 1

x2

x1
0 1

x3

0 1

x2
0 1

0 1 1

x3
0 1

1

0 1

1

x3 x3

0 1

0 1

x4 x4 x4 x4 x4 x4 x4 x4

110

0 1

x5
0 1

x5
0 1

x5
0 1

x5
0 1

x5
0 1

x5
0 1

x5
0 1

x5

0

x6

0 1

x6

0 1

x6

0 1

x6

0 1

x7
0 1

x7

x8

Assuming we merge all duplicate terminal nodes, the BDD will contain 2N+1 nodes.

As the above two examples illustrate, the size of a BDD can be extremely sensitive to the variable
ordering. With one variable ordering, the number of BDD nodes grows as O(N), while with a
different variable ordering, the number grows as O(2N).

The second example also illustrates that ROBDDs can have exponential worst–case behavior if the
variable ordering is not chosen wisely. But are there functions whose ROBDDs have an exponential
number of nodes, regardless of the variable ordering? It has been shown2 that there are functions
of N variables for which the resulting ROBDD representation contains at least O(cN) nodes, for
some constant c > 1 (the value for c depends on the function; for example, the “hidden weighted
bit function3” has c ≈ 1.14). As such, ROBDDs cannot always solve the satisfiability problem in
polynomial time, and require exponential time in the worst case.

While MDDs have poor worst–case performance, in practice, they are able to represent a large
number of useful functions in a compact way. From now on, we will assume that all MDDs are
ordered and reduced.

7.2 Operations

To use MDDs effectively, we must be able to construct new MDDs from old ones. In other words,
we need algorithms to construct new functions from old ones according to some operation. These
algorithms depend on the specific operation, but usually the algorithms share the following prop-
erties.

2R. Bryant, “On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with
Application to Integer Multiplication”, in IEEE Transactions on Computers 40 (2), 1991.

3f(xN , . . . , x1) = xxN+···+x1

65

• They are recursive. The algorithms typically recurse based on the node levels, and build new
nodes at level k, whose downward arcs are determined via recursive calls.

• The MDD can be kept reduced during construction. Whenever a node is created, it is checked
to see if it is a redundant node (in which case it can be eliminated), or if it is a duplicate
of an existing node. This requires maintaining a unique table data structure (often a hash
table) to discover duplicate nodes.

Typically, a generic recursive operation applied to MDD operand(s) proceeds as follows.

1. Handle the base cases, which occur when all the arguments are terminal nodes.

2. Handle any special cases that can be computed quickly.

3. Check if we have already computed this operation. Since MDD nodes may have several
incoming arcs, we may generate the same recursive call several times. As such, we should
maintain a compute table to remember results from each operation. This is important!

4. Recurse. Find the “top” variable xn of the MDD operands, and build a node with label xn.
The downward pointers for this node are determined recursively.

5. Reduce the node we just built. That means eliminate it, if it is a redundant node; otherwise,
check the uniqueness table to see if the new node is a duplicate of another (and if so, eliminate
the new one).

6. Add the result to the compute table, and return the answer.

MDD libraries typically maintain an MDD forest, where all MDDs with the same variable order
and node size are stored together.

• This allows different MDDs to share nodes.

• Functions are represented by pointers to nodes in the forest.

• Two functions are equivalent if and only if their pointers are equal.

• For manipulation (i.e., operators), new nodes are created as needed in the forest (and kept
reduced).

• Garbage collection is a challenge: when nodes in the forest become disconnected, their memory
should be (eventually) reclaimed.

7.2.1 Apply operation

A common operation for functions is to apply an operator to one or two functions. Specifically,
given MDD representations for functions f and g, we want to construct the MDD representation
for a function h defined as

h(xK , . . . , x1) = f(xK , . . . , x1)⊕ g(xK , . . . , x1)

for some operator ⊕. Note that this describes many, but not all, interesting MDD operations. The
recursive algorithm for “apply” will follow the basic steps outlined above:

66

1. Base cases: Recall that terminal nodes represent “constant” functions. It should be easy to
determine c1 ⊕ c2 for constants c1, c2.

2. Special cases. For example, 0 + g(xK , . . . , x1) = g(xK , . . . , x1).

3. Check the compute table for f ⊕ g, if we already know the answer, return it immediately.

4. Recurse, based on the fact that

hxn=i = fxn=i ⊕ gxn=i

5. Reduce the node we just created.

6. Add the result to the compute table.

A more detailed algorithm is given below. We use Level(f) to refer to the level of MDD node
f , Label(f) to refer to the label of terminal node f , and f [i] to refer to downward pointer i of
non-terminal node f .

Algorithm 7.1 Apply ⊕

• Terminal case:
k ← max(Level(f),Level(g));
if k = 0 then

return Terminal node with label Label(f)⊕ Label(g);
endif
• Add special cases here.
• Check compute table:
if ∃x such that (f,⊕, g, x) ∈ CT then • If ⊕ commutes, check also for (g,⊕, f, x)

return x;
endif
• Build new node and recurse.
for each i ∈ {0, . . . , nk − 1} do

if Level(f) = k then f ′ ← f [i]; else f ′ ← f ; endif
if Level(g) = k then g′ ← g[i]; else g′ ← g; endif
h[i]← Apply(f ′,⊕, g′);

endfor
• Check for redundant / duplicate nodes:
h′ ← Reduce(h);
• Add result to compute table:
CT ← CT ∪ {(f,⊕, g, h′)};
return h′;

Special cases for specific operators are given below:

+ (addition) :
if f = 0 then

return g;
endif

67

if g = 0 then
return f ;

endif

− (subtraction) :
if f = g then

return Terminal node 0;
endif
if g = 0 then

return f ;
endif

· (multiplication) :
if f = 0 ∨ g = 0 then

return Terminal node 0;
endif
if f = 1 then

return g;
endif
if g = 1 then

return f ;
endif

+ (boolean OR) :
if f = 1 ∨ g = 1 then

return Terminal node 1;
endif
if f = g then

return f ;
endif
if f = 0 then

return g;
endif
if g = 0 then

return f ;
endif

− (boolean, with 0− 1 ≡ 0) :
if f = 0 ∨ g = 1 ∨ f = g then

return Terminal node 0;
endif
if g = 0 then

return f ;
endif

68

· (boolean AND) :
if f = 0 ∨ g = 0 then

return Terminal node 0;
endif
if f = g then

return f ;
endif
if f = 1 then

return g;
endif
if g = 1 then

return f ;
endif

A similar algorithm can be used for unary operators, i.e., for computing a function h where
h(xK , . . . , x1) = 	 f(xK , . . . , x1).

Example 7.5

Suppose we have the following MDD forest, where S4 = S3 = S2 = S1 = {0, 1}. Again,
we draw duplicate terminal nodes for clarity; in practice there is a single terminal node
for each value.

0 1

x2

x1

0 1

0 1

x4

01

0 1

x2

x3

0 1

0 1

c

a

b e

d

In the forest,

• node a represents the function a(x4, x3, x2, x1) = ¬x1
• node b represents the function b(x4, x3, x2, x1) = x2 + ¬x1
• node c represents the function c(x4, x3, x2, x1) = x4 · x2 + ¬x1
• node d represents the function d(x4, x3, x2, x1) = x2

• node e represents the function e(x4, x3, x2, x1) = x3 · x2
To construct the MDD encoding the function

f(x4, x3, x2, x1) = c(x4, x3, x2, x1) + e(x4, x3, x2, x1) = x3 · x2 + x4 · x2 + ¬x1
we call Apply(c,+, e), which builds the following nodes:

69

1. Apply(c,+, e) will build a level 4 node:

0 1

x4f

a + e b + e

2. Apply(a,+, e) will build a level 3 node:

0 1

x3

a + 0 = a a + d

g

3. Apply(a,+, d) will build a level 2 node:

0 1

x2

a + 0 = a a + 1 = 1

Note that this node is a duplicate of node b; therefore, a+ d = b.

4. The constructed node for g = Apply(a,+, e) is:

0 1

x3

a b

g

5. Apply(b,+, e) will build a level 3 node:

0 1

x3

b + 0 = b b + d

h

6. Apply(b,+, d) will build a level 2 node:

0 1

x2

a + 0 = a 1 + 1 = 1

But this node is a duplicate of node b; therefore, b+ d = b.

7. The constructed node for h = Apply(b,+, e) is:

70

0 1

x3

b b

h

But this is a redundant node; therefore, b+ e = b.

8. The constructed node for f = Apply(c,+, e) is:

0 1

x4f

g b

After performing the operation, we have the following forest, where the new nodes f
and g represent the functions

f(x4, x3, x2, x1) = x3 · x2 + x4 · x2 + ¬x1
g(x4, x3, x2, x1) = a(x4, x3, x2, x1) + e(x4, x3, x2, x1) = ¬x1 + x3 · x2

0 1

x2

x1

0 1

0 1

x4

01

0 1

x2

x3

0 1

0 1

c

a

b e

d

x4f

x3g

0 1

0 1

7.2.2 Complexity of Apply operation

If a compute table is not used, the apply operation requires in the worst case to recurse until the
terminal nodes are reached, and the construction of a node with label xk generates nk recursive
calls. As such, the overall complexity will be

O(nK · · ·n2n1)

which is usually prohibitively high. In particular, if all variables have the same number of values
b, then the worst-case complexity is O(bK).

However, using a compute table, any duplicate recursive calls to apply will not require any work
(assuming O(1) time to check the compute table). Then, we can obtain the number of recursive

71

calls that will require work in the worst case as the number of possible distinct calls to apply. For
an apply function with a single MDD argument (e.g., logical negation), we can at most call apply
for every node in the MDD. For an apply function with two MDD arguments, we can at most call
apply for every possible pair of nodes (one taken from the left argument, one taken from the right
argument). Then, the cost of each distinct call to apply is O(nk) for a node created with variable
xk.

Property 7.5 For unary operations, a call to apply(p) requires O(η(p)) time, where η(p) denotes
the number of edges in the graph rooted at node p.

Property 7.6 For binary operations, a call to apply(p, q) requires no more than O(ν(p) · ν(q) · n)
time, where ν(p) denotes the number of nodes in the graph rooted at node p, and n = max{nK , . . . , n1}.

7.3 Using MDDs for CTL model checking of Petri nets

To utilize MDDs for CTL model checking, we must be able to describe each state as a collection
of K integer state variables. For a finite state machine, this implies that each state variable is
bounded. For simplicity, for now we will assume that these bounds are known.

Following the notation used earlier, we must be able to represent a boolean vector x of dimension
|S|, where S represents the set of states in the state machine. Instead, we will represent boolean
vectors x of dimension |SK × · · · × S1|. Since we have S ⊆ SK × · · · × S1, this will not be an
issue as long as the elements of x corresponding to “unreachable” states are zeroes. If we index
the vector x by the values of the K state variables, then it is straightforward to use an MDD to
encode vector x: simply encode the function f(xK , . . . , x1) = x[(xK , . . . , x1)]. Equivalently, this
can be interpreted as a set of states X with (xK , . . . , x1) ∈ X if and only if f(xK , . . . , x1) = 1. The
element-wise logical operations on vectors necessary for CTL model checking, namely, ¬x, x ∧ y,
and x ∨ y, can be performed using the apply operation discussed above.

Example 7.6

p1

p2 p3

p4 p5

t1

t2

t5

t3

t4

For the fork-join PN shown above, draw an MDD encoding the markings reachable from
[4, 0, 0, 0, 0].

Using K = 5 variables, each bounded by nk = 5, we obtain the following MDD.

72

1

p2

p3

p1 0 1 2 3 4

p4

p5

0 1 2 3 4

01234

0 1 2 3 4

0 1 2 3

0123 012

0 1 2

01

0 1

0

0

0 1 2 3 0 1 2 0 1 0

01234

1 1 1 1

To conserve space, we write the variable labels to the left of the figure, and use a “sparse”
representation for nodes. Any paths not displayed are assumed to go to terminal node
0. Looking at the MDDs rooted at variable p2 in the figure, these correspond to “n
tokens in places p2 and p3, and n tokens in places p4 and p5”, with n = 0 at the right
side of the figure, to n = 4 at the left side of the figure. Note that the MDD increases
by N + 4 nodes and 3N + 5 edges when N increases. As such, it can be shown that
the MDD encoding the set of markings reachable from [N, 0, 0, 0, 0], using the variable
order shown above, has (N2 + 9N + 10)/2 non-terminal nodes and (3N2 + 13N + 10)/2
edges. Thus, the storage requirements for this MDD grows as O(N2), while the number
of reachable states grows as O(N3).

The edge matrix E can be represented as a boolean matrix of dimension |S2K × · · · × S21 |.
Equivalently, this can be interpreted as a set of edges. While this is larger than the |S2| matrix used
earlier, this is not a problem as long as there are no edges from reachable states to unreachable ones.
We do not care if there are any edges from unreachable states to unreachable or reachable states. To
encode this as an MDD, we use twice as many state variables by creating a “primed” version of each
state variable. Traditionally, the unprimed variables correspond to the source state, while primed
variables correspond to the destination state. Thus, we encode the function g(xK , x

′
K , . . . , x1, x

′
1) =

E[(xK , . . . , x1), (x
′
K , . . . , x

′
1)]. The “interleaved” variable order usually produces a more compact

MDD than, say, the variable order g(xK , . . . , x1, x
′
K , . . . , x

′
1). Again, we can use the apply operation

to perform element-wise operations on sets of edges.

Example 7.7

For the fork-join Petri net and a bound of 5 tokens per place, we can construct the
MDD encoding of E by recognizing that E = Et1 ∨Et2 ∨Et3 ∨Et4 ∨Et5 , where Et are
the edges due to transition t. Each of these can be realized by an appropriate logical

73

expression, based on Petri net firing rules. For example,

Et1(p1, p
′
1, . . . , p5, p

′
5) = (p1 > 0) ∧ (p′1 == p1 − 1) ∧ (p′2 == p2 + 1) ∧

(p′3 == p3) ∧ (p′4 == p4 + 1) ∧ (p′5 == p5)

From these we can obtain the following MDD forest (some nodes are duplicated, for
clarity):

Et1 Et2 Et3 Et4 Et5

1

p3

p′3

0 1 2 3 4

43210

0 1 2 3

4321

p2

p′2

1 2 3 4

3210

p1

p′1

0 1 2 3

4321

p4

p′4

p5

p′5

0 1 2 3 4

43210

1

0 1 2 3 4

43210

0 1 2 3 4

43210

0 1 2 3

4321

1 2 3 4

3210

0 1 2 3 4

43210

1

0 1 2 3 4

43210

0 1 2 3 4

43210

0 1 2 3

4321

1 2 3 4

3210

0 1 2 3 4

43210

1

0 1 2 3 4

43210

0 1 2 3 4

43210

0 1 2 3

4321

1 2 3 4

3210

0 1 2 3 4

43210

1

0 1 2 3 4

43210

0 1 2 3

4321

1 2 3 4

3210

0 1 2 3 4

43210

1 2 3 4

3210

The overall set of edges E can be obtained by taking the set union (using apply) of
Et1 , . . . ,Et5 . Note that E will contain edges from unreachable markings. For example,
according to Et1 , there is an edge from marking [4, 0, 4, 0, 4] to marking [3, 1, 4, 1, 4];
however, marking [4, 0, 4, 0, 4] is not reachable from marking [4, 0, 0, 0, 0].

All that remains are the pre-image and post-image operations. These can be obtained either
by developing specialized recursive operations (similar to apply) just for pre-image and post-image,
or by combining several simpler operations. For example, the post-image operation x · E can be
performed by:

1. Treating x as a matrix with the “primed” variables having no effect, take the set intersection
of x and E. This will produce the set of edges in E with a source state in x.

2. On the resulting set of edges, perform an “existential quantification” over the unprimed vari-
ables. This operation can be done recursively: for each MDD node corresponding to an
unprimed variable, replace the node with the node encoding the set union of all its (exis-
tentially quantified) children. The result is the set of destination states, encoded using the
primed variables.

74

3. Relabel the resulting set so that the primed variables are replaced by unprimed ones. This is
a simple recursive operation.

A specialized algorithm essentially performs all three steps at once, which can be more efficient
since fewer nodes must be created and destroyed.

7.3.1 Generating reachable states

Because we typically construct E from the high-level formalism and allow it to contain edges from
unreachable states, we must generate the set of states reachable from the initial state(s) before we
can perform CTL model checking. (Typically, this is the most expensive step!) This can be done
entirely through MDD operations using the following simple algorithm:

Algorithm 7.2 Building the set of reachable states

s← initial states; • s stores known reachable states
f ← s; • f stores newly discovered states
while (f 6= ∅) do

g ← f · E; • Post-image operation
f ← g \ s; • g stores everything reachable from f
s← s ∪ f ;

return s;

Interestingly, the size of an MDD is not necessarily related to the size of the set of states it encodes.
For example, the MDD encoding of function f(xK , . . . , x1) = 0, namely terminal node 0, is just
as compact as the MDD encoding of function f(xK , . . . , x1) = 1. The first function encodes the
empty set, while the second function encodes the set SK×· · ·×S1, the largest possible set of states
for the given variables. As such, we could also use the algorithm:

Algorithm 7.3 Building the set of reachable states

s← initial states; • s stores known reachable states
x← ∅; • x stores the previous set of reachable states
while (s 6= x) do

g ← s · E; • g stores everything reachable from s
x← s;
s← s ∪ g;

return s;

Note that the comparison s 6= x is equivalent to comparison of pointers if s and x are stored in the
same MDD forest. Also, note that this algorithm uses fewer total MDD operations (a set difference
is saved). While the post-image operation s · E is done on increasingly larger sets of states, note
that

1. the time for this operation depends on the number of MDD nodes in s, which are not neces-
sarily growing.

2. if s accumulates more states in such a way that only a few MDD nodes in the representation
for s are updated at each iteration, then the recursive calls for s · E will often match entries
in the compute table. A similar argument can be made for s ∪ g.

Given the “symbolic” algorithm for performing the post-image operation, it is not difficult to modify
the algorithm to instead perform the pre-image operation.

75

7.3.2 CTL model checking

Once we have obtained the MDD encoding for matrix E, and the set of reachable states S encoded
as an MDD, we are ready to perform CTL model checking. The explicit algorithms described earlier
for CTL model checking can be adapted in a straightforward manner to the “symbolic” setting,
using the “symbolic” algorithm for pre-image. The only change is due to the fact that our E matrix
has “extra” rows and columns due to unreachable states. Thus, we must either

• set the rows and columns due to unreachable states to zero (by taking the set intersection
E ∩ (S × S), where E is the set of edges corresponding to E); or

• adapt the EX, EU, EG algorithms to work correctly for this larger E matrix, with appropriate
use of set intersections with S.

Both choices are reasonable.

76

Chapter 8

Linear Temporal Logic

Linear temporal logic, or LTL, is another commonly–used temporal logic. The name “linear”, as
opposed to “branching”, refers to the fact that formulas describe conditions along a single, linear
path, rather than allowing the possibility of the path to “branch” as it can in CTL. The temporal
operators are the same, but there are subtle differences in the semantics. Outside reference: Model
Checking, by Clarke, Grumberg, and Peled.

8.1 LTL syntax

LTL deals entirely with path formulas: formulas which can be, conceptually, verified along a single,
infinitely–long path. An LTL path formula ψ has the following syntax:

ψ ::= tt | ff | p | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | Fψ | Gψ | ψUψ

where p is an atomic proposition. Given an LTL path formula ψ and a model to check, we say the
model satisfies the formula if, for all paths starting in an initial state, the path formula ψ holds.
For consistency, we will write an overall LTL formula as Aψ, where ψ is a path formula. Thus, for
example, A FGX p is a valid LTL formula, but AF AG p is not. However, it is common to omit the
implied A path quantifier. Also, note that some people use © instead of X, � instead of G, and ♦
instead of F. Thus, while we write A FGX p, others could write ♦�© p to denote the same formula.

8.2 LTL semantics

We must give rules for which paths in a Kripke structure M = (S,S0,R, L) satisfy an LTL path
formula ψ, which we write as M,π |= ψ. When a path π does not satisfy path formula ψ, we
instead write M,π 6|= ψ. For the following, assume π = (p0, p1, . . .), and let πi denote the suffix of
π starting with pi, i.e., πi = (pi, pi+1, . . .).

1. M,π |= tt, for all paths.

2. M,π 6|= ff, for all paths.

3. M,π |= p, if and only if p ∈ L(p0).

4. M,π |= ¬ψ, if and only if M,π 6|= ψ.

77

5. M,π |= ψ1 ∧ ψ2, if and only if M,π |= ψ1 and M,π |= ψ2.

6. M,π |= ψ1 ∨ ψ2, if and only if M,π |= ψ1 or M,π |= ψ2.

7. M,π |= Xψ, if and only if M,π1 |= ψ.

8. M,π |= Fψ, if and only if there exists an i ≥ 0 such that M,πi |= ψ.

9. M,π |= Gψ, if and only if M,πi |= ψ for all i ≥ 0.

10. M,π |= ψ1Uψ2, if and only if there exists a j ≥ 0 such that

(a) M,πj |= ψ2, and

(b) M,πi |= ψ1 for all i < j.

Example 8.1

s1 s2 s3 s4 s5

p

s0

q

Does this model satisfy A (F p) U q?

Solution: There is only one path, π = (s0, s1, s2, s3, s4, s5, s5, . . .). First, check the
path against the definition for U: using j = 4, we have πj |= q. Then, check that
πi |= F p for all i < j. Since all of those hold, the answer is yes.

Example 8.2

s1 s2 s3 s4 s5

q

s0

p

Does this model satisfy A (F p) U q?

Solution: This is similar to the previous example: examine the only possible path,
π = (s0, s1, s2, s3, s4, s5, s5, . . .). Using j = 3, we have πj |= q, and πi |= F p for all i < j.
So the answer is yes.

Example 8.3

s1 s2 s3 s4 s5

p

s0

q

Does this model satisfy A (F p) U q?

Solution: Again, there is only one possible path, π = (s0, s1, s2, s3, s4, s5, s5, . . .). The
only j where πj |= q is j = 4. But π3 = (s3, s4, s5, s5, . . .) does not satisfy F p. So the
answer is no.

Example 8.4

78

s1 s2 s3 s4 s5

p

s0

q

s6

q

Does this model satisfy A (F p) U q?

Solution: There are two paths to consider. For the path π = (s0, s1, s2, s3, s4, s5, s5, . . .),
the analysis is the same as Example 8.1, and the path satisfies (F p) U q.

Now consider the other path, π = (s0, s1, s2, s6, s6, . . .). For j ≥ 3, we have πj =
(s6, s6, . . .) and πj |= q. Now, does πi |= F p for all i < j? For i = 0, the answer is no:
π0 = (s0, s1, s2, s6, s6, . . .), and none of those states satisfy p, so π0 6|= F p.

Therefore, the answer is no.

Example 8.5

s0 s1 s2

p p

Does this model satisfy A FG p?

Solution: The paths in this model can be described by the number of times the edge
from s0 to s0 is traversed before going to s1. Let

π0 = (s0, s1, s2, s2, . . .)

π1 = (s0, s0, s1, s2, s2, . . .)

π2 = (s0, s0, s0, s1, s2, s2, . . .)

...

and finally, there is the possibility of never leaving s0:

π∞ = (s0, s0, s0, . . .)

For finite n, we have πn+2
n = (s2, s2, . . .) and therefore πn+2

n |= G p, and πn |= FG p. But
the path π∞ also satisfies G p, and therefore π∞ |= FG p. Therefore, all paths satisfy
FG p, and the answer is yes.

Example 8.6

s0 s1 s2

p p

Does this model satisfy the CTL formula AF AG p?

79

Solution: Working inward, we first determine which states satisfy AG p: only s2. Next,
we determine which states satisfy AF AG p, knowing that only s2 |= AG p. The answer
is s1 and s2. Since the initial state s0 is not in this set, the answer is no.

Property 8.1

AF AG p 6≡ A FG p

Proof: from Example 8.5 and Example 8.6, there exists a Kripke structure that satisfies one formula
but not the other.

The previous two examples illustrate the difference between CTL and LTL: in CTL, by nesting
AF AG p, we must allow “branching” because we quantify over paths twice: for all paths, in the
future, for all paths, globally. In contrast, the LTL nesting A FG p (and any other nesting) only
quantifies over paths once: for all paths, in the future, globally.

8.3 Equivalences

Note: these are path formula equivalences. To prove such an equivalence, we must show that for
any path π, π satisfies the first path formula if and only if π satisfies the second path formula. To
disprove an equivalence, it suffices to find a path that satisfies one formula but not the other.

8.3.1 Negations

Property 8.2

¬Aψ ≡ E¬ψ
Proof: Follows from a similar property for ∀ and ∃.
As a consequence of Property 8.2 and the fact that ¬ψ is a valid path formula for any path formula
ψ, it is possible to use LTL model checking to test for existence of a path satisfying a formula.
Therefore, from now on, we will consider Eψ to be a valid LTL formula, where ψ is a path formula.

Property 8.3

¬Xψ ≡ X¬ψ
Proof:

π |= ¬Xψ ⇔ π 6|= Xψ

⇔ π1 6|= ψ

⇔ π1 |= ¬ψ
⇔ π |= X¬ψ

Property 8.4

Fψ ≡ ttUψ

Property 8.5

¬Gψ ≡ F¬ψ
We therefore have that ¬, ∧, X, and U are an adequate set of operators for expressing LTL path
formulas.

80

8.3.2 Conjunctions and disjunctions

Property 8.6

X(ψ1 ∧ ψ2) ≡ (Xψ1) ∧ (Xψ2)

X(ψ1 ∨ ψ2) ≡ (Xψ1) ∨ (Xψ2)

Property 8.7

F(ψ1 ∨ ψ2) ≡ (Fψ1) ∨ (Fψ2)

Property 8.8

G(ψ1 ∧ ψ2) ≡ (Gψ1) ∧ (Gψ2)

Property 8.9

(ψ1 ∧ ψ2) Uψ ≡ (ψ1 Uψ) ∧ (ψ2 Uψ)

ψU (ψ1 ∨ ψ2) ≡ (ψUψ1) ∨ (ψUψ2)

8.3.3 Redundant nesting

Property 8.10

FFψ ≡ Fψ

Property 8.11

GGψ ≡ Gψ

Property 8.12

ψ1 U (ψ1 Uψ2) ≡ ψ1 Uψ2

8.3.4 Recursion

Property 8.13

Fψ ≡ ψ ∨ XFψ

Property 8.14

Gψ ≡ ψ ∧ XGψ

Property 8.15

ψ1 Uψ2 ≡ ψ2 ∨ (ψ1 ∧ X (ψ1 Uψ2))

81

8.4 LTL model checking by tableau

A tableau–type algorithm for LTL model checking works by constructing a graph that encodes
obligations along paths, and the resulting graph allows us to easily determine if the original Kripke
structure satisfies the formula. We assume the original formula ψ is rewritten to contain only the
operators ¬, ∧, X, and U. Then, we build a list of relevant subformulas of ψ, called the closure of
ψ and denoted C(ψ), recursively as follows.

• C(tt) = C(ff) = ∅.

• If ψ = p, an atomic proposition, then C(ψ) = {p}.

• If ψ = ¬φ, then C(ψ) = C(φ).

• If ψ = φ1 ∧ φ2, then C(ψ) = {ψ} ∪ C(φ1) ∪ C(φ2).

• If ψ = Xφ, then C(ψ) = {ψ} ∪ C(φ).

• If ψ = φ1 Uφ2, then C(ψ) = {ψ} ∪ C(φ1) ∪ C(φ2).

Definition 8.16 The length of a path formula ψ, denoted as |ψ|, is given by

|ψ| ≡ |C(ψ)|.

Note that |ψ| is at most the total number of operators and propositions in the formula ψ.

8.4.1 Building the tableau graph

We build a tableau graph T = (V,E) where a vertex in the graph is a pair v = (sv, Lv), where sv
is a state of the Kripke structure, and Lv is a labeling for each of the subformulas in C(ψ), either
that are known to hold, or are obligated to hold. We denote this as a set of subformulas that hold,
so formally, we have V ⊆ S × 2C(ψ). We say a vertex v = (sv, Lv) satisfies φ, written v |= φ, if

• φ ∈ Lv, for φ ∈ C(ψ); or

• ¬φ /∈ Lv, for ¬φ ∈ C(ψ).

(We do this to reduce the size of C, to include “positives only”). Note that we implicitly have
v |= tt and v 6|= ff. We do not allow inconsistent labelings, according to the following rules. For
any vertex v = (sv, Lv):

L0. If p is an atomic proposition, then p ∈ Lv if and only if p ∈ L(sv).

L1. For φ = φ1 ∧ φ2, v |= φ if and only if v |= φ1 and v |= φ2.

L2. If v |= φ2, then v |= φ1 Uφ2 (if this formula belongs to C).

L3. If v |= φ1 Uφ2, then v |= φ1 or v |= φ2.

We add edges to the tableau graph according to the following rules. We add an edge from vertex
v = (sv, Lv) to vertex v′ = (s′v, L

′
v) if and only if:

82

E0. (sv, s
′
v) ∈ R (the edge matches one in the Kripke structure), and

E1. for every formula of the form Xφ ∈ C(ψ),

Xφ ∈ Lv if and only if v′ |= φ, and

E2. for every formula of the form φ1 Uφ2 ∈ C(ψ), if v |= φ1 and v 6|= φ2, then

φ1 Uφ2 ∈ Lv if and only if φ1 Uφ2 ∈ L′v.

Example 8.7

s0 s2

p

s1

s3

s5

s4

s6

s7

q

p,q p

q q

p

For the above Kripke structure, draw the tableau graph for formula ψ = X p ∧ X q.

Solution: First, note that we have C(ψ) = {p, q,X p,X q,X p ∧ X q}. We obtain the
following tableau graph, where vertices with no outgoing edges are omitted from the
drawing to save space.

s0, {Xp, Xq, Xp ^ Xq}

s0, {Xp}

s0, {Xq}

s2, {p, q, Xp}

s3, {q, Xq}

s1, {p, Xq} s4, {q, Xp}

s5, {p, Xp}

s6, {q, Xp}

s7, {p, Xp}

Example 8.8

s0 s1 s2

p p

s3

q

For the above Kripke structure, draw the tableau graph for formula ψ = pU q.

Solution: We have C(ψ) = {p, q, pU q}. For states satisfying p, we can choose to label
vertices with pU q or not. For states satisfying q, we must label with pU q. For states
satisfying neither p nor q, we cannot label with pU q. Taking care with the edge rules,
we can obtain the following tableau graph.

83

s0, {p}

s0, {p, pUq}

s1, {} s2, {p}

s2, {p, pUq} s3, {q, pUq}

Property 8.17 For a Kripke structure M = (S,S0,R, L), the tableau graph for formula ψ has at
most

2|ψ| · |S| states, and

2|ψ| · |R| edges.

8.4.2 Model checking with the tableau graph: theory

Suppose we have a tableau graph T = (V,E) for Kripke structure M and formula ψ, and want to
determine if M, s |= Eψ for some state s. What we would like to do is say something like

M, s |= Eψ if and only if ∃v = (s, Lv) ∈ V, v |= ψ.

There is a small problem with this, though. It is best illustrated by example.

Example 8.9

From the Kripke structure in Example 8.7, we have s0 |= E (X p∧X q), and in the tableau
graph, there is a vertex with state s0 labeled with X p ∧ X q. No other states satisfy
E (X p ∧ X q), and no other vertices are labeled with X p ∧ X q. This works fine.

Example 8.10

From the Kripke structure in Example 8.8, we have s0 6|= E pU q, but in the tableau
graph, there is a vertex with state s0 labeled with pU q.

Looking carefully at Example 8.10, we can see the problem: it is possible to have a vertex labeled
with a formula φ1 Uφ2, and yet have no path to a vertex satisfying φ2.

Definition 8.18 An eventuality sequence is an infinite path π = (v0, v1, . . .) in a tableau graph T
such that, for any vertex vi = (si, Li) in π, if there is a formula of the form φ1 Uφ2 in Li, then
there is a vertex vj in π with vj |= φ2, with i ≤ j.

Note: by construction of the tableau graph (rule E2), on an eventuality sequence, once we reach
a vertex labeled with a formula φ1 Uφ2, all following vertices will be labeled with φ1 Uφ2, until we
reach a vertex satisfying φ2. Because it is an eventuality sequence, it is guaranteed that we will
eventually satisfy φ2.

Example 8.11

84

Continuing Example 8.8, looking at the tableau graph, the infinite sequence

((s0, {p, pU q}), (s0, {p, pU q}, . . .)

is not an eventuality sequence, because we never reach a vertex labeled with q. The
infinite sequence

((s0, {p}), (s1, ∅), (s2, {p}), (s2, {p}), . . .)
is an eventuality sequence, because there are no φ1 Uφ2 formulas that never reach φ2.
Also, the infinite sequence

((s0, {p}), (s1, ∅), (s2, {p, pU q}), (s2, {p, pU q}), (s3, {q, pU q}), (s3, {q, pU q}, . . .)

is an eventuality sequence.

Property 8.19 M, s |= Eψ if and only if the tableau graph for ψ contains an eventuality sequence
starting from a vertex v with state s, and v |= ψ.

Proof →: If M, s |= Eψ, then there exists a path π = (s0 = s, s1, s2, . . .) with π |= ψ. For all i, let
vi = (si, Li) where, for all φ ∈ C(ψ), φ ∈ Li if and only if πi |= φ. Note vi is a valid vertex.

First, we must show that (v0, v1, . . .) is a path in the tableau graph. For each (vi, vi+1), rule
E0 is satisfied because π is a path. Rule E1 is satisfied because πi |= Xφ iff πi+1 |= φ. Rule E2 is
satisfied because if πi |= φ1 and πi 6|= φ2, then by Property 8.15 we have πi |= φ1 Uφ2 if and only if
πi+1 |= φ1 Uφ2.

Finally, we must show that (v0, v1, . . .) is an eventuality sequence:

φ1 Uφ2 ∈ Li → πi |= φ1 Uφ2 (by construction of Li)

→ ∃j ≥ i, πj |= φ2, π
i′ |= φ1, ∀i ≤ i′ < j

→ ∃j ≥ i, πj ∈ Lj , πi′ ∈ Li′ , ∀i ≤ i′ < j (by construction of Li, . . . , Lj)

Proof ←: Suppose there is an eventuality sequence (v0 = v, v1, v2, . . .), where vi = (si, Li). Let
π = (s0, s1, . . .). We will prove the stronger claim that πi |= ψ if and only if vi |= ψ, by induction
on the structure of ψ.

In the base case, ψ = p, an atomic proposition, and by labeling rule L0, vi |= p iff si |= p.

Now, assume it holds for all subformulas of ψ, and prove it holds for ψ.

If ψ = ¬φ , then πi |= ψ iff πi 6|= φ. By the inductive hypothesis, πi |= φ iff vi |= φ, and it follows
that πi |= ¬φ iff vi |= ¬φ.

If ψ = φ1 ∧ φ2 , then by the inductive hypothesis, πi |= φ1 iff vi |= φ1, and πi |= φ2 iff vi |= φ2.
From labeling rule L1, vi |= φ1 ∧ φ2 iff vi |= φ1 and vi |= φ2. It follows that πi |= φ1 ∧ φ2 iff
vi |= φ1 ∧ φ2.

If ψ = Xφ , then we have the following.

πi |= Xφ ⇔ πi+1 |= φ (definition of X)
⇔ vi+1 |= φ (by inductive hypothesis)
⇔ vi |= Xφ (by edge rule E1)

85

If ψ = φ1 Uφ2 , then we have

vi |= φ1 Uφ2 → vi |= φ2 ∨ vi 6|= φ2, vi |= φ1 (labeling rule L3)
→ vi |= φ2 ∨ vi 6|= φ2, vi |= φ1, vi+1 |= φ1 Uφ2 (edge rule E2)
→ πi |= φ2 ∨ πi |= φ1, vi+1 |= φ1 Uφ2 (inductive hypothesis)
→ πi |= φ2 ∨ (πi |= φ1, π

i+1 |= φ2 ∨ (πi+1 |= φ1 . . .))

→ ∃j ≥ i, πj |= φ2, π
i′ |= φ1,∀i ≤ i′ < j (eventuality sequence)

→ πi |= φ1 Uφ2

πi |= φ1 Uφ2 → ∃j ≥ i, πj |= φ2, π
i′ |= φ1,∀i ≤ i′ < j

→ ∃j ≥ i, vj |= φ2, vi′ |= φ1,∀i ≤ i′ < j (inductive hypothesis)
→ ∃j ≥ i, vj |= φ2, vj |= φ1 Uφ2, vi′ |= φ1,∀i ≤ i′ < j (labeling rule L2)
→ ∃j ≥ i, vj |= φ2, vi′ |= φ1 Uφ2, ∀i ≤ i′ ≤ j (edge rule E2)
→ vi |= φ1 Uφ2

Example 8.12

Continuing Example 8.7, we have s0 |= E (X p ∧ X q), because in the tableau graph, we
have the eventuality sequence

((s0, {X p,X q,X p ∧ X q}), (s2, {p, q,X p}), (s5, {p,X p}), (s7, {p,X p}), . . .)

which starts with a vertex for state s0, labeled with X p ∧ X q.

Example 8.13

Continuing Example 8.8, we have s0 6|= E pU q, because there is no eventuality sequence
starting with a vertex for state s0 labeled with pU q.

How do we find infinitely–long paths that satisfy a property in a finite graph? We look at the
strongly connected components (SCCs). This motivates the following definition and theorem.

Definition 8.20 A non-trivial1 SCC in a tableau graph is self–fulfilling if for every vertex v =
(sv, Lv) in the SCC, if there is a formula of the form φ1 Uφ2 in Lv, then there exists a vertex v′ in
the SCC with v′ |= φ2.

Property 8.21 For any vertex v in a self–fulfilling SCC C, there is an eventuality sequence starting
with v.

Proof: We construct an eventuality sequence as follows. If v is not labeled with any formula of the
form φ1 Uφ2, then choose some successor of v in C, and repeat. Otherwise, for each such formula,
there exists a vertex that satisfies φ2. Add a path from v that visits each of these vertices. Repeat
the process from the final vertex. Clearly, the resulting infinitely–long sequence is an eventuality
sequence.

Property 8.22 There is an eventuality sequence starting from vertex v if and only if there is a
path in the tableau graph from v to a self–fulfilling SCC.

1A SCC is non-trivial if it contains more than one state, or is a single state with a loop.

86

Proof →: Suppose there is an eventuality sequence starting from v. Let I be the set of vertices
that appear infinitely often in the sequence. Because the graph is finite, we must have |I| > 0,
and there is some non-trivial SCC C such that I ⊆ C. We will show that C is self–fulfilling, by
contradiction. Suppose there exists a vertex v′ ∈ C, labeled with φ1 Uφ2, and no vertex exists in C
satisfying φ2. By construction of the tableau graph, all successors of v′ must also be labeled with
φ1 Uφ2, and therefore all vertices in C are labeled with φ1 Uφ2. But since I ⊆ C, if we look at the
“end” of the eventuality sequence (after the point where all remaining vertices are in I), we have
vertices labeled with φ1 Uφ2 and no vertex satisfying φ2. But this is impossible, in an eventuality
sequence.

Proof ←: Suppose there is a path in the tableau graph from v to a self–fulfilling SCC C. Consider
some path (v0 = v, v1, v2, . . . , vj , v

′) where v′ ∈ C. From Property 8.21, there is an eventuality
sequence (v′, v′1, v

′
2, . . .). We show that (v0, . . . , vj , v

′, v′1, v
′
2, . . .) is also an eventuality sequence. For

any vertex vi, if it is labeled with φ1 Uφ2, then either φ2 holds for some vertex before reaching v′,
or not. If not, then v′ must also be labeled with φ1 Uφ2, and since (v′, v′1, v

′
2, . . .) is an eventuality

sequence, there is some v′j with v′j |= φ2.

Property 8.23 M, s |= Eψ if and only if, in the tableau graph for ψ, there is a path from a vertex
with state s, labeled with ψ, to a self–fulfilling SCC.

Proof: Follows immediately from Property 8.19 and Property 8.22.

8.4.3 Model checking with the tableau graph: algorithm

Based on the above discussion, we have the following algorithm for determining which states in a
Kripke structure satisfy Eψ for an LTL path formula ψ.

1. Build the tableau graph T = (V,E).

2. Determine the SCCs for T .

3. For each non-trivial SCC, determine if it is self–fulfulling or not:

(a) Build a list of all formulas of the form φ1 Uφ2 that label vertices in the SCC.

(b) For each formula in the list, check that some state in the SCC satisfies φ2.

4. Label all self–fulfilling SCC vertices as green, and any vertex that can reach a green vertex
as green.

5. s |= Eψ if and only if there is a green vertex (s, L) with ψ ∈ L.

What is the complexity of this algorithm? Step (1) is O(|T |) = O(|V | + |E|), as is Step (2).
Step (3) is O(|V |) in the worst case, Step (4) is O(|T |), and Step (5) gives us an answer for every
state in O(|V |). Therefore, from Property 8.17, the (worst case) complexity to check every state in
Kripke structure M = (S,S0,R, L) against LTL formula ψ is

O(2|ψ|(|S|+ |R|)).

Example 8.14

87

s0 s1 s2

p p

For the above Kripke structure, which states satisfy A FG p?
Solution: First, rewrite the formula in terms of E and U:

A FG p ≡ ¬E¬FG p

≡ ¬E¬F¬F¬p
≡ ¬E¬F¬(ttU¬p)
≡ ¬E¬(ttU¬(ttU¬p))

The subformulas of ψ are:

C(ψ) = C(ttU¬(ttU¬p))
= {ttU¬(ttU¬p)} ∪ C(tt) ∪ C(¬(ttU¬p))
= {ttU¬(ttU¬p)} ∪ C(ttU¬p)
= {ttU¬(ttU¬p), ttU¬p} ∪ C(tt) ∪ C(¬p)
= {ttU¬(ttU¬p), ttU¬p, p}.

For shorthand, though, we will use C(ψ) = {p,F¬p,F¬F¬p}. Now we can build the
tableau graph. First, we determine which vertices are in the graph according to the
labeling rules, noting that ¬p → F¬p and ¬F¬p → F¬F¬p. That leaves us with the
vertices

V = { (s0, {p,F¬p}), (s0, {p,F¬F¬p}), (s0, {p,F¬p,F¬F¬p}),
(s1, {F¬p}), (s1, {F¬p,F¬F¬p}),
(s2, {p,F¬p}), (s2, {p,F¬F¬p}), (s2, {p,F¬p,F¬F¬p}) }.

Rewriting the U edge restriction from vertex v to v′ for our specific formulas, we obtain:

1. If v |= p, then F¬p labels both v and v′, or neither.

2. If v |= F¬p, then F¬F¬p labels both v and v′, or neither.

These rules give us the following tableau graph.

s0, {p, F¬p}

s0, {p, F¬F¬p}

s0, {p, F¬p, F¬F¬p} s1, {F¬p, F¬F¬p}

s1, {F¬p} s2, {p, F¬p}

s2, {p, F¬F¬p}

s2, {p, F¬p, F¬F¬p}

self-fulfilling SCCs

88

In the graph, the indicated SCCs are self–fulfilling because the vertices satisfy ¬F¬p.
The others are not, because the vertices are all labeled with p, and therefore F¬p cannot
be satisfied. From the green vertices, we see that all states satisfy E F¬F¬p ≡ E FG p
(there exists a path where, eventually, we never see ¬p), and no state satisfies E¬FG p.
Therefore, all states satisfy A FG p.

8.5 LTL model checking with Büchi Automata

Another algorithm for LTL model checking is based on Büchi Automata2. Before we can understand
this algorithm, we must first cover some automata theory.

8.5.1 Büchi Automata

Basic idea

A Büchi Automaton is a finite state machine for accepting infinte words. The idea is similar to
deterministic and non-deterministic finite automata, except those are languages of finite words.
The idea is:

• Start in an initial state.

• Follow edges in finite automaton, according to “next input symbol”

• If we end up in an “accepting” state at the end of the input, then the word is accepted;
otherwise it is not accepted.

Example 8.15

a
a

b

b

The above DFA accepts finite words over alphabet {a, b} that end in “a”. It is deter-
ministic because in every state, there is at most one outgoing edge for each symbol.

Büchi automata are the same idea, except there’s a catch: because words are infinitely long, we
cannot “end up” in a state. We will need more interesting acceptance criteria. But first, some
definitions and terminology.

Definition 8.24 A (non-deterministic) ω-automaton is:

• Σ, a finite alphabet (symbols in the input words)

• Q, a finite set of states

• Q0, a non-empty set of initial states with Q0 ⊆ Q.

• ∆ ⊆ Q× Σ×Q, the transition relation

2See for example: M.Vardi and P. Wolper. “An Automata–Theoretic Approach to Automatic Program Verifica-
tion”. In LICS’1986, pp. 332–344, 1986.

89

• An acceptance condition, depending on the specific type of automaton (discussed below)

Definition 8.25 An input is an infinite word α = σ0σ1σ2 . . . ∈ Σω.

Definition 8.26 For an input word α = σ0σ1σ2 . . ., a run is an infinite sequence of states ρ =
q0, q1, q2, . . . ∈ Qω such that q0 ∈ Q0 and

(qi, σi, qi+1) ∈ ∆, ∀i

Definition 8.27 For a given run ρ = q0, q1, q2, . . . ∈ Qω, the set of states visited infinitely often is
denoted

Inf (ρ) = {q | q ∈ Q,∃ infinitely many i such that qi = q}

Note that the set Inf (ρ) can never be empty because Q is finite and ρ is not.

Standard Büchi automata

Definition 8.28 A (standard) Büchi automaton is an ω-automaton with

• F , a finite set of states with F ⊆ Q. A run ρ is accepting if and only if Inf (ρ) ∩ F 6= ∅.

Example 8.16

Consider the (standard) Büchi automaton given by:

a,b,c

a

0 1

2

b

c

a,b,c

with Σ = {a, b, c}, Q = {0, 1, 2}, Q0 = {0}, F = {1}. This is a deterministic automaton
because no state has more than one outgoing edge for the same symbol. Consider the
input word α = aaabcccccω. This produces the run 0, 0, 0, 0, 1, 1, 1, 1ω. This run is
accepting because state 1 ∈ F is visited infinitely many times. We can characterize the
words that produce accepting runs as words where b eventually appears, and appears
before any c.

Definition 8.29 The language accepted by automaton A, denoted L(A), is defined by

L(A) = {α | ∃ an accepting run in A for α}

Example 8.17

Consider the (standard) Büchi automaton given by:

90

a,b

0 1

2

b

a

a,b

b

with Σ = {a, b}, Q = {0, 1, 2}, Q0 = {0}, F = {1}. This is non-deterministic because
in state 0, if symbol b appears, we can either stay in state 0 or go to state 1. Consider
the input word α = babbbbω. There are many possible runs for this word, including:

• ρ = 0, 1, 2, 2, 2ω, which is not accepting because Inf (ρ) = {2} and so Inf (ρ)∩F = ∅.
• ρ = 0, 0, 0, 0, 0, 1, 1, 1, 1, 1ω, which is accepting because Inf (ρ) = {1} and so

Inf (ρ) ∩ F 6= ∅.

Because there is some accepting run for babbbbω, we have babbbbω ∈ L(A). Note that

L(A) = {α | α ends with only b’s}.

Example 8.18

Consider the (standard) Büchi automaton A given by:

a

q r
b

b

a

with Σ = {a, b}, Q = {q, r}, Q0 = {q}, F = {r}. What is L(A)?

Solution: State r is visited infinitely often if and only if the input word contains
infinitely many b’s. Therefore,

L(A) = {α | α contains infinitely many b’s}.

Generalized Büchi automata

Definition 8.30 A generalized Büchi automaton is an ω-automaton with

• F , a finite set of subsets of Q. A run ρ is accepting if and only if

Inf (ρ) ∩ F 6= ∅, ∀F ∈ F

Note that a standard Büchi automaton is the special case of a generalized Büchi automaton where
F = {F}.

Example 8.19

91

Consider the generalized Büchi automaton A given by:

a

q r
b

b

a

with F = {{q}, {r}}. What is L(A)?

Solution: For example, input word α = ababababab . . . produces the run ρ = q, r, q, r, q, r, q, r, . . .,
with Inf (ρ) = {q, r}. Since Inf (ρ) ∩ {q} 6= ∅ and Inf (ρ) ∩ {r} 6= ∅, this is an accepting
run and α ∈ L(A).

Notice that state q is visited infinitely often if and only if the input word contains
infinitely many a’s. State r is visited infinitely often if and only if the input word
contains infinitely many b’s. Since an accepting run must visit both state q and state r
infinitely often,

L(A) = {α | α contains infinitely many a’s and b’s}.

Also notice, this is different from using a standard Büchi automaton with F = {q, r},
which requires either that state q or state r is visited infinitely often.

Note: there are many other types of ω-automata, with various accepting conditions. For LTL
model checking, we need only standard and generalized Büchi automata.

8.5.2 Some important algorithms for Büchi Automata

Language Emptiness

Definition 8.31 The language emptiness problem: given a standard Büchi automaton A, deter-
mine if L(A) = ∅.

This problem is decidable. Clearly, L(A) 6= ∅ if and only if there exists some accepting run ρ
for some input word. An accepting run must visit some state q ∈ F infinitely often. Since there are
only finitely many states, this can happen only if there is a cycle containing q, and we can reach q
from an initial state. Thus we have the following algorithm.

1. Treating the Büchi automaton as a directed graph (ignoring the symbols), determine the
SCCs.

2. For any state in F that belongs to a non-trivial SCC, mark it as green.

3. For any state that can reach a green state, mark it as green.

4. L(A) 6= ∅ iff there exists a green state in Q0.

Example 8.20

Consider the (standard) Büchi automaton A given by:

92

aa,b

0 1

3

b

a

a,b

2
b

b

with Σ = {a, b}, Q = {0, 1, 2, 3}, Q0 = {0}, F = {1}. Is L(A) = ∅?
Solution: Running the algorithm:

1. The non-trivial SCCs are {0, 1, 2} and {3}.
2. State 1 ∈ F belongs to a non-trivial SCC, so mark it as green.

3. States 0 and 2 can reach 1, so mark those as green.

4. Since 0 ∈ Q0 and 0 is green, we conclude that L(A) 6= ∅.

Example 8.21

Consider the (standard) Büchi automaton A given by:

a

aa,b

0 1

4

b

a

a,b

2
b

b

3

b

with Σ = {a, b}, Q = {0, 1, 2, 3, 4}, Q0 = {0}, F = {1, 3}. Is L(A) = ∅?
Solution: Running the algorithm:

1. The non-trivial SCCs are {0}, {2}, {3}, and {4}.
2. State 3 ∈ F belongs to a non-trivial SCC, so mark it as green. (State 1 does not.)

3. No other states can reach a green state.

4. Since {0} = Q0 and 0 is not green, we conclude that L(A) = ∅.

Converting from generalized to standard Büchi

Given a generalized Büchi automaton A, can we build a standard Büchi automaton A′ such that
L(A) = L(A′)?

Answer: YES. First, the idea.

93

• Suppose the generalized Büchi automaton has F = {F0, F1, . . . , Fn−1} i.e., n sets of states
that must be visited infinitely often. Then, our standard Büchi automaton state will be:
which generalized Büchi automaton state we’re in, plus a counter that goes from 0 to n− 1.

• When the counter is i, if we visit a state in Fi, then increment the counter (modulo n) when
we consume the next input symbol.

• When the counter wraps around to 0, we have seen a state in Fi for all i.

• Because each set Fi is finite, if the counter wraps around to 0 infinitely many times, then the
generalized Büchi acceptance condition is met.

Example 8.22

Consider the generalized Büchi automaton A from Example 8.19:

a

q r
b

b

a

with F = {F0, F1}, F0 = {q}, F1 = {r}. Build an equivalent standard Büchi automaton.

Solution We can add a counter with values {0, 1}. If the counter is 0 and the state is
q, then outgoing edges should set the counter to 1. If the counter is 1 and the state is
r, then outgoing edges should set the counter to 0. That gives us:

a

q, 0 r, 0

q, 1 r, 1

b
b

a

a

b

a

b

Note: between any two visits to state (q, 0), we must visit state (r, 1) because all paths
from (q, 0) to (q, 0) pass through (r, 1). Thus, if (q, 0) is visited infinitely often, so is
(r, 1). So our standard Büchi automaton can use accepting condition F = {(q, 0)}.

Given a generalized Büchi automaton A = (Σ, Q,Q0,∆,F) with F = {F0, . . . , Fn−1}, we can
build the standard Büchi automaton A′ = (Σ, Q′, Q′0,∆

′, F ′) with

• Q′ = Q× {0, 1, . . . , n− 1}, i.e., state plus the counter

• Q′0 = Q0 × {0}, i.e., the counter starts at 0

• F ′ = F0 × {0}

94

• (qi, c), a, (qj , d) ∈ ∆′ if and only if both:

– (qi, a, qj) ∈ ∆

– If qi ∈ Fi and c = i, then d = (c+ 1) mod n, otherwise d = c.

where the first part of the rule handles edges in the original automaton and the second part
of the rule handles the counter.

It can be shown that L(A) = L(A′).

Product construction

Given two standard Büchi automata

• A1 = (Σ, Q1, Q01,∆1, F1)

• A2 = (Σ, Q2, Q02,∆2, F2)

define the product automaton A1 ×A2 = (Σ, Q,Q0,∆,F) as

• Q = Q1 ×Q2

• Q0 = Q01 ×Q02

• F = {F1 ×Q2, Q1 × F2}
• (q1, q2), a, (q

′
1, q
′
2) ∈ ∆ if and only if q1, a, q

′
1 ∈ ∆1 and q2, a, q

′
2 ∈ ∆2.

Note that this is a generalized Büchi automaton.

Property 8.32 Word α produces run ρ1 = q0, q1, q2, . . . in A1, and produces run ρ2 = r0, r1, r2, . . .
in A2, if and only if it produces run ρ1 × ρ2 = (q0, r0), (q1, r1), . . . in A1 ×A2.

Proof →: Let ρ1 be a run for α in A1, and ρ2 be a run for α in A2. By definition of a
run, we have (qi, a, qi+1) ∈ ∆1 ∀i and (ri, a, ri+1) ∈ ∆2 ∀i. By construction of ∆, we have
((qi, ri), a, (qi+1, ri+1)) ∈ ∆ ∀i. Thus ρ1 × ρ2 is a run for α in A1 ×A2.

Proof←: Let ρ1×ρ2 = (q0, r0), (q1, r1), . . . be a run for α in A1×A2. Then we have ((qi, ri), a, (qi+1, ri+1)) ∈
∆ ∀i. But by definition of ∆, this says (qi, a, qi+1) ∈ ∆1 ∀i and (ri, a, ri+1) ∈ ∆2 ∀i. Thus ρ1 is a
run for α in A1, and ρ2 is a run for α in A2.

Property 8.33 L(A1 ×A2) = L(A1) ∩ L(A2).

Proof:

α ∈ L(A1 ×A2) ↔ There is an accepting run ρ1 × ρ2 on α in A1 ×A2

↔ Run ρ1 × ρ2 on α in A1 ×A2 has

Inf (ρ1 × ρ2) ∩ (F1 ×Q2) 6= ∅ and

Inf (ρ1 × ρ2) ∩ (Q1 × F2) 6= ∅
↔ Run ρ1 on α in A1 has Inf (ρ1) ∩ F1 6= ∅

and run ρ2 on α in A2 has Inf (ρ2) ∩ F2 6= ∅
↔ There is an accepting run ρ1 on α in A1, and

there is an accepting run ρ2 on α in A2

↔ α ∈ L(A1) and α ∈ L(A2)

95

Example 8.23

Consider the Büchi automaton A1 given by:

a

q r
b

b

a

with F = {r}, and the Büchi automaton A2 given by:

a

x y
b

b

a

with F = {x}. It can be seen that

L(A1) = {α | α contains infinitely many b’s}
L(A2) = {α | α contains infinitely many a’s}

The product automaton A1 ×A2 is given by:

a

q, x r, x

q, y r, y

bb

a

a

b

a

b

with F = {{rx, ry}, {qx, rx}}, and note that

L(A1 ×A2) = {α | α contains infinitely many a’s and b’s}.

Also notice that states (q, y) and (r, x) are unreachable! If we eliminate those states,
we obtain a generalized Büchi automaton that is essentially the same as the one in
Example 8.19.

Example 8.24

Consider the Büchi automaton A3 given by:

2

a,ba

0 1
b

b

a

96

with F = {1}. It can be seen that

L(A3) = {α | α contains finitely many a’s, followed by infinitely many b’s}.

Note that we might draw this without state 2; any run in which symbol a is consumed
in state 1 would either produce a finite run, or go to an imaginary “bad” state (in this
case, state 2) from which it is impossible to reach any state in F . In any case, such a
run would not be an accepting run. For this example, we include state 2 with dotted
lines to show that its omission does not affect the result.

Using A2 from Example 8.23, the product automaton A3 ×A2 is:

a

b

b

a

2, x

2, y

a

0, x 1, x

0, y 1, y

bb

a

a

b

a

b

with F = {{states with 1}, {states with x}} = {F1, F2}, where F1 = {(1, x), (1, y)} and
if state 2 is omitted, F2 = {(0, x), (1, x)} otherwise F2 = {(0, x), (1, x), (2, x)}. Now,
state (1, x) cannot be reached from the initial state, so to satisfy F1 we must visit state
(1, y) infinitely often. But we cannot do this and visit state (0, x) or (2, x) infinitely
often. So, there is no accepting run for this automaton. This makes sense, because

L(A3 ×A2) = {α | α contains finitely many a’s, followed by infinitely many b’s

and α contains infinitely many a’s} = ∅.

8.5.3 LTL model checking

LTL model checking using Büchi automata is based on the following idea3:

1. We will use the alphabet Σ = 2P , i.e., each symbol is a subset of P, the set of atomic
propositions. The infinite words as input can be thought of as encoding the set of propositions
that hold in each step.

2. Build a standard Büchi automaton AM from the Kripke structure M , to encode the paths
possible from the Kripke structure. More specifically we build AM such that

Lang(AM) = {α | There is a path π through the Kripke structure that produces

the sequence of sets of atomic propositions α; formally

L(πi) = αi,∀i}.

We will discuss this in more detail, below.

3M.Vardi and P. Wolper. “An Automata–Theoretic Approach to Automatic Program Verification”. In LICS’1986,
pp. 332–344, 1986.

97

3. For path formula ψ, build a standard Büchi automaton Aψ, to encode the paths (in any
Kripke structure) that satisfy ψ. More specifically,

Lang(Aψ) = {α | If path π has L(πi) = αi,∀i then π |= ψ}
We will discuss this in more detail, below. Note that the algorithm will give a generalized
Büchi automaton, and we may need to run the conversion algorithm to get an equivalent
standard Büchi automaton.

4. Build the product automaton AM × Aψ. Note that Lang(AM × Aψ) corresponds to the set
of paths both through the Kripke structure M and that satisfy ψ.

5. Do a language emptiness check on automaton AM × Aψ. We have M |= Eψ if and only if
Lang(AM ×Aψ) 6= ∅.

We have already discussed all the steps above, except for step (2) which is easy, and step (3) which
is difficult.

Kripke to Büchi conversion:

Informally, the idea is to make a copy of the Kripke structure, except we add a new state i which
serves as the initial state, and edges in the Büchi automaton are labeled with the set of atomic
propositions that hold in the destination state. Formally, given a Kripke structureM = (S,S0,R, L)
with atomic propisitions P, build Büchi automaton AM = (Σ, Q,Q0,∆, F) with

• Σ = 2P (symbols are sets of atomic propositions)

• Q = S ∪ {i} (i is a new initialization state)

• Q0 = {i}
• F = Q (every state is accepting)

• (s, L(s′), s′) ∈ ∆ if and only if (s, s′) ∈ R or s = i, s′ ∈ S0.
Example 8.25

Using Kripke structure for the CD player from Example 3.1 shown below,

s0 s1 s2 s3

r q p, q

we build the following Büchi automaton:

s0 s1 s2 s3

{r}

{q} {p, q}

i

{}

{}

{}

{r}

{r}

{q}

{q}

{p, q}

98

Since all states are accepting, all runs are accepting runs, and correspond to paths in
the Kripke structure. For example, the Kripke structure path

s0, s1, s2, s1, s2, s1, s2, . . .

produces the sequence of sets

{}, {r}, {q}, {r}, {q}, {r}, {q}, . . .

and note that this word is accepted by the Büchi automaton.

Path formula to Büchi conversion:

The idea here is:

• Use an algorithm that recursively processes formula ψ, and builds a graph

• From the graph, we will build a generalized Büchi automaton. Essentially, we will need to
label the graph edges and determine the set F .

• Formula ψ cannot contain F or G operators (we can rewrite these using U).

• Formula ψ must be written in “negation normal form”, which means negations are allowed
only directly before atomic propositions. Any formula can be written this way, using the
following transformations:

¬(ψ1 ∧ ψ2) ≡ (¬ψ1) ∨ (¬ψ2)

¬(ψ1 ∨ ψ2) ≡ (¬ψ1) ∧ (¬ψ2)

¬Xψ ≡ X¬ψ
¬(ψ1 Uψ2) ≡ (¬ψ1) R (¬ψ2)

¬(ψ1 Rψ2) ≡ (¬ψ1) U (¬ψ2)

Operator R is the “release” operator, which we have not seen before, and is defined as the
dual of U. Formally,

π |= pR q iff ∀j ≥ 0, if ∀0 ≤ i < j, πi 6|= p then πj |= q.

and note that if we take the negation of this, we have4

π 6|= pR q iff ¬
(
∀j ≥ 0, (∀0 ≤ i < j, πi 6|= p) → (πj |= q)

)
π 6|= pR q iff ∃j ≥ 0, ¬

(
(∀0 ≤ i < j, πi 6|= p) → (πj |= q)

)
π 6|= pR q iff ∃j ≥ 0, (∀0 ≤ i < j, πi 6|= p) ∧ (πj 6|= q)

π 6|= pR q iff ∃j ≥ 0, (πj |= ¬q) ∧ (∀0 ≤ i < j, πi |= ¬p)
π 6|= pR q iff π |= ¬pU¬q.

Also, note that
G q ≡ ¬F¬q ≡ ¬(ttU¬q) ≡ ffR q

4Recall that ¬(a→ b) ≡ a ∧ ¬b.

99

which also follows easily from the definition of R above.

Since all the above transformations “push negations inside”, we can apply them repeatedly
until all negations are in front of atomic propositions.

Example 8.26

Write FG p in negative normal form, without operators F and G.

Solution:

FG p ≡ ttU (ffR p)

Example 8.27

Write ¬FG p in negative normal form, without operators F and G.

Solution:

¬FG p ≡ ¬ (ttU (ffR p)) ≡ ffR¬(ffR p) ≡ ffR (ttU¬p)

The translation algorithm builds a graph, where each node in the graph has the following data.

• Old: the set of (sub)formulas already processed for the node.

• New: the set of (sub)formulas still to process for the node.

• Next: the set of (sub)formulas that must hold in the next node in the graph.

• Incoming: the set of edges pointing to this node.

Note that for a node n, n.Old ∪ n.New is the set of formulas that should hold on paths starting
here. The algorithm is given in detail below. The idea is to “expand” nodes, recursively. At each
step, we will either

• replace a node with a new one (we will modify nodes “in place” instead); or

• split a node in half, which happens whenever there is an “OR”. In this case we “clone” a
node by copying all data, and after splitting we further expand the nodes, separately.

Algorithm 8.1 ψ to graph translation

nodeset translate(formula f)
{

n← new node;
n.Old ← ∅;
n.New ← {f};
n.Next ← ∅;
n.Incoming ← {init};
return expand(n, ∅);

}

100

nodeset expand(node n, nodeset N)
{

if n.New == ∅ then
if ∃m ∈ N,m.Old == n.Old ∧ m.Next == n.Next then

// m duplicates n; use m instead and redirect edges
m.Incoming ← m.Incoming ∪ n.Incoming ;
// discard n by not adding it to N here
return N ;

else
// Add n to the graph and keep processing
N ← N ∪ {n};
n′ ← new node;
n′.Old ← ∅;
n′.New ← n.Next ;
n′.Next ← ∅;
n′.Incoming ← {n};
return expand(n′, N);

endif
endif

// n.New is not empty; more processing to do

choose some f ∈ n.New ;
n.New ← n.New \ {f};
if f ∈ n.Old then

// No need to process f again
return expand(n, N);

endif
n.Old ← n.Old ∪ {f};

// Remainder of algorithm: process f based on the type of formula

if f ∈ P or ¬f ∈ P or f == ff or f == tt then
// f is a trivial formula
if f == ff or ¬f ∈ n.Old then

// Logical impossibility, discard this node
return N ;

else
// No additional processing needed for this formula, keep expanding
return expand(n, N);

endif

elseif f == g ∧ h then
n.New ← n.New ∪ {g, h};
return expand(n, N);

101

elseif f == g ∨ h then
// Split
n′ ← clone of n; // Copy all data from n into new node n′

n.New ← n.New ∪ {g};
n′.New ← n′.New ∪ {h};
return expand(n, expand(n′, N));

elseif f == X g then
n.Next ← n.Next ∪ {g};
return expand(n, N);

elseif f == gUh then
// Split, using recurrence gUh ≡ h ∨ (g ∧ X(gUh))
n′ ← clone of n;
n.New ← n.New ∪ {h};
n′.New ← n′.New ∪ {g};
n′.Next ← n′.Next ∪ {gUh};
return expand(n, expand(n′, N));

elseif f == g Rh then
// Split, using recurrence g Rh ≡ (g ∧ h) ∨ (h ∧ X(g Rh))
n′ ← clone of n;
n.New ← n.New ∪ {g, h};
n′.New ← n′.New ∪ {h};
n′.Next ← n′.Next ∪ {g Rh};
return expand(n, expand(n′, N));

endif
}

Example 8.28

Run the translation algorithm on the formula ψ = X p ∧ X q.

Solution:

1. Start with a node “init”, pointing to a new node n with n.New = {X p∧X q}, and
then call expand() on that node:

init

Old: {}

New: {Xp ^ Xq}

Next: {}

2. Choose formula f = X p∧X q from n.New ; remove it from n.New , add it to n.Old ,
and then process the “and”: add X p and X q to n.New . That gives us:

init

Old: {Xp ^ Xq}

New: {Xp, Xq}

Next: {}

102

3. Choose (say) formula f = X p from n.New ; remove it from n.New , add it to n.Old ,
and process the “X”: add p to n.Next . Do the same for X q. That gives us:

init

Old: {Xp ^ Xq, Xp, Xq}

New: {}

Next: {p, q}

4. Since n.New is now empty, we complete the node by adding it to the graph and
adding a child node n′ with n′.New = n.Next . That gives us:

init

Old: {Xp ^ Xq, Xp, Xq}

New: {}

Next: {p, q}

Old: {}

New: {p, q}

Next: {}

5. Choose formula f = p and process it (just move it from New to Old). Do the same
with f = q. Since New is now empty, complete the node by adding it to the graph
and adding a child node n′ with n′.New = n.Next . That gives us:

init

Old: {Xp ^ Xq, Xp, Xq}

New: {}

Next: {p, q}

Old: {p, q}

New: {}

Next: {}

Old: {}

New: {}

Next: {}

6. Since this node has an empty New , complete it by adding it to the graph and
adding a child node. That gives us:

init

Old: {Xp ^ Xq, Xp, Xq}

New: {}

Next: {p, q}

Old: {p, q}

New: {}

Next: {}

Old: {}

New: {}

Next: {}

Old: {}

New: {}

Next: {}

7. When this node is completed, we discover that it duplicates its parent node, so we
discard it and redirect all incoming edges to the parent node. We terminate with
the graph:

init

Old: {Xp ^ Xq, Xp, Xq}

New: {}

Next: {p, q}

Old: {p, q}

New: {}

Next: {}

Old: {}

New: {}

Next: {}

Now, how do we convert the graph into a Büchi automaton? Informally, the idea is:

• Label edges with all subsets of atomic propositions that are consistent with propositions and
their negations listed in the destination node’s Old set.

• Define an accepting condition similar to the tableau rule where until formulas must be even-
tually satisfied.

Formally, if we use Algorithm 8.1 to build a nodeset N for a formula ψ, we build the Büchi
automaton (Σ, Q,Q0,∆,F) as follows.

• Σ = 2P

103

• Q = N ∪ {init}
• Q0 = {init}
• (q, A, q′) ∈ ∆ if and only if q ∈ q′.Incoming (i.e., there’s an edge from q to q′ in the graph)

AND A ⊆ P is a set of propositions that satisfy the conjunction of all propositions and
negated propositions in q′.Old .

• F = {F1, F2, . . . , Fu} where each Fi is an accepting set for some until subformula and u is the
total number of until subformulas. Specifically, for each subformula gUh, add an accepting
set

Fi = {q | h ∈ q.Old ∨ gUh 6∈ q.Old}
If there are no until subformulas, then use F = {Q}.

Example 8.29

What is the Büchi automaton for ψ = X p ∧X q?

Solution: Convert the graph obtained in Example 8.28 into a Büchi automaton. That
gives us

init

n2

p, q

n3n1

Xp ^ Xq, Xp, Xq
{}, {p}, {q},

{p, q}
{p, q} {}, {p}, {q},

{p, q}

{}, {p}, {q}, {p, q}

where each node is given a name and we show its Old set. Note that Σ = {{}, {p}, {q}, {p, q}}
and F = {init , n1, n2, n3} (making this a standard Büchi automaton) because there are
no until formulas.

Example 8.30

s0 s2

p

s1

s3

s5

s4

s6

s7

q

p,q p

q q

p

Does the above Kripke structure satisfy E (X p ∧ X q)?

Solution: First, convert the Kripke structure into a Büchi automaton:

s0 s2

{p}
s1

s3

s5

s4

s6

s7

{q}

{p, q} {p}

{q}

{q}

{p}i
{}

{p}

{p}

{p}

104

Then, take the product of this and the Büchi automaton obtained in Example 8.29. If
we start from the initial state and consider only states that can be reached, we obtain:

{p}init, i n1, s0 n2, s2 n3, s5 n3, s7
{p}{p}{p,q}{}

with F = {Fψ × QK , Qψ × FK} where QK , Qψ are the states in the automata for the
Kripke structure and the formula ψ, and FK , Fψ are the accepting states in the automata
for the Kripke structure and the formula ψ. In this case, FK = QK and Fψ = Qψ and
so we have F = {set of all states}. Therefore, this is also a standard Büchi automaton
where F is the set of all states.

Finally, we check if the langage accepted by this automaton is empty. Running the
algorithm:

1. There is one non-trivial SCC, namely the state (n3, s7).

2. This state belongs to F , so mark it as green.

3. All states can reach this one, so mark everything else as green.

4. The initial state is green, therefore L(A) 6= ∅.

Because the language is non-empty, there exists a path satisfying the formula. Therefore,
the model satisfies E (X p ∧ X q).

Example 8.31

s0 s1 s2

p p

Use Büchi automata to show this model satisfies A FG p.

Solution: We know from Example 8.5 that the property holds. Following the steps:

1. The alphabet we need is Σ = {{}, {p}}.
2. Build a standard Büchi automaton AM for the Kripke structure:

s0 s1 s2

{p} {p}

i {p}{p} {}

Recall that F is the set of all states.

3. Build a standard Büchi automaton Aψ. First, we need to convert our formula into
an “existence” property:

A FG p ≡ ¬E¬FG p

Now, write ψ = ¬FG p in negative normal form, without operators F and G. From
Example 8.27, we have

A FG p ≡ ¬E¬FG p ≡ ¬E ffR (ttU¬p)

105

Next, run the translation algorithm for ψ = ¬E ffR (ttU¬p). This gives us the
automaton:

init

n1

Old: ff R (tt U !p), tt U !p

Next: ff R (tt U !p), tt U !p

n2

Old: ff R (tt U !p), tt U !p, !p

Next: ff R (tt U !p){}, {p}

{}

{}, {p} {}

{}, {p} {}

There is a single until formula, ttU¬p, giving us an accepting set of states whose
Old set either contains ¬p, or does not contain ttU¬p. Therefore F = {{n2}} or
equivalently we have a standard Büchi automaton with F = {n2}.

4. Build the product automaton AM×Aψ, which gives us (if we eliminate unreachable
states):

{p}

i, init

s0, n1

s1, n1

s2, n1

s1, n2

{p}

{p}
{p}

{p}

{}

{}

with acceptance condition F = {{all states}, {states with n2}} which is equivalent
to a standard Büchi automaton with F = {(s1, n2)}.

5. Is L(AM ×Aψ) empty?

YES: there is no way to visit (s1, n2) infinitely often.

→ the model does not satisfy Eψ = E¬FG p

→ the model does satisfy ¬Eψ = ¬E¬FG p = A FG p

Complexity of LTL model checking with Büchi automata:

1. The size of the alphabet is O(2|P|), which can be represented with |P| bits.

2. The size of AM and the cost to build it is linear in the size of the Kripke structure: O(|S|+|R|).

3. It can be shown that the worst case size of Aψ is O(2|ψ|).

4. The size of AM ×Aψ (and the cost to build it) is at most the product of the sizes of AM and
Aψ, which is at most O(2|ψ|(|S|+ |R|)).

5. Checking for language emptiness can be done in time that is linear in the size of the automaton
we are checking.

Therefore, using Büchi automata has the same worst-case complexity as using the tableau method.

106

8.6 Is a faster algorithm possible?

Both the tableau–based methods and Büchi–based methods for LTL model checking have worst-
case complexity O(2|ψ|(|S|+|R|)). Can we do better? How “hard” is LTL model checking, anyway?
We will look at a fragment of LTL in some detail, and summarize other results from the literature5.

Definition 8.34 Φ(X) denotes the set of all path formulas using operators from the set X .

For example, given any LTL path formula, we can find an equivalent one in the set Φ(¬,∧,X,U).

8.6.1 Model checking Φ(¬,∧,F)

Definition 8.35 For any sequence of states σ = (s0, s1, s2, . . .), define:

Inf (σ): the set of states appearing infinitely often in σ

tail(σ): the smallest j such that si ∈ Inf (σ), ∀i ≥ j

size(σ) = tail(σ) + |Inf (σ)|

Property 8.36 For any paths π = (p0, p1, . . .) and σ = (s0, s1, . . .) with tail(π) = tail(σ), p0 = s0,
pj = sj ∀j < tail(π), and Inf (π) = Inf (σ), then for all φ ∈ Φ(¬,∧,F),

1. ∀i < tail(π),
πi |= φ if and only if σi |= φ.

2. ∀i, i′ ≥ tail(π), with pi = si′,

πi |= φ if and only if σi
′ |= φ.

Proof by induction on formula structure: In the base case, φ is an atomic proposition, and
the result holds trivially.
Now, assume it holds for all subformulas of φ, and prove it holds for φ. The cases φ = ¬φ1,
φ = φ1 ∧ φ2 are trivial. Now, consider φ = Fφ1 and suppose πi |= Fφ1. Then by definition, there
is a j ≥ i such that πj |= φ1.

1. Suppose i < tail(π). If j < tail(π), then we have pj = sj and by the inductive hypothesis,
σj |= φ1; therefore, σi |= Fφ1. Otherwise, j ≥ tail(π), and we have pj ∈ Inf (π) = Inf (σ).
Therefore, there exists a j′ ≥ tail(π) such that sj′ = pj. By the inductive hypothesis, σj

′ |= φ1,
and since j′ > i, σi |= Fφ1.

2. Suppose i ≥ tail(π). Then both pi and pj appear infinitely often in π and in σ. Therefore, for
any i′ such that pi = si′, there exists j′ ≥ i′ such that pj = sj′. By the inductive hypothesis,
σj
′ |= φ1, and therefore σi

′ |= Fφ1.
5Some references:

• A. Sistla and E. Clarke, “The Complexity of Propositional Linear Temporal Logics”. Journal of the Association
for Computing Machinery 32 (3), pp. 733–749. 1985.

• M. Bauland et al., “The Tractability of Model Checking for LTL: The Good, the Bad, and the Ugly Fragments”.
ACM Transactions on Computational Logic 12 (2). 2011.

107

Property 8.37 (Sistla and Clarke) There is a path satisfying ψ ∈ Φ(¬,∧,F) if and only if there
is a path π |= ψ with size(π) ≤ |ψ|.

Property 8.38 (Sistla and Clarke) The problem of checking whether some path satisfies a for-
mula ψ in Φ(¬,∧,F) is in NP.

Proof: We give a nondeterministic algorithm that verifies if a path satisfies ψ, as follows.

1. Guess a finite sequence (s0, s1, . . . , sn), these will form the first part of the path π.

2. Guess the states in Inf (π). From Property 8.36, the path will satisfy ψ or not, regardless of
the order in which these states are visited. Also, note that Property 8.37 says that the total
number of guesses in these first two steps is at most the size of formula ψ.

3. Verify that (s0, s1, . . . , sn) is a valid path in the Kripke structure, and that there is an edge
from sn to some state in Inf (π).

4. Verify that the subgraph of the Kripke structure, containing only the states Inf (π), is strongly–
connected.

5. Label the states in (s0, . . . , sn) and all states in Inf (π) using the following recursive algorithm.

(a) For atomic proposition p, state s is labeled with p iff p ∈ L(s).

(b) For φ = ¬φ1, label s with φ iff s is not labeled with φ1.

(c) For φ = φ1 ∧ φ2, label s with φ iff s is labeled with φ1 and φ2.

(d) For φ = Fφ1, if some s′ ∈ Inf (π) is labeled with φ1, then label all s with φ. If si is
labeled with φ1, then label all sj with φ, for j ≤ i.

6. The algorithm returns “yes” if s0 is labeled with ψ.

Note that the above algorithm requires polynomial time in the size of the Kripke structure, and of
the formula ψ.

Property 8.39 (Sistla and Clarke) The problem of checking whether some path satisfies a for-
mula ψ in Φ(¬,∧,F) is NP–Complete.

Proof: From Property 8.38, we know this problem is in NP. We complete the proof by showing
how an existing NP–Complete problem (namely, 3SAT) can be transformed to checking a formula
in Φ(¬,∧,F).

Suppose we are given a 3SAT instance with variables x1, x2, . . . , xn, and formula f = C1 ∧ C2 ∧
· · · ∧ Cm, where each clause Ci is the disjunction of exactly three literals:

Ci = li,1 ∨ li,2 ∨ li,3

where li,j is either xk or ¬xk, for some 1 ≤ k ≤ n.
We build a Kripke structure M = (S,S0,R, L) as follows, with atomic propositions c1, . . . , cm.

• S = {y0, x0, x′0, y1, x1, x′1, . . . , xn, x′n, yn}

• S0 = {y0}

108

x1

y1

x2

y2

x3

y3

x4

y4

x5

y5

x’1 x’2 x’3 x’4 x’5

y0

Figure 8.1: Kripke structure for a 3SAT instance with n = 5 variables

• R = {(y0, x0), (y0, x′0), (x0, y1), (x′0, y1), . . . , (yn−1, xn), (yn−1, x
′
n), (xn, yn), (x′n, yn), (yn, yn)}

• L(yi) = ∅

• cj ∈ L(xi) if and only if lj,1 = xi or lj,2 = xi or lj,3 = xi (clause Cj contains xi).

• cj ∈ L(x′i) if and only if lj,1 = ¬xi or lj,2 = ¬xi or lj,3 = ¬xi (clause Cj contains ¬xi).

It can be proved that f is satisfiable if and only if some path satisfies the formula

ψ = F c1 ∧ F c2 ∧ · · · ∧ F cm.

Note that this transformation is linear in the size of the 3SAT instance.

8.6.2 Summary of other results

Property 8.40 (Sistla and Clarke) The problem of checking whether some path satisfies a for-
mula ψ is PSPACE–complete for

• ψ ∈ Φ(¬,∧,F,X)

• ψ ∈ Φ(¬,∧,U)

• ψ ∈ Φ(¬,∧,U,X)

Property 8.41 (Bauland et al.) The problem of checking whether some path satisfies a formula
ψ ∈ Φ(U) is NP–complete.

8.7 Fairness

We do not need to do anything extra to deal with fairness in LTL, because fairness constraints
can be written directly into the LTL path formula. For example, using the fairness constraints
we discussed with CTL, we can specify a set of states C that we want to occur infinitely often by
defining an atomic proposition c that is true on the states in C. Then, the formula

GF c

is satisfied only by paths where c holds infinitely often along the path. Thus, if we have an LTL
path formula ψ, and want to know if it holds for some fair path, we can simply write

E (GF c ∧ ψ)

109

without needing any special quantifiers as we did for CTL. Or, if we want to quantify over all fair
paths, we can write something like

A (GF c→ ψ)

which, again, will be true if there are no fair paths.
In fact, LTL allows us to specify more detailed fairness conditions. For example, suppose we

have a Kripke structure that models three cooperating threads, then we can express the fairness
constraint that all threads enter their critical sections infinitely often as

GF c1 ∧ GF c2 ∧ GF c3

where atomic proposition ci holds whenever thread i is in its critical section. Or, we can write

GF c1 → (GF c2 ∧ GF c3)

which says, if thread 1 enters its critical section infinitely often, then so do threads 2 and 3.
The above are examples of strong fairness. There is also a notion of weak fairness, which instead

says
FG p1 → GF p2

or, if p1 eventually holds forever, then p2 occurs infinitely often.

Property 8.42

FG p → GF p

Proof:

π |= FG p → ∃i ≥ 0,∀j ≥ i, πj |= p

→ ∀j ≥ 0, ∃k ≥ j, πk |= p (if j < i, use k = i, else use k = j)

→ π |= GF p

Property 8.43 Strong fairness implies weak fairness.

Proof: Let A = FG p1, B = GF p1, and C = GF p2. Property 8.42 says A→ B, and is known to be
true. Strong fairness says B → C. Therefore, we have

GF p1 → GF p2 ⇔ B → C ⇔ (A→ B)(B → C) ⇒ (A→ C) ⇔ FG p1 → GF p2

110

Chapter 9

CTL∗

Previously, we saw the logic CTL, which dealt with state formulas and allowed multiple path
quantifiers, and the logic LTL, which dealt with path formulas and allowed nesting of temporal
operators. What about a logic that allows both, state formulas and path formulas? There is such
a logic, called CTL∗.

9.1 CTL∗ syntax

The CTL∗ syntax for a path formula ψ is similar to LTL:

ψ ::= φ | ¬ψ | ψ ∧ ψ | ψ ∨ ψ | Xψ | Fψ | Gψ | ψUψ

where φ is a state formula. The syntax for a state formula is:

φ ::= tt | ff | p | ¬φ | φ ∧ φ | φ ∨ φ | Aψ | Eψ

where p is an atomic proposition, and ψ is a path formula. An “overall” CTL∗ formula is a state
formula.

Note that the above syntax has some “conflicts”. For example, in the formula AF¬p, according
to the syntax rules, ¬p can be either a path formula or a state formula. It turns out that the
semantics are defined such that this does not matter, i.e., both interpretations will have the same
meaning.

The syntax of CTL∗ is essentially to allow an LTL formula Eψ or Aψ to appear nested as a
state formula, repeatedly. For example, the following is a valid CTL∗ formula.

A GF (E aU((AFG b) U (cU d)))

9.2 CTL∗ semantics

The semantics for a CTL∗ path formula are the same as the semantics for LTL path formulas,
where any state formula φ is treated similar to an atomic proposition. As usual, we give the rules
for when a path π = (p0, p1, . . .) satisfies a path formula.

1. M,π |= φ, if and only if p0 |= φ.

111

2. M,π |= ¬ψ, if and only if M,π 6|= ψ.

3. M,π |= ψ1 ∧ ψ2, if and only if M,π |= ψ1 and M,π |= ψ2.

4. M,π |= ψ1 ∨ ψ2, if and only if M,π |= ψ1 or M,π |= ψ2.

5. M,π |= Xψ, if and only if M,π1 |= ψ.

6. M,π |= Fψ, if and only if there exists an i ≥ 0 such that M,πi |= ψ.

7. M,π |= Gψ, if and only if M,πi |= ψ for all i ≥ 0.

8. M,π |= ψ1Uψ2, if and only if there exists a j ≥ 0 such that

(a) M,πj |= ψ2, and

(b) M,πi |= ψ1 for all i < j.

The semantics for state formulas are as follows. Again, we give the rules for when a state satisfies
a state formula.

1. M, s |= tt, for all states s.

2. M, s 6|= ff, for all states s.

3. M, s |= p, if and only if p ∈ L(s)

4. M, s |= ¬φ, if and only if M, s 6|= φ

5. M, s |= φ1 ∧ φ2, if and only if M, s |= φ1 and M, s |= φ2

6. M, s |= φ1 ∨ φ2, if and only if M, s |= φ1 or M, s |= φ2

7. M, s |= Aψ, if and only if, for all paths π = (p0 = s, p1, . . .), π |= ψ.

8. M, s |= Eψ, if and only if, for some path π = (p0 = s, p1, . . .), π |= ψ.

9.3 Expressive power of CTL, LTL, and CTL∗

Note that any CTL formula φ is also a valid CTL∗ formula. It is easy to see that, for any valid
CTL formula φ, the meaning of φ in CTL is equivalent to the meaning of φ in CTL∗. Similarly, any
LTL formula Eψ or Aψ is also a valid CTL∗ formula, and has the same meaning in both logics.

Given an arbitrary CTL∗ formula φ, there are four possibilities.

1. φ is a valid CTL formula, and is a valid LTL formula. φ = EX p is an example of such a
formula.

2. φ is a valid CTL formula, but not a valid LTL formula. φ = AF AG p is an example of such a
formula.

3. φ is a valid LTL formula, but not a valid CTL formula. φ = A FG p is an example of such a
formula.

4. φ is neither a valid CTL formula, nor is it a valid LTL formula. φ = A FG p ∧ ¬AFAG p is an
example of such a formula.

112

9.4 Comparing CTL and LTL formulas

Using CTL∗ semantics as a common framework, we can prove relationships between CTL and LTL
formulas.

Property 9.1 For any path formula ψ,

EF EGψ ≡ E FGψ

Proof:

s |= EF EGψ ⇔ ∃π = (s0 = s, s1, s2, . . .), ∃j ≥ 0, sj |= EGψ

⇔ ∃π = (s0 = s, s1, . . .),∃j ≥ 0,∃π′ = (s′0 = sj , s
′
1, . . .), π

′ |= Gψ

⇔ ∃j,∃ρ = (s0 = s, . . . , sj , s
′
1, s
′
2, . . .), ρ

j |= Gψ

⇔ ∃ρ = (s0 = s, s1, . . .), ρ |= FGψ

⇔ s |= E FGψ

Property 9.2 For any path formula ψ,

AF AGψ → A FGψ

Proof:

s |= AF AGψ ⇔ ∀π = (p0 = s, p1, p2, . . .),∃j ≥ 0, pj |= AGψ

⇔ ∀π = (p0 = s, p1, . . .), ∃j ≥ 0, ∀π′ = (p′0 = pj , p
′
1, . . .), π

′ |= Gψ

→ ∀π = (p0 = s, p1, . . .), ∃j ≥ 0, πj |= Gψ (because πj is one such path π′)

⇔ ∀π = (p0 = s, p1, . . .), π |= FGψ

⇔ s |= A FGψ

9.5 CTL∗ model checking

At first glance, it seems that the problem of model checking a CTL∗ formula must be impossibly
complicated. However, it turns out to be just as hard as checking an LTL formula. We can
determine the set of states satisfying a CTL∗ state formula φ using the following algorithm.

1. If φ is a state formula with no path quantifier A or E, then φ is a formula consisting only
of atomic propositions and logical operators; determine which states satisfy φ in the obvious
way, and terminate.

2. Find a subformula of φ with only one path quantifier A or E. Call this subformula φ′.

3. Subformula φ′ will be an LTL formula. Use the tableau algorithm and determine which states
satisfy the formula.

4. Create a new atomic proposition ν such that s |= ν if and only if s |= φ′.

5. Remove φ′ from φ, and replace it with atomic proposition ν.

113

6. Go to step (1).

Example 9.1

Using the above algorithm, we could check the formula

φ = A GF (E aU((AFG b) U (cU d)))

as follows.

1. φ is not trivial, continue.

2. We get the subformula φ′ = AFG b.

3. Find the states that satisfy φ′ using LTL model checking.

4. Based on the results of (4), build atomic proposition ν.

5. Now, use formula
φ = A GF (E aU(ν U (cU d)))

and repeat.

1. φ is not trivial, continue.

2. We get the subformula φ′ = E aU(ν U (cU d)).

3. Find the states that satisfy φ′ using LTL model checking.

4. Based on the results of (4), build atomic proposition ν ′.

5. Now, use formula
φ = A GF ν ′

and repeat.

1. φ is not trivial, continue.

2. We get the subformula φ′ = φ = A GF ν ′.

3. Find the states that satisfy φ′ using LTL model checking.

4. Based on the results of (4), build atomic proposition ν ′′.

5. Now, use formula
φ = ν ′′

and repeat.

1. φ = ν ′′ is trivial; terminate.

114

Chapter 10

Review of Probability

10.1 Definition

Perform some random experiment. The sample space ω is the set of elements, where each element
corresponds to one possible outcome of the experiment.

Example 10.1

Experiment: flip a coin.

ω = {H,T} where
H = the coin was heads
T = the coin was tails

Example 10.2

Experiment: roll a 6–sided die.

ω = {1, 2, 3, 4, 5, 6} where
1 = the side with one dot was facing up
2 = the side with two dots was facing up
...
6 = the side with six dots was facing up

10.2 Probability axioms and properties

Let A be some set of possible outcomes (or an “event”), with A ⊆ ω. A probability p is an
assignment of a real number to the set A, denoted Pr {A}, in such a way that the following axioms
are satisfied:

Axiom 10.1

Pr {∅} = 0 and Pr {ω} = 1

Axiom 10.2

0 ≤ Pr {A} ≤ 1

115

Axiom 10.3 If A and B are disjoint (i.e., A ∩ B = ∅), then

Pr {A ∪ B} = Pr {A}+ Pr {B}

From the above axioms, we can derive some useful properties.

Property 10.4 If A ⊆ B, then

Pr {B \ A} = Pr {B} − Pr {A}

Proof: if A ⊆ B, then B = (B \A)∪A, and the two sets are disjoint. Using Axiom 10.3 we get

Pr {B} = Pr {(B \ A) ∪ A}
= Pr {B \ A}+ Pr {A}

Property 10.5 If A ⊆ B, then

Pr {A} ≤ Pr {B}

Proof: from Property 10.4, since Pr {B \ A} ≥ 0.

Property 10.6

Pr {Ac} = Pr {ω \ A} = 1− Pr {A}

Proof: immediate from Property 10.4.

Property 10.7 If A1, . . . ,An are disjoint, then

Pr {A1 ∪ · · · ∪ An} = Pr {A1}+ · · ·+ Pr {An}

Proof: apply Axiom 10.3 repeatedly (thanks to associativity of addition)

Property 10.8 For any sets A and B,

Pr {A ∪ B} = Pr {A}+ Pr {B} − Pr {A ∩ B}

Proof: A \ B and A ∩ B are disjoint, and their union is A; this gives

Pr {A} = Pr {A \ B ∪ A ∩ B} = Pr {A \ B}+ Pr {A ∩ B}
Pr {A} − Pr {A ∩ B} = Pr {A \ B}

Further, since A ∪ B = A \ B ∪ B (another disjoint union), we get

Pr {A ∪ B} = Pr {A \ B}+ Pr {B}

Plugging in for Pr {A \ B} completes the proof.

116

10.3 Conditional probability

Conditional probability is defined as follows.

Definition 10.9 For any A, B with Pr {B} > 0,

Pr {A|B} =
Pr {A ∩ B}

Pr {B}

The meaning is: the probability that A happened, given that B happened.

Since A ∩ B = B ∩ A, we get

Pr {B ∩ A} = Pr {A ∩ B}
Pr {B|A}Pr {A} = Pr {A|B}Pr {B}

Pr {B|A} =
Pr {A|B}Pr {B}

Pr {A}

Example 10.3

For the experiment: “roll a 6–sided die”, with ω = {1, 2, 3, 4, 5, 6}.
Let A = “outcome is prime” = {2, 3, 5}.
Let B = “outcome less than 4” = {1, 2, 3}.

Pr {A} = Pr {{2, 3, 5}} = 3/6

Pr {B} = Pr {{1, 2, 3}} = 3/6

Pr {A ∩ B} = Pr {{2, 3}} = 2/6

Pr {A|B} =
Pr {A ∩ B}

Pr {B} =
2/6

3/6
= 2/3

Pr {B|A} =
Pr {A|B}Pr {B}

Pr {A} =
(2/3)(3/6)

3/6
= 2/3

=
Pr {B ∩ A}

Pr {A} =
2/6

3/6
= 2/3

10.4 Law of total probability

Let B1, . . . ,Bn be a partition of ω.

Pr {A} = Pr {A ∩ ω}
= Pr {A ∩ (B1 ∪ · · · ∪ Bn)}
= Pr {(A ∩ B1) ∪ · · · ∪ (A ∩ Bn)}
= Pr {A ∩ B1}+ · · ·+ Pr {A ∩ Bn} (from Axiom 10.3)

= Pr {A|B1}Pr {B1}+ · · ·+ Pr {A|Bn}Pr {Bn}

117

Example 10.4

From Example 10.3,

Let B1 = {1, 2, 3}
Let B2 = {4, 5}
Let B3 = {6}

Pr {“prime”|B1}Pr {B1} = (2/3) · (3/6) = 2/6
Pr {“prime”|B2}Pr {B2} = (1/2) · (2/6) = 1/6
Pr {“prime”|B3}Pr {B3} = 0 · (1/6) = 0

We can add these together to get Pr {“prime”}:

Pr {“prime”} = 2/6 + 1/6 + 0 = 3/6

We can also use the law of total probability with conditioning. Again, if B1, . . . ,Bn is a partition
of ω, then

Pr {A|C} = Pr {A|B1, C}Pr {B1|C}+ · · ·+ Pr {A|Bn, C}Pr {Bn|C}

10.5 Independence

Two events are independent if knowledge of one tells you nothing about the other.

Definition 10.10 Events A and B are independent if

Pr {A|B} = Pr {A}

Otherwise they are dependent.

Note that if A and B are independent,

Pr {B|A} =
Pr {A|B}Pr {B}

Pr {A} =
Pr {A}Pr {B}

Pr {A} = Pr {B}

Property 10.11 Events A and B are independent iff

Pr {A ∩ B} = Pr {A}Pr {B}

Proof: →

Pr {A|B} =
Pr {A ∩ B}

Pr {B}

Pr {A} =
Pr {A ∩ B}

Pr {B}
Pr {A}Pr {B} = Pr {A ∩ B}

118

Proof: ←

Pr {A|B} =
Pr {A ∩ B}

Pr {B}

=
Pr {A} · Pr {B}

Pr {B}
= Pr {A}

Example 10.5

From Example 10.3,

Pr {“prime”|“less than 4”} = 2/3 6= Pr {“prime”} = 3/6

Therefore, the events “prime” and “less than 4” are dependent.

Example 10.6

For the experiment: “flip a coin and roll a 6–sided die”.
Note ω = {H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}.
Let A = “coin was heads” = {H1, H2, H3, H4, H5, H6}.
Let B = “die was 2 or 5” = {H2, H5, T2, T5}.

Pr {A} = 6/12 = 1/2

Pr {B} = 4/12 = 1/3

Pr {A ∩ B} = Pr {{H2, H5}} = 2/12 = 1/6

Pr {A|B} =
Pr {A ∩ B}

Pr {B} =
1/6

1/3
= 1/2

Since Pr {A|B} = Pr {A}, events A and B are independent.

Example 10.7

Is an arbitrary event A independent of ω?

119

120

Chapter 11

Review of Random Variables

11.1 Definition

Conduct a random experiment with sample space ω. A random variable X is a function X : ω → S.

Example 11.1

Experiment: flip a coin.

ω = {H,T}
X(H) = 1

X(T) = 0

S = {0, 1}

Note, S is finite.

Example 11.2

Experiment: roll a 6–sided die.

ω = {1, 2, 3, 4, 5, 6}
X(1) = 1

...

X(6) = 6

S = {1, 2, 3, 4, 5, 6}

Note, S is finite.

Example 11.3

121

Experiment: roll two 6–sided dice.

ω = {(1, 1), (1, 2), . . . , (6, 6)}
X = sum of up faces

S = {2, 3, . . . , 12}

Note, S is finite.

Example 11.4

Experiment: flip a coin infinitely many times.

ω = {H,T}∞

X = number of tails before the first heads

S = {0, 1, 2, . . .}

Note, S is discrete (countably infinite).

Example 11.5

Experiment: toss a pencil so that it lands flat on the floor.

ω = IR4

(x1, y1), (x2, y2) : Coordinates of pencil endpoints

X = angle we must rotate the pencil, clockwise, until it points north

S = [0, 2π)

Note, S is continuous.

Notation and conventions:

• Random variables are usually denoted as capitals, e.g., X,Y, Z.

• We will talk about probabilities for random variables, with the understanding that this trans-
lates to the underlying experiment.

• An “instance” or “sample” of a random variable can be “generated” by conducting the ex-
periment and applying the function to the outcome. I.e., if the outcome of the experiment is
a ∈ ω, then the “sample” is X(a).

• We will eventually stop mentioning the random experiments. We will consider random vari-
ables on their own.

122

11.2 Discrete Random Variables

A discrete random variable is one whose set of possible values S is discrete. Discrete random
variables can be completely specified by specifying

• The set of possible values, S.

• The probability of each value in S, called the probability distribution function (PDF).

Example 11.6

Experiment: flip a coin.

ω = {H,T}
X(H) = 1

X(T) = 0

Pr {X = 0} = Pr {{T}}
Pr {X = 1} = Pr {{H}}

If the coin is “fair”, then we will have Pr {X = 0} = 1/2

Example 11.7

Experiment: toss two dice

ω = {1, 2, 3, 4, 5, 6}2
Y = sum of the up faces

Pr {Y = 2} = Pr {{(1, 1)}}
Pr {Y = 3} = Pr {{(1, 2), (2, 1)}}
Pr {Y = 4} = Pr {{(1, 3), (2, 2), (3, 1)}}

...

Pr {Y = 12} = Pr {{(6, 6)}}

Note that the set S forms a partition of ω based on the function X. I.e., let ωn ⊆ ω be the set of
values a such that X(a) = n.

• ωi ∩ ωj = ∅, for i 6= j

• ω =
⋃
i∈S ωi

Property 11.1 For any discrete random variable X,∑
i∈S

Pr {X = i} = 1

Proof: using Axiom 10.3,∑
i∈S

Pr {X = i} =
∑
i∈S

Pr {ωi} = Pr

{⋃
i∈S

ωi

}
= Pr {ω} = 1

123

We can also write the law of total probability for discrete random variables:

Pr {A} =
∑
i∈S

Pr {A|ωi}Pr {ωi}

=
∑
i∈S

Pr {A|X = i}Pr {X = i}

11.2.1 Important discrete distributions

When talking about random variables, the underlying experiment is less important than the set of
possible values S and the PDF. This information uniquely defines the “distribution” of the random
variable. Several distributions have names. Some distributions have parameters.

Constant

A discrete random variable X is said to be Const(n), written X ∼ Const(n), iff

S = {n}
Pr {X = n} = 1

Bernoulli

X ∼ Bernoulli(p), with 0 ≤ p ≤ 1, iff

S = {0, 1}
Pr {X = 1} = p

Pr {X = 0} = 1− p

Note that Bernoulli(0) = Const(0) and Bernoulli(1) = Const(1).

Equilikely

X ∼ Equilikely(a, b) iff

S = {a, . . . , b}
Pr {X = n} =

1

b− a+ 1
if n ∈ S

If X is the upward face when a fair, 6–sided die is rolled, then X ∼ Equilikely(1, 6). Special cases:

• Equilikely(b, b) = Const(b)

• Equilikely(0, 1) = Bernoulli(1/2)

124

Geometric

X ∼ Geom(p), with 0 ≤ p ≤ 1, iff

S = {1, 2, . . .}
Pr {X = n} = (1− p)n−1p if n ∈ S

Interpretation: Geom(p) is the number of draws from Bernoulli(p) before the first 1 is obtained.
I.e., if X1 ∼ Bernoulli(p), X2 ∼ Bernoulli(p), . . . and Y = min{i : Xi = 1} then Y ∼ Geom(p).
Note! For students who took 455/555, this is slightly different than Geometric(p).
Special case: Geom(1) = Const(1).

Binomial

Y ∼ Binomial(n, p), with n ∈ {0, 1, 2, . . .} and 0 ≤ p ≤ 1, iff Y =
∑n

i=1Xi, where Xi ∼
Bernoulli(p). I.e., Binomial is the sum of independent Bernoulli random variables.

S = {0, . . . , n}

Pr {Y = i} =

(
n
i

)
pi(1− p)n−i if i ∈ S

Note Binomial(1, p) = Bernoulli(p), Binomial(0, p) = Const(0), Binomial(n, 1) = Const(n),
Binomial(n, 0) = Const(0).

Poisson

This can be viewed as the limiting case of Binomial:

Poisson(λ) = lim
n→∞

Binomial(n, λ/n)

with real–valued parameter λ ≥ 0.
This gives the following PDF for Z ∼ Poisson(λ):

S = {0, 1, 2, . . .}

Pr {Z = i} =
λi

i!
e−λ if i ∈ S

11.2.2 Examples

Example 11.8

Suppose X ∼ Equilikely(a, b). What is Pr {X < i}, for any integer i?

Solution: If i < a, then X cannot be less than i. Similarly, if i > b, then X must be
less than i. So the only interesting case is a ≤ i ≤ b:

Pr {X < i} = Pr {X = a}+ · · ·+ Pr {X = i− 1}
=

1

b− a+ 1
+ · · ·+ 1

b− a+ 1

=
i− a

b− a+ 1

125

Putting it all together, we get:

Pr {X < i} =


0 if i < a
i−a

b−a+1 if a ≤ i ≤ b
1 if i > b

Example 11.9

Suppose X ∼ Geom(p) and Y ∼ Geom(p). What is Pr {X = Y }?

Solution: Use the law of total probability:

Pr {X = Y } =
∞∑
i=1

Pr {X = Y |Y = i}Pr {Y = i}

=
∞∑
i=1

Pr {X = i}Pr {Y = i}

=
∞∑
i=1

(1− p)i−1p (1− p)i−1p

= p2
∞∑
i=0

(
(1− p)2

)i
Trick: (1− a)(1 + a+ a2 + a3 + · · ·) = 1, if 0 ≤ a < 1

= p2
1

1− (1− p)2

Pr {X = Y } =
p

2− p

Example 11.10

Suppose X ∼ Equilikely(a, b) and Y ∼ Equilikely(a, b). What is Pr {X < Y }?

The solution is similar:

Pr {X < Y } =

b∑
y=a

Pr {X < Y |Y = y}Pr {Y = y}

=
b∑

y=a

Pr {X < y}Pr {Y = i}

=
b∑

y=a

y − a
b− a+ 1

· 1

b− a+ 1

=
1

(b− a+ 1)2

b∑
y=a

y − a

=
1

(b− a+ 1)2

b−a∑
i=0

i

126

Trick: 1 + 2 + · · ·+ n = n(n+ 1)/2

=
1

(b− a+ 1)2
· (b− a)(b− a+ 1)

2

Pr {X < Y } =
b− a

2(b− a+ 1)

11.2.3 Expected value

Definition 11.2 The expected value of a discrete random variable X is

E[X] =
∑
i∈S

i · Pr {X = i}

The intuitive meaning of E[X]: if you were to “generate” or “sample” several values for X and take
the average of those values, you expect that average to be close to E[X]. In fact, as the number of
samples goes to infinity, the average will “converge” (in a probabilistic sense) to E[X].

Example 11.11

What is E[X] if X ∼ Equilikely(a, b)?

E[X] =
b∑
i=a

i · Pr {X = i}

=
b∑
i=a

i

b− a+ 1

=
1

b− a+ 1

b∑
i=a

i

=
1

b− a+ 1

(
b∑
i=1

i−
a−1∑
i=1

i

)

=
1

b− a+ 1

(
b(b+ 1)

2
− (a− 1)a

2

)
=

b2 + b− ab+ ab− a2 + a

2(b− a+ 1)

=
(b− a+ 1)(b+ a)

2(b− a+ 1)

E[X] =
b+ a

2

Property 11.3 For constants α1, . . . , αn and discrete random variables X1, . . . , Xn (from any
distributions)

E[α1X1 + · · ·+ αnXn] = α1E[X1] + · · ·+ αnE[Xn]

Example 11.12

127

Let µ = E[X]. The variance of X is E[(X − µ)2]. From Property 11.3, we have

E[(X − µ)2] = E[X2 − 2Xµ+ µ2]

= E[X2]− 2µE[X] + µ2 = E[X2]− 2µµ+ µ2

= E[X2]− µ2

11.2.4 PDFs and CDFs

The cumulative distribution function, or CDF, of a random variable is given by

F (x) = Pr {X ≤ x}

For a discrete random variable with possible values {a, a+ 1, . . .},

F (a) = Pr {X = a}
F (x) = F (x− 1) + Pr {X = x} , x > a

Pr {X = x} = F (x)− F (x− 1), x > a

11.3 Continuous Random Variables

A random variable is continuous if S is continuous. We will consider cases where S is a subset of
reals, specifically, S is an interval.

By definition, the probability of a continuous random variable being equal to a particular value is
zero1.

Continuous random variables are specified by their possible values S and their CDF:

F (x) = Pr {X ≤ x} = Pr {X < x}

Analogous to the discrete case, we can also specify the probability density function, or PDF, for a
continuous random variable:

PDF: f(x) =
d

dx
F (x)

CDF: F (x) =

∫
y<x

f(y) dy

What is the intuitive meaning of the PDF, f(x)?

1Cases where this is not true lead to a distribution that is sometimes called “mixed”. For instance, suppose X is
the amount of time before a machine fails. Suppose there is a nonzero probability p that the machine has already
failed. Thus, Pr {X = 0} = p, and the set of possible values for X is S = [0,∞), the nonnegative reals. We can use
conditioning to eliminate these cases: let Y be the time before a machine fails, given that it is operational.

128

Property 11.4 For any continuous random variable X with PDF f(x),

Pr {a ≤ X ≤ b} =

∫ b

a
f(x) dx

Proof: from Property 10.4

Pr {a ≤ X ≤ b} = Pr {(X ≤ b) \ (X < a)}
= Pr {X ≤ b} − Pr {X < a}
= Pr {X ≤ b} − Pr {X ≤ a}
= F (b)− F (a)

=

∫ b

a
f(x) dx

We can write the “continuous version” of the rule that “probabilities sum to one”:

Property 11.5 For any continuous random variable,∫
S
f(x) dx = 1

Proof: directly from Property 11.4.

We can write the law of total probability for continuous random variables:

Pr {A} =

∫
S

Pr {A|X = x} · f(x) dx

Compare with the version for discrete random variables.

11.3.1 Important continuous distributions

Uniform

The continuous version of Equilikely is Uniform. X ∼ Uniform(a, b) iff

S = (a, b)

f(x) =
1

b− a
Example 11.13

What is the CDF for Uniform(a, b)?

Solution:

Pr {X ≤ x} = F (x) =

∫ x

a
f(y) dy

=

∫ x

a

1

b− a dy

F (x) =
x− a
b− a

129

Exponential

X ∼ Expo(λ), for real–valued parameter λ ≥ 0, iff

S = (0,∞)

F (x) = 1− e−λx

Example 11.14

What is the PDF of Expo(λ)?

Solution:

f(x) =
d

dx
F (x)

=
d

dx
(1− e−λx)

f(x) = λe−λx

Example 11.15

Suppose X ∼ Uniform(a, b) and Y ∼ Uniform(a, b). What is Pr {X < Y }?

Solution: Use the law of total probability:

Pr {X < Y } =

∫ b

a
Pr {X < Y |Y = y} · f(y) dy

=

∫ b

a
Pr {X < y} · f(y) dy

=

∫ b

a
F (y) · f(y) dy

=

∫ b

a

y − a
b− a ·

1

b− a dy

=
1

(b− a)2

∫ b

a
y − a dy

=
1

(b− a)2
[
y2/2− ya

]b
a

=
1

(b− a)2
[
(b2/2− ba)− (a2/2− a2)

]
=

1

(b− a)2
[
(b2 − 2ab+ a2)/2

]
Pr {X < Y } = 1/2

11.3.2 Expected value

Definition 11.6 The expected value of a continuous random variable X is

E[X] =

∫
S
x · f(x) dx

130

Compare this to the definition for discrete random variables. The intuitive meaning of E[X] is the
same as the discrete case.

Example 11.16

If X ∼ Expo(λ), what is E[X]?

Solution:

E[X] =

∫ ∞
0

x · f(x) dx

=

∫ ∞
0

xλe−λx dx

= λ

∫ ∞
0

xe−λx dx

Look up in table of integrals . . .

= λ

[
e−λx

λ2
(−λx− 1)

]∞
0

=
1

λ

[(
lim
x→∞

e−λx(−λx− 1)
)
−
(
e0(0− 1)

)]
=

1

λ
[0− (−1)]

E[X] =
1

λ

Note: the parameter for Expo is the rate, not the mean (as it was in ComS 555).

Property 11.7 For constants α1, . . . , αn and continuous random variables X1, . . . , Xn

E[α1X1 + · · ·+ αnXn] = α1E[X1] + · · ·+ αnE[Xn]

11.4 Independence

Definition 11.8 Random variables X and Y are independent if

Pr {X ≤ x|Y ≤ y} = Pr {X ≤ x}

for all x ∈ SX , y ∈ SY . Otherwise they are dependent.

Property 11.9 Random variables X and Y are independent iff

Pr {X ≤ x, Y ≤ y} = Pr {X ≤ x} · Pr {Y ≤ y}

for all x ∈ Sx, y ∈ Sy.

Property 11.10 Discrete random variables X and Y are independent iff

Pr {X = x, Y = y} = Pr {X = x} · Pr {Y = y}

for all x ∈ Sx, y ∈ Sy.

131

Property 11.11 Discrete random variables X and Y are independent iff

Pr {X = x|Y = y} = Pr {X = x}

for all x ∈ Sx, y ∈ Sy.

132

Chapter 12

Stochastic processes

12.1 Definition

A stochastic process is a family of random variables

{X(t), t ∈ T }

T : the “index set”. t is usually considered to be “time”.

• Discrete T : discrete–time stochastic process

• Continuous T : continuous–time stochastic process

S: possible values of X(t) random variables.

• Called the “state space” of the stochastic process

• S can be continuous or discrete

Example 12.1

X(t) = temperature at time t

• T is continuous

• S is continuous

Example 12.2

Y (t) = number of spins of a coin during toss number t

• T is discrete

• S is discrete

Example 12.3

Y (t) = number of customers in a queue at time t

• T is continuous

133

• S is discrete

Usually, the random variables in a stochastic process are related. In particular, the state of the
process “now” may depend on the states observed at earlier times.

Example 12.4

• What is the temperature now?

• What is the temperature now, given that it was 50 degrees one hour ago?

• What is the temperature now, given that it was 50 degrees one hour ago and 45
degrees 2 hours ago?

• What is the temperature now, given that it was 50 degrees one hour ago, 45 degrees
2 hours ago, 35 degrees 3 hours ago?

12.2 Markov processes

A Markov process obeys the “memoryless” or “Markovian” property:

the current state of the process depends only on the most recently observed state, not
the entire past history.

In other words, knowledge of the current state is enough to predict future behavior; additional
knowledge of the past does not help. Formally this property can be written as:

Property 12.1 The Markovian property:

Pr {X(t) ≤ x|X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0} = Pr {X(t) ≤ x|X(tn) = xn}

where t > tn > tn−1 > · · · > t0 are all times in T , and xn, xn−1, . . . , x0 are all states in S.

Example 12.5

The weather is not (usually) Markovian.

If S is discrete, then the Markov process is called a Markov chain.

S T Markov process

discrete discrete discrete–time Markov chain (DTMC)
discrete continuous continuous–time Markov chain (CTMC)

134

Chapter 13

Introduction to DTMCs

We will assume that T = IN.

Property 13.1 DTMC property:

Pr {X(n+ 1) = xn+1|X(n) = xn, . . . , X(0) = x0} = Pr {X(n+ 1) = xn+1|X(n) = xn}

We will write this probability in shorthand as

Pij(n) = Pr {X(n+ 1) = j|X(n) = i} , i, j ∈ S
= Probability that the process is in state j at time n+ 1,

given that it was in state i at time n.

We will study an important special case: the probabilities do not change over time:

Pij(n) = Pij(0) = Pij

These Markov chains are called homogeneous. Thus we have

Pr {X(n+ 1) = j|X(n) = i} = Pij

These probabilities are usually collected into a matrix, P, with P[i, j] = Pij . P is called the
transition probability matrix.

Property 13.2 For any transition probability matrix P,

0 ≤ P[i, j] ≤ 1

for all i, j ∈ S.

Property 13.3 For any transition probability matrix P,∑
j∈S

P[i, j] = 1

for all i ∈ S. In other words, the rows of P sum to one. Why?

135

13.1 Example DTMCs

13.1.1 Land of Oz

This example is from Finite Markov Chains, by Kemeny and Snell.

S = {R,N, S}

P =

R N S
R
N
S

 1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2


S

R N

1/4

1/2

1/21/4

1/2

1/2

1/41/4

The weather in Oz is either Rainy, N ice, or Snowy. Tomorrow’s weather depends only on today’s
weather, as given by transition probability matrix P. Note that there are never two nice days back
to back. The DTMC can be drawn as a weighted, directed graph with incidence matrix P.

13.1.2 A “birth–death” chain

Suppose there is a small coffee house that can hold 5 customers. Every hour, we count the number
of customers. Assume that the number of customers in the next hour either:

• Increases by one, unless it is already full, with probability α,

• Decreases by one, unless it is already empty, with probability β,

• or remains the same, otherwise.

This stochastic process can be represented by the following DTMC, known as a “birth–death”
Markov chain:

0 1 2 3 4 5

α α α α α

β β β β β

1−α 1−α−β 1−α−β 1−α−β 1−α−β 1−β

S = {0, 1, 2, 3, 4, 5} P =



1− α α 0 0 0 0
β 1− α− β α 0 0 0
0 β 1− α− β α 0 0
0 0 β 1− α− β α 0
0 0 0 β 1− α− β α
0 0 0 0 β 1− β


136

13.1.3 University graduation

Each year, at a fictitious University, a student flunks out with probability q, passes with probability
p, or has to repeat a year with probability r, where p+ q + r = 1. This situation can be modeled
with the following DTMC:

p p p p
grad

flunk

r r r r 1

1

fresh soph jr. sr.

q q q q

S = {fresh, soph, jr , sr , grad ,flunk}
fresh : first year undergraduate
soph : second year undergraduate

jr : third year undergraduate
sr : fourth year undergraduate

grad : student has graduated
flunk : student has failed out

P =

fr so jr sr gr fl
fr
so
jr
sr
gr
fl



r p 0 0 0 q
0 r p 0 0 q
0 0 r p 0 q
0 0 0 r p q
0 0 0 0 1 0
0 0 0 0 0 1



13.2 Transient analysis of DTMCs

Question: If the process is in state i at time 0, what is the probability distribution of states at
time 1?

I.e., what is Pr {X(1) = j|X(0) = i}, for all j?

Want: a vector p1, of dimension S, such that

p1[j] = Pr {X(1) = j|X(0) = i}

Solution: p1[j] = P[i, j].
I.e., p1 is equal to row i of P.

More interesting question: what is the probability distribution of states at time 1, given a distri-
bution of states at time 0?

Have: vector p0, with p0[i] = Pr {X(0) = i}

Want: vector p1, with p1[j] = Pr {X(1) = j}

From the law of total probability, we have:

p1[j] = Pr {X(1) = j} =
∑
i∈S

Pr {X(1) = j|X(0) = i} · Pr {X(0) = i}

137

=
∑
i∈S

P[i, j] · p0[i]

p1[j] = Dot product of: column j of P, and p0

Picture of the above sum:

p0

[]

P j
•
•
•
•

 =
p1 j
[•]

As a matrix equation, the above can be written as:

p1 = p0 P

We are now ready to answer the following fundamental question.

Transient analysis question

Given the initial probability distribution p0, what is pn, the probability distribution at time n?

Transient analysis solution

Since the Markov chain is homogeneous, we know

pn = pn−1 P

for n > 0. We can use one of the following methods to compute pn:

Method 1 (used in practice):
start with p0,
multiply p0 by P to obtain p1,
multiply p1 by P to obtain p2,
etc.,
until we have obtained pn.

Method 2 (nice theoretical result):
Unfold the recursion:

pn = pn−1 P

= (pn−2 P) P

...

pn = p0 Pn

Example 13.1

138

Suppose it is a nice day in Oz. What will the weather be like in 3 days?

Solution:

P =


1
2

1
4

1
4

1
2 0 1

2

1
4

1
4

1
2


p0 =

[
0 , 1 , 0

]
p1 = p0P

=
[

1
2 , 0 , 1

2

]
p2 = p1P

=
[

1
2 · 12 + 0 · 12 + 1

2 · 14 , 1
2 · 14 + 0 · 0 + 1

2 · 14 , 1
2 · 14 + 0 · 12 + 1

2 · 12
]

=
[

3
8 , 2

8 , 3
8

]
p3 = p2P

=
[

3
8 · 12 + 2

8 · 12 + 3
8 · 14 , 3

8 · 14 + 2
8 · 0 + 3

8 · 14 , 3
8 · 14 + 2

8 · 12 + 3
8 · 12

]
=

[
13
32 , 6

32 , 13
32

]
So, in 3 days,

• it will rain with probability 13/32

• it will be nice with probability 6/32

• it will snow with probability 13/32

Example 13.2

Suppose the weather for today in Oz has distribution

p0 =
[

2/5 , 1/5 , 2/5
]

i.e., today it will rain with probability 2/5, be nice with probability 1/5, and snow with
probability 2/5. What is the distribution for tomorrow?

Solution:

p1 = p0P

=
[

2
5 · 12 + 1

5 · 12 + 2
5 · 14 , 2

5 · 14 + 1
5 · 0 + 2

5 · 14 , 2
5 · 14 + 1

5 · 12 + 2
5 · 12

]
=

[
2
5 , 1

5 , 2
5

]
We will come back to this coincidence later.

139

Example 13.3

Consider the following DTMC:

S = {A,B,C,D,E}

P =


0 1

2
1
2 0 0

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0


E

C D
1

11

1/2
A

1/2
1

B

Suppose the initial state has distribution

p0 =
[

1/3 , 1/3 , 1/3 , 0 , 0
]

Compute the probability distribution at time t = 4.

Solution:

p1 = p0P

=
[

0 , 1
3 · 12 + 1

3 · 1 , 1
3 · 12 , 1

3 · 1 , 0
]

=
[

0 , 1
2 ,

1
6 ,

1
3 , 0

]
p2 = p1P

=
[

0 , 1
2 , 0 , 1

6 ,
1
3

]
p3 = p2P

=
[

0 , 1
2 ,

1
3 , 0 , 1

6

]
p4 = p3P

=
[

0 , 1
2 ,

1
6 ,

1
3 , 0

]
= p1

Since p4 = p1, we must have p5 = p2, p6 = p3, p7 = p4 = p1, . . .

So, we have pn+1 = pn mod 3+1

Example 13.4

140

What is Pr {X(n) = j|X(0) = i}?

Using p0 = [0, . . . , 0, 1, 0, . . . , 0], where the 1 corresponds to index i, then

Pr {X(n) = j|X(0) = i} = pn[j]

= (p0P
n)[j]

= Pn[i, j]

13.3 Multiplication on the right

We just saw that xPn gives the distribution at time n, where x is the distribution at time 0. What
about Pnx?

Consider the following. Let x be a vector of dimension |S|. Define vector yn as

yn[i] = E[x[X(n)] | X(0) = i].

Then yn[i] is given by

yn[i] = E[x[X(n)] | X(0) = i]

=
∑
j∈S

x[j] · Pr {X(n) = j|X(0) = i}

=
∑
j∈S

Pn[i, j] · x[j]

yn[i] = Dot product of: row i of Pn, and x

Picture of the above sum:

yn i
[•]

=

Pn • • • •


x


As a matrix equation, the above can be written as:

yn = Pnx

which can be computed recursively by

y0 = x

yn = Pyn−1

Note that vector yn is not a “probability vector”, so its elements do not necessarily sum to one.

Example 13.5

141

In the land of Oz, what is the probability that it will be nice in 3 days, given knowledge
of today’s weather?

Solution:

P =


1
2

1
4

1
4

1
2 0 1

2

1
4

1
4

1
2


y0 =

[
0 , 1 , 0

]
y1 = Py0

=
[

1
4 , 0 , 1

4

]
y2 = Py1

=
[

1
2 · 14 + 1

4 · 0 + 1
4 · 14 , 1

2 · 14 + 0 · 0 + 1
2 · 14 , 1

2 · 14 + 1
4 · 0 + 1

4 · 14
]

=
[

3
16 , 1

4 , 3
16

]
y3 = Py2

...

=
[

13
64 ,

3
16 ,

13
64

]
So, in 3 days it will be nice

• with probability 13/64, if today is rainy

• with probability 3/16, if today is nice

• with probability 13/64, if today is snowy

13.4 Storage of Markov chains

Any of the data structures used to store a Kripke structure may also be used to store a Markov
chain, with slight modifications (namely, we must store a probability with each edge). As with
Kripke structures, the Markov chains we will use tend to be very large, but very sparse (i.e.,
containing mostly zero values). Using, say, a sparse representation where we maintain a linked
list for each row of the matrix, we can exploit this sparseness. Note that there is no fundamental
difference between storing a matrix “by rows” and storing it “by columns”:

xP = P>x

To exploit sparseness in vector–matrix and matrix–vector multiplication, we must rewrite these
operations in terms of generic “edges”, rather than the typical doubly–nested loops that are used
for full matrix storage.

142

Algorithm 13.1 Vector–matrix multiplication, computes y = xP

y = 0;
∀i, j such that P[i, j] 6= 0 do

y[j] = y[j] + x[i] ·P[i, j];
End ∀

The order in which edges i, j are traversed should be whatever order is most efficient for the data
structure used to store the matrix P.

Algorithm 13.2 Matrix–vector multiplication, computes y = Px

y = 0;
∀i, j such that P[i, j] 6= 0 do

y[i] = y[i] + P[i, j] · x[j];
End ∀

The algorithms have the same complexity, which is equal to the complexity of traversing the edges.
If the matrix P is sparse, and it is stored using a sparse data structure, then the above computations
require O(|R|) operations, where R is the set of edges with non-zero probability.

We will discuss advanced data structures for storing Markov chains later in the semester.

143

144

Chapter 14

DTMC properties

14.1 State classification for finite DTMCs

There is a fundamental difference between, say, the “land of Oz” DTMC and the “University
graduation” DTMC. In the “land of Oz”, for any state in S, given enough time, there is a non-zero
probability that the DTMC is in that state. In the “University graduation” DTMC, this is not
true: once the DTMC reaches the state “grad”, it can never go to the other states. The following
definitions help to formalize this property. The definitions apply for finite Markov chains, i.e.,
Markov chains with a finite number of states.

Definition 14.1 We say state j is reachable from state i, written i; j, if

∃t, such that Pr {X(t) = j|X(0) = i} > 0

I.e., starting in state i now, it is possible to be in state j at some point in the future. If no such t
exists, then state j is not reachable from state i, written i 6; j.

Property 14.2 For a finite DTMC, i ; j iff there is a path in the DTMC (viewed as a graph)
from state i to state j.

Example 14.1

Consider the following DTMC for the next several examples.

k

i j

1

3/4

1/8

1/8

1

1/5 1

1 4/5

In the above DTMC, we have i; j and i; k.

145

Definition 14.3 A state i is transient if

∃j ∈ S, such that i; j and j 6; i

I.e., from state i we can reach some state j, from which it is impossible to get back to state i.

Example 14.2

In the above DTMC, state i is transient, because i; j but j 6; i.

Property 14.4 If state i is transient, then

1. the probability that we never return to state i after leaving it is non-zero.

2. limn→∞ Pr {X(n) = i} = 0

Definition 14.5 A state i is recurrent if it is not transient. Thus, a state i is recurrent if

∀j such that i; j, j ; i

Example 14.3

In the above DTMC, state j is recurrent, because from every state that we can reach
from j, it is possible to get back to state j. Similarly, state k is recurrent.

Property 14.6 If state i is recurrent, then

1. the probability that we never return state i after leaving it is zero. I.e., when we leave state i,
we will eventually return with probability one.

2. We cannot say that limn→∞ Pr {X(n) = i} 6= 0

Definition 14.7 A recurrent state is absorbing if it can reach only itself.

Example 14.4

In the above DTMC, state k is absorbing.

Definition 14.8 We say states i and j are mutually reachable if i; j and j ; i.

We can partition the state space S of a Markov chain into classes, where all states within a class are
mutually reachable. These are exactly the same as strongly connected components (SCCs) from
classical graph theory. Within a given class, either

• all states are transient; or

• all states are recurrent (called a recurrent class).

Example 14.5

The partition for the above example DTMC is:

146

k

i j

1

3/4

1/8

1/8

1

1/5 1

1 4/5

all transient all recurrent

all recurrent

Definition 14.9 A Markov chain is irreducible if S is a recurrent class, i.e., all states are mutually
reachable. Otherwise it is reducible.

Example 14.6

The above example DTMC is reducible, since S is not a recurrent class.

Example 14.7

The “land of Oz” DTMC is irreducible.

14.2 Periodicity

14.2.1 Definition and properties

In a DTMC, if state i is recurrent, then by definition, for any state j such that i; j, j ; i. That
means there must exist some integer n > 0 such that

Pr {X(n) = i|X(0) = i} > 0

We say n is a possible return time for state i.

Example 14.8

Consider the following DTMC for the next several examples.

1/2

i
1

1 1

11

1/2

1

1 1 1 1

1 1 1 1

6 is a return time for state i, because

Pr {X(6) = i|X(0) = i} =
1

2

147

Property 14.10 If n1 and n2 are return times for a state i, then n1 +n2 is also a return time for
state i.

Example 14.9

For the above DTMC, 6 is a return time for state i (around the short loop). Also, 10
is a return time for state i (around the long loop). Thus, 12 is a return time for state i
(around the short loop twice), 16 is a return time (short loop then long loop), . . .

Property 14.11 A recurrent state i has infinitely many return times.

Definition 14.12 Let N be the set of all return times for state i. k = gcd(N) is called the period
of state i.

Note that all return times for state i are multiples of its period. But, not all multiples of the period
are necessarily return times.

Example 14.10

For the above DTMC, the return times for state i are

N = {6, 10, 12, 16, 18, 20, 22, 24, . . .}

Since the gcd of the integers in this set is 2, state i has period 2.

Property 14.13 There exists an N such that, for all n > N , n · k is a return time for state i,
where k is the period of state i.

Proof: interesting and non-trivial, but omitted.

Property 14.14 All states in a recurrent class have the same period.

Proof (sketch):

Consider mutually reachable states i and j. Find a clever return time for i via state j,
which is also a return time for state j. From this path length, show that the period of i
must be a multiple of the period for j and vice versa.

Proof:

Suppose i has period k, and j has period k′. If i and j are in the same class, then they
are mutually reachable. Suppose i can reach j in m steps, and j can reach i in n steps.
Clearly, m+ n is a possible return time for both state i and state j. That means m+ n
is a multiple of both k and k′.

From property 14.13, ∃ a prime p1 such that p1 · k is a return time for state i, where
state j is visited at least once. Let t be the path up to state j, and u be the path after
state j. Similarly, there is a prime p2 6= p1 such that p2 · k′ is a return time for state j,
where state i is visited at least once. Let v be the path up to state i, and w be the path
after state i.

148

Since the path t, v, w, u starts and finishes at state i, p1 · k + p2 · k′ is a return time for
state i, and must be a multiple of k. Since p2 is prime, this implies k′ is a multiple of
k.

Similarly, the path v, t, u, w starts and finishes at state j, so p1 · k + p2 · k′ is a return
time for state j and must be a multiple of k′. Since p1 is prime, this implies k is a
multiple of k′.

Thus, we must have k′ = k.

So, we can refer to the period of a recurrent class, since all states in that class must have the same
period.

Example 14.11

The DTMC in the above example consists of a single recurrent class (and therefore is
irreducible). Thus, all states in the DTMC have period 2.

Definition 14.15 A DTMC is aperiodic if all its states have period 1.

Example 14.12

Our running example DTMC has two “loops”, one with length 6, and the other with
length 10. If we add one more state to the longer loop, we obtain a loop with length
11. Since 6 and 11 are relatively prime, state i will now have period 1. Thus, the new
DTMC is aperiodic.

14.2.2 Algorithm to determine the period

Definition 14.16 A cycle is a sequence of states (s0, s1, . . . , sn) with sn = s0, and P[si, si+1] > 0
for all 0 ≤ i < n. We say the cycle has length n.

Definition 14.17 A simple cycle is a cycle (s0, s1, . . . , sn) where s1, . . . , sn are distinct.

Property 14.18 The period of a recurrent class is

k = gcd(n1, . . . , nc)

where c is the number of simple cycles, and ni is the length of simple cycle i.

Property 14.19 If ni and nj are the lengths of cycles, then ni − nj must be a multiple of the
period.

Our algorithm to find the period of a recurrent class is based on Property 14.19, and a clever trick
to determine differences of cycle lengths.

Algorithm 14.1 Determine the period of a recurrent class

1. Select an arbitrary “starting state” s0 in the recurrent class. We will determine its
period, and hence, the period of all states in the class.

149

2. For each state si in the recurrent class, determine distance(si), the length (in number
of edges) of a shortest path from s0 to si.

3. If P[si, sj] > 0 and distance(si) ≥ distance(sj), then add

distance(si)− distance(sj) + 1

to a set of integers.

4. The gcd of the set of integers gives the period.

Since these states belong to a recurrent class, whenever distance(si) ≥ distance(sj) and P[si, sj] >
0, we have that distance(sj) + x is a return time for s0 via state sj and following some path back,
and so is distance(si) + 1 +x, via state si, then sj and the same path back. The difference of these
cycle lengths, distance(si) + 1− distance(sj), must be a multiple of the period.

Example 14.13

Running the algorithm on our example DTMC, we obtain the following distances (the
start state, with distance 0, is chosen arbitrarily):

1/2
1011

12 13 14

9
1

1 1

11

0

1/2

1

8

2

7

3

6

4

5

1

1 1 1 1

1 1 1 1

There are two cases with distance(si) ≥ distance(sj).

• The edge from distance 9 to distance 0

• The edge from distance 14 to distance 9

This gives us the set of integers L = {9− 0 + 1, 14− 9 + 1} = {10, 6}. Taking the gcd
of these integers, we obtain a period of 2.

What is the complexity of Algorithm 14.1? Consider each step of the algorithm.

• Step 1: Select a starting state. O(1)

• Step 2: Determine distances. Can use a breadth-first search, requires O(|E|) time and O(|S|)
memory.

• Steps 3 and 4: Find edges with property, accumulate gcd. O(|E|) time

Overall complexity: O(|E|) running time, requires O(|S|) auxiliary storage.

150

Chapter 15

Ergodic DTMCs

We saw earlier how to perform transient analysis, i.e., to compute the probability distribution at
time n, stored as the vector pn. In this chapter we will begin to address the following fundamental
questions:

1. When does limn→∞ pn exist?

2. If the limit exists, how can it be computed?

When the limit exists, it is called the steady–state or stationary distribution of the DTMC.

Definition 15.1 A DTMC is ergodic if

• it is irreducible, and

• it is aperiodic.

From previous definitions, that means that

• Every pair of states i and j are mutually reachable.

• Every state has period 1.

Property 15.2 In an ergodic DTMC, for all states i,

∃Nsuch that Pr {X(t) = i|X(0) = i} > 0,∀t > N

Proof: follows directly from the fact that state i has period 1.

Property 15.3 In an ergodic DTMC, for all pairs of states i and j,

∃Nsuch that Pr {X(t) = j|X(0) = i} > 0,∀t > N

Proof: follows from the above property, and the fact that states i and j are mutually reachable.

We can restate the above property as follows:

Property 15.4 In an ergodic DTMC, there exists an N such that all entries of Pt are greater
than zero, for all t > N .

151

This is crucial to proving the main result about ergodic DTMCs, but requires the following other
theorem first.

Property 15.5 Given a transition probability matrix P with smallest entry ε > 0, a (column)
vector x with largest element M0 ≤ 1 and smallest element m0 ≥ 0, the (column) vector y = Px
has largest element M1 and smallest element m1 where

1. M1 ≤M0

2. m1 ≥ m0

3. M1 −m1 ≤ (1− 2ε)(M0 −m0)

Proof:

1. Let x′ be a vector with all elements equal to M0, except for one element equal to m0, at the
same position as in x. Note x ≤ x′.

Let y′ = Px′. Each element of y′ has the form

a ·m0 + (1− a)M0

where a is one entry in P, and (1−a) is from the remainder of that row. The largest element
of y′ occurs when a is smallest. Since y ≤ y′, we have

M1 ≤ ε ·m0 + (1− ε)M0 = M0 − ε(M0 −m0)

2. (sketch): similar to proof of (1), but use −x and obtain

−m1 ≤ −m0 − ε(−m0 +M0)

3. Add the inequalities obtained above together:

M1 −m1 ≤ (M0 − ε(M0 −m0))− (−m0 − ε(−m0 +M0))

≤ M0 −m0 − 2ε(M0 −m0)

≤ (1− 2ε)(M0 −m0)

We are now ready to prove the main result for ergodic DTMCs.

Property 15.6 If P is the transition probability matrix of an ergodic DTMC, then

1. limn→∞Pn exists, call it P∞

2. P∞ has rows all equal to the same probability vector ρ

3. All elements of ρ are positive

Proof sketch:

152

• Since the DTMC is ergodic, ∃N such that Pm has all nonzero entries, for all m > N . This
proves (3).

• Consider Pm+1 = PmP, for m > N . From property 15.5 we know that the difference between
the largest and smallest elements of column j of Pm+1 is less than the difference between the
largest and smallest elements of column j of Pm.

• Thus, in the limit as m → ∞, elements of column j of Pm have no difference. This proves
(1) and (2).

We can now answer the fundamental questions from the start of this chapter.

Property 15.7 Given an ergodic DTMC, for any initial probability distribution p0,

lim
n→∞

pn = lim
n→∞

p0P
n

= p0 lim
n→∞

Pn

= p0P
∞

=
∑
∀i

p0[i] · ρ

= ρ

Property 15.8 ρ is the unique probability vector satisfying

ρP = ρ

Proof: for any probability vector x such that xP = x, repeated substitution gives us xPn = x. From
the previous property, as n→∞ we get xPn → ρ. Therefore x = ρ.

15.1 Computing the steady–state distribution

For an ergodic DTMC, we have a unique steady–state distribution ρ. Given an ergodic DTMC
with matrix P, how do we compute ρ in practice?

15.1.1 Power method

From property 15.7, ρ = limn→∞ p0P. Thus, we can use any initial p0 and perform transient
analysis to compute pn for a very large n.

• Better to use a “uniform” initial distribution, i.e., p0[i] = 1/|S|, than start in a particular
state.

• Solution requires (only) vector–matrix multiplication.

• Requires 2 vectors (one for pn, one for pn−1).

• Can keep going until vectors “converge”.

• Downside: may converge slowly.

153

15.1.2 Linear algebra

From property 15.8,

ρP = ρ

ρP− ρ = 0

ρ(P− I) = 0

Solve the above linear system for ρ. This can be done in various ways:

• By hand. Usually unpleasant, especially as |S| grows.

• Direct approaches (Gaussian elimination)

• Indirect approaches

We will discuss these methods soon.

15.2 Examples

Example 15.1

Compute the steady–state distribution for the Land of Oz DTMC.

Solve ρ(P− I) = 0, by hand.

P− I =

 −1/2 1/4 1/4
1/2 −1 1/2
1/4 1/4 −1/2


Let ρ = [r, n, s]. Multiply out ρ(P − I) = 0 to obtain 3 equations (one equation per
column of P):

−1/2 r + 1/2 n + 1/4 s = 0
1/4 r − n + 1/4 s = 0
1/4 r + 1/2 n − 1/2 s = 0

If we add the equations together, we get 0 = 0. This will always be the case, for
every DTMC. (Why?) Thus, we have one equation too few. This makes sense, since
aρP = aρ, for any scalar a. Since we want ρ to be a probability vector, we have one
more equation:

r + n + s = 1

Eq(3) - Eq(2) gives us

3/2n− 3/4s = 0

3/2n = 3/4s

2n = s

154

Plug this into Eq(3):

1/4r + 1/2n− 1/2(2n) = 0

1/4r = 1/2n

r = 2n

Now, using r + n+ s = 1, we obtain:

2n+ n+ 2n = 1

n = 1/5

Thus, the steady–state distribution is

ρ =
[

2/5 , 1/5 , 2/5
]

Example 15.2

Consider the DTMC with S = {A,B} and

P =

[
0 1
1 0

]
This DTMC is irreducible, but has period 2. What happens if we try to solve ρ(P−I) =
0? We have the following set of equations:[

a , b
]
·
[
−1 1
1 −1

]
=
[

0 , 0
]

Multiplying out the above, we obtain

−a+ b = 0

a− b = 0

Both equations imply a = b. Since a+ b = 1, we obtain

ρ =
[

1/2 , 1/2
]

What happened?

• Just because a solution exists to the system ρ(P − I) = 0, does not mean that ρ
is the steady–state vector; only if the DTMC is ergodic is this true.

• I.e., If the DTMC is ergodic, then the above equation may be used to determine
the steady–state vector.

• In this particular case, if p0 = [1, 0], then we have

p0 = [1, 0]

p1 = [0, 1]

p2 = [1, 0]

...

and clearly limn→∞ pn does not exist.

155

• But, if p0 =
[

1/2 , 1/2
]

then we have

p0 = [1/2, 1/2]

p1 = [1/2, 1/2]

...

and clearly limn→∞ pn = ρ.

• As this example illustrates, in general, the long–term behavior of a DTMC depends
on the initial distribution.

156

Chapter 16

Absorbing DTMCs

We will now study absorbing DTMCs, where every state is either transient or absorbing:

• Z: set of transient states

• A: set of absorbing states

• S = Z ∪A

The following quantities may be of interest when studying absorbing DTMCs:

• Which absorbing state will the DTMC end up in, if we know the initial state (or initial
distribution)? I.e., determine limn→∞ Pr {X(n) = i}, for all i ∈ A, given p0.

• How long, on average, does it take before the DTMC reaches an absorbing state? (This
is called the “mean time to absorption”) Again, this will depend on the initial state (or
distribution).

16.1 Structure of absorbing DTMCs

Given the transition probability matrix P for an absorbing DTMC, we can re-order the states so
that the transient states come first, then the absorbing states. This will produce the following block
structure:

P =

[
P[Z,Z] P[Z,A]

0 I

]
transient–transient: arcs from transient states to transient states are represented by the block

P[Z,Z], a square matrix of dimension |Z|.

transient–absorbing: arcs from transient states to absorbing states are represented by the block
P[Z,A]. Note that P[Z,A] > 0, i.e., it contains at least one non-zero entry.

absorbing–transient: there are no arcs from absorbing states to transient states; this produces
the 0 block.

absorbing–absorbing: there are arcs from absorbing states to absorbing states, but only self
loops. This gives an identity matrix of dimension |A|.

157

Property 16.1 For any a ∈ A in an absorbing DTMC,

Pr {X(n+ 1) = a} ≥ Pr {X(n) = a}

Proof: let pn be any probability distribution at time n. Look at entry a of pn+1:

pn+1[a] = (pnP)[a]

= pn[Z]P[Z, a] + pn[A]P[A, a]

= pn[Z]P[Z, a] + pn[a]

Property 16.2 In an absorbing DTMC,

∀i ∈ S, i; a for some a ∈ A

Proof:

If i ∈ A, then the property holds trivially. Otherwise i is transient, and by definition, ∃i1 ∈ S \ {i}
such that i; i1, i1 6; i.

If i1 ∈ A, then the property holds trivially. Otherwise i1 is transient, and by definition, ∃i2 ∈
S \ {i, i1} such that i1 ; i2, i2 6; i1.

Repeat the above argument, and note that the set of states from which we can select the next state
is S \ {i, i1, i2, . . . , in} after n iterations of the argument. Eventually, we will have to select an
absorbing state, since the set S is finite.

Property 16.3 Pn[Z,Z] = P[Z,Z]n

Proof by induction on n. Trivially it holds for n = 1. For n > 1, we get

Pn[Z,Z] = (Pn−1P)[Z,Z]

= Pn−1[Z,Z]P[Z,Z] + Pn−1[Z,A]0

= P[Z,Z]n−1P[Z,Z]

Property 16.4 Let A be a matrix with non-negative elements, with largest rowsum α < 1. Then,

lim
n→∞

An = 0

Proof (sketch): show by induction that the largest rowsum of An is at most αn. Since α < 1, we
know limn→∞ α

n = 0, and since the rowsums of An go to zero, the elements must also go to zero.

Property 16.5

lim
n→∞

P[Z,Z]n = 0

158

From properties 16.1 and 16.2, there exists an m such that every row of Pm[Z,A] contains at least
one non-zero entry. Thus, every row of Pm[Z,Z] = P[Z,Z]m sums to less than one. Now, we
have

lim
n→∞

P[Z,Z]n = lim
n→∞

(P[Z,Z]m)n

= 0

where the last step is due to property 16.4.

Property 16.6 In an absorbing DTMC,

1. limn→∞ Pr {X(n) ∈ Z} = 0

2. limn→∞ Pr {X(n) ∈ A} = 1

16.2 Fundamental matrix

Property 16.7 (The fundamental theorem for absorbing DTMCs):

1. I−P[Z,Z] has an inverse

2. (I−P[Z,Z])−1 =
∑∞

k=0 P[Z,Z]k

Proof: Note that

(I−P[Z,Z])
n∑
k=0

P[Z,Z]k =
n∑
k=0

P[Z,Z]k −P[Z,Z]
n∑
k=0

P[Z,Z]k

=

n∑
k=0

P[Z,Z]k −
n+1∑
k=1

P[Z,Z]k

= P[Z,Z]0 −P[Z,Z]n+1

Now, take the limit as n→∞. Since limn→∞P[Z,Z]n = 0, we get

(I−P[Z,Z])
∞∑
k=0

P[Z,Z]k = I

Definition 16.8 N = (I−P[Z,Z])−1 is called the Fundamental matrix.

What is the meaning of N[i, j]? (Note i, j ∈ Z)

N[i, j] =
∞∑
k=0

(P[Z,Z]k)[i, j]

=
∞∑
k=0

Pk[i, j]

159

=

∞∑
k=0

Pr {X(k) = j|X(0) = i}

=

∞∑
k=0

E[1, if X(k) = j, 0 otherwise, given X(0) = i]

=

∞∑
k=0

E[number of visits to state j at time k, given X(0) = i]

= E

[∞∑
k=0

number of visits to state j at time k, given X(0) = i

]
N[i, j] = E[total number of visits to state j, given X(0) = i]

Example 16.1

Consider the following absorbing DTMC for the next few examples:

111

a b c

d e f

2/3 3/4

4/5

1/3 1/4 1/5

The transient states are: Z = {a, b, c}
The absorbing states are: A = {d, e, f}
The transition probability matrix is:

P =



0 2/3 0 1/3 0 0
0 0 3/4 0 1/4 0

4/5 0 0 0 0 1/5

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


The fundamental matrix is:

N = (I−P[Z,Z])−1 =

 1 −2/3 0
0 1 −3/4
−4/5 0 1

−1 = · · · =

 5/3 10/9 5/6
1 5/3 5/4

4/3 8/9 5/3


So, if the DTMC starts in state a, the expected number of visits to state a is 5/3.

160

16.3 Expected number of visits to each state

Suppose we want to compute a vector n, where n[j] is the expected number of visits to state j,
given an initial probability distribution p0. What is n[j]? Solution: condition on the initial state:

n[j] =
∑
i∈Z

E[visits to j|start in i] · Pr {start in i}

=
∑
i∈Z

N[i, j] · p0[i]

= N[Z, j] · p0[Z]

where the last equation is the dot product of column j of N with the transient portion of p0. Thus,
we have

Property 16.9

n = p0[Z] ·N

is a vector that counts the expected number of visits to each transient state, given an initial proba-
bility distribution.

Property 16.10

n =

∞∑
n=0

pn[Z]

where pn is the probability distribution at time n.

Since the DTMC never visits any transient states once an absorbing state has been reached, and
since time starts at 0, the total time the DTMC spends in transient states is equal to the time at
which the DTMC first reaches an absorbing state. Thus, we have the following

Property 16.11 The mean time to absorption of an absorbing DTMC can be found by summing
the elements of n.

Example 16.2

For the previous absorbing DTMC, suppose

p0 =
[

1/3 , 0 , 1/3 | 1/3 , 0 , 0
]

Then p0[Z] =
[

1/3 , 0 , 1/3
]

and we can compute n as

n = p0[Z] ·N
=

[
1/3 · 5/3 + 1/3 · 4/3 , 1/3 · 10/9 + 1/3 · 8/9 , 1/3 · 5/6 + 1/3 · 5/3

]
=

[
1 , 2/3 , 5/6

]
The mean time to absorption is thus

1 + 2/3 + 5/6 = 5/2

161

16.4 Computational considerations

How is the vector n computed in practice? Mathematicians use

n = p0[Z] ·N

but computationally this is difficult because construction of N requires inverting a matrix.

• The DTMC is typically extremely large and sparse, which means P[Z,Z] is large and sparse.

• The matrix N is usually not sparse, even if P[Z,Z] is sparse. Thus, the straightforward
approach is expensive in terms of storage.

• Computation of N using matrix inversion is expensive in terms of computation time.

Fortunately, we can eliminate these issues by rewriting the above equation:

n = p0[Z] ·N
n(I−P[Z,Z]) = p0[Z] ·N · (I−P[Z,Z])

n(I−P[Z,Z]) = p0[Z]

−n(I−P[Z,Z]) = −p0[Z]

n(P[Z,Z]− I) = −p0[Z]

The vector n can be computed by solving the above linear system. Benefits of this approach:

• We need to store only the matrix P− I, which can exploit sparse (or other) matrix represen-
tations.

• The linear equations are similar to those required for steady–state analysis of ergodic DTMCs.

Example 16.3

To compute n for our previous example DTMC by solving the linear equations, let
n = [a, b, c], and multiply out the matrix equation

[a, b, c] ·

 −1 2/3 0
0 −1 3/4

4/5 0 −1

 = [−1/3, 0,−1/3]

to obtain the following system of equations:

− a + 4/5 c = −1/3
2/3 a − b = 0

3/4 b − c = −1/3

Multiplying the second equation by 3/5 and the third equation by 4/5 gives us

− a + 4/5 c = −1/3
2/5 a − 3/5 b = 0

3/5 b − 4/5 c = −4/15

162

Adding all three equations together, we obtain

−3/5 a = −9/15

a = 1

Plugging into the first equation gives us

−1 + 4/5 c = −1/3

4/5 c = 2/3

c = 5/6

and plugging into the second equation gives us

2/3− b = 0

2/3 = b

Thus, we obtain n = [1 , 2/3 , 5/6].

16.5 Limiting distribution

Suppose we want to know the probability that the DTMC eventually reached each of the absorbing
states. In other words, we want to compute

lim
n→∞

Pr {X(n) = i}

for all absorbing states i ∈ A. (Recall that the above probabilities are zero for transient states.)

Let’s multiply P out to see what happens to Pn:

P =

[
P[Z,Z] P[Z,A]

0 I

]

P2 =

[
P[Z,Z] P[Z,A]

0 I

]
·
[

P[Z,Z] P[Z,A]
0 I

]
=

[
P[Z,Z]2 + P[Z,A] · 0 P[Z,Z] ·P[Z,A] + P[Z,A] · I

0 ·P[Z,Z] + I · 0 0 ·P[Z,A] + I2

]
=

[
P[Z,Z]2 (P[Z,Z] + I) ·P[Z,A]

0 I

]

P4 =

[
P[Z,Z]2 (P[Z,Z] + I) ·P[Z,A]

0 I

]2
=

[
P[Z,Z]4 + (. . .) · 0 (P[Z,Z]2 + I) · (P[Z,Z] + I) ·P[Z,A]

0 I

]
=

[
P[Z,Z]4 (P[Z,Z]3 + P[Z,Z]2 + P[Z,Z] + I) ·P[Z,A]

0 I

]
163

Hopefully, it is clear that Pn is

Pn =

[
P[Z,Z]n (P[Z,Z]n−1 + · · ·+ P[Z,Z] + I) ·P[Z,A]

0 I

]
Now, take the limit as n→∞. What do we get?

• From earlier, limn→∞P[Z,Z]n = 0.

• What is limn→∞(P[Z,Z]n + · · ·+ I)? This is the definition of the fundamental matrix.

Thus, we get

P∞ = lim
n→∞

Pn =

[
0 N ·P[Z,A]
0 I

]
Let p∞ = limn→∞ pn. From transient analysis, we know

p∞ = lim
n→∞

pn

= lim
n→∞

p0P
n

= p0 lim
n→∞

Pn

= [p0[Z] , p0[A]] ·
[

0 N ·P[Z,A]
0 I

]
= [0 , p0[Z] ·N ·P[Z,A] + p0[A]]

p∞ = [0 , n ·P[Z,A] + p0[A]]

Thus, we can determine which absorbing state is finally reached by multiplying n by P[Z,A], which
corresponds to the chance of entering each of the absorbing states each time we visit a transient
state, and adding p0[A], which is the probability that we started in each absorbing state.

Example 16.4

For the example DTMC used previously, we determined

n = [1 , 2/3 , 5/6]

from an initial distribution of

p0 =
[

1/3 , 0 , 1/3 | 1/3 , 0 , 0
]

What is p∞?

For this DTMC we have

P[Z,A] =

 1/3 0 0
0 1/4 0
0 0 1/5


so we obtain

n ·P[Z,A] =
[

1 · 1/3 , 2/3 · 1/4 , 5/6 · 1/5
]

=
[

1/3 , 1/6 , 1/6
]

164

Thus, we have

p∞ =
[

0 , 0 , 0 | 1/3 + 1/3 , 1/6 + 0 , 1/6 + 0
]

=
[

0 , 0 , 0 | 2/3 , 1/6 , 1/6
]

Thus, the DTMC is absorbed into state d with probability 2/3, into state e with prob-
ability 1/6, and into state f with probability 1/6.

Note that for absorbing DTMCs, the limiting distribution depends on the initial distribution.

165

166

Part II

Advanced topics

167

Chapter 17

Introduction to CTMCs

We will assume that T = IR∗ = [0,∞), the non-negative reals.

Property 17.1 CTMC property:

Pr {X(t) = x|X(tn) = xn, . . . , X(t0) = x0} = Pr {X(t) = x|X(tn) = xn}
where t > tn > · · · > t0 are all times in T , and x, xn, . . . , x0 are all states in S.

Again, we will only consider homogeneous CTMCs, where

Pr {X(t+ h) = j|X(t) = i} = Pr {X(h) = j|X(0) = i}
for h ≥ 0; i.e., the probabilities depend on the time difference, not the actual time. For shorthand,
we will denote this as a matrix

Ph[i, j] = Pr {X(h) = j|X(0) = i}

For now, we will assume that transitions between states are not arbitrarily fast1:

lim
h→0

Ph = I

I.e., as the time difference goes to zero, the probability of changing states goes to zero.

In the discrete case, we discussed how the process evolves with every “clock tick”, i.e., as time
advances by discrete steps. Since time is now continuous, to discuss how the process evolves at an
infinitesimally–small time instant, we must take the derivative of Ph. Since we are considering the
homogeneous case, this derivative must be independent of the time instant, so we will look at time
zero. In particular, let Q be the derivative of Ph at time 0:

Q = lim
h→0

Ph −P0

h

= lim
h→0

Ph − I

h

The units of each element Q[i, j] are “probability per time unit”; or, think of it as a “flow of
probability from state i to state j”; or, think of it as “how does the probability of going from state
i to state j increase over time”.

Let’s examine the entries of matrix Q.

1We will discuss how to relax this restriction later.

169

• The “off–diagonal” elements:

Q[i, j] = lim
h→0

Ph[i, j]− 0

h

Since Ph[i, j] ≥ 0, we must have Q[i, j] ≥ 0. This makes sense: because P0[i, j] is zero (the
smallest possible probability value), Ph[i, j] cannot decrease.

• The “diagonal” elements:

Q[i, i] = lim
h→0

Ph[i, i]− 1

h

Since Ph[i, i] ≤ 1, we must have Q[i, i] ≤ 0. This also makes sense: because P0[i, i] is one
(the largest possible probability value), Ph[i, i] cannot increase.

For any value h, though, we must have that the rows of Ph sum to one. Therefore the rows of
Ph − I sum to zero. Thus, the rows of Q sum to zero. Therefore, we must have that

Property 17.2

Q[i, i] = −
∑
j 6=i

Q[i, j]

for all i ∈ S.

This property makes sense: if the probability of going to some other state from state i increases
with time, then the probability of remaining in state i must decrease with time, at the same rate.

Definition 17.3 The matrix

Q = lim
h→0

Ph − I

h
is called the infinitesimal generator matrix.

Sometimes we use the transition rate matrix R:

R[i, j] =

{
Q[i, j] if i 6= j
0 if i = j

CTMCs are usually drawn as weighted, directed graphs with incidence matrix R.

Example 17.1

C

A B
4.7

0.91.9
3.5 R =

 0 4.7 0.9
0 0 3.5

1.9 0 0

 Q =

 −5.6 4.7 0.9
0 −3.5 3.5

1.9 0 −1.9



Example 17.2

F

D E

1/100

1/1000

1.2 This CTMC might represent a failure / repair model: state D
represents a working state, state E represents a failed state,
and state F represents a failed state that cannot be repaired.
Note that F is an absorbing state.

170

17.1 Intuitive meaning of the rates

Consider a particular state i, with several non-zero rates of transition to other states:

j

i z

k

. .
 .

qij qik

qiz

To understand the meaning of these rates, let’s determine

1. How long does the CTMC remain in state i, before changing states? This is a random variable.

2. Once leaving state i, which state will we enter? This is also random, so what we really want
is the probability of entering each state.

How long do we stay in state i

Suppose we observe the state of the CTMC every h time units, for small h. This gives us a DTMC,
where the time step for the DTMC is “observation number” of the CTMC. Since h is small, we can
estimate the probability of going from state i to state j in one observation as Ph[i, j] ≈ qij · h, for
i 6= j. The probability of remaining in state i after one observation is

1− (qij · h+ · · ·+ qiz · h) = 1 + qii · h ≈ Ph[i, i]

Thus, we obtain the following as the “observation DTMC”.

j

z

k

. .
 .

qij · h qik · h

qiz · h
i

1 + qii · h

Let random variable M equal the time spent in state i, before the first state change. Let t = n · h,
i.e., the CTMC time t corresponds to observation n of the DTMC. What is the CDF of M?

Pr {M < t} = Pr {CTMC left state i before time t}
≈ Pr {DTMC left state i before observation n}
≈ 1− Pr {DTMC still in state i at observation n}
≈ 1− (1 + qii · h)n

≈ 1− (1 + qii · t/n)n

171

To obtain the exact value of the probability, we take the limit as h → 0, and therefore n → ∞,
keeping n · h = t fixed:

Pr {M < t} = lim
n→∞

1− (1 + qii · t/n)n

= 1− eqii·t

Thus, M ∼ Expo(−qii) = Expo(qij + · · ·+ qiz).

Which state do we go to

Using the “observation DTMC”, we can make all states except state i absorbing, to determine what
state is reached after leaving state i. The only transient state is i, and we have

P[Z,Z] = [1 + qii · h]

I−P[Z,Z] = [− qii · h]

N =

[
− 1

qii · h

]
P[Z,A] = [qij · h , . . . , qiz · h]

N ·P[Z,A] =

[
qij
−qii

, . . . ,
qiz
−qii

]
Recall that N · P[Z,A] gives the probability of being absorbed into each absorbing state. Now,
take the limit as h→ 0. Since the vector does not depend on h, this is trivial. Thus, in the CTMC,
once we leave state i, we go to state j with probability

qij
−qii

=
qij

qij + · · ·+ qiz

Summary of CTMC behavior

Recall: if we haveXj ∼ Expo(qij), Xk ∼ Expo(qik), . . . , Xz ∼ Expo(qiz) thenX = min(Xj , Xk, . . . Xz)
has distribution Expo(qij + qik + · · ·+ qiz). And, X = Xj with probability

qij
qij + qik + · · ·+ qiz

Therefore, we have the following.

• As soon as the CTMC enters state i, look at all the outgoing arcs to states j, k, . . . , z and
sample a random time Xj ∼ Expo(qij), Xk ∼ Expo(qik), . . . , Xz ∼ Expo(qiz) for each arc.

• Whichever time is smallest “wins”, and after that amount of time, the CTMC will change to
that state. E.g., if Xm is the smallest, then after Xm time the CTMC switches from state i
to state m.

• The CTMC will remain in state i for time

min(Xj , Xk, . . . , Xz) ∼ Expo(−qii)

172

• The CTMC will switch to state j when Xj = min(Xj , Xk, . . . , Xz), which occurs with prob-
ability

qij
qij + qik + · · ·+ qiz

173

174

Chapter 18

Analyzing CTMCs

18.1 Transient analysis

Suppose we have a CTMC, and an initial distribution, and we want to know the probability
distribution at a particular (finite) time t:

πt[i] = Pr {X(t) = i}
In the discrete–time case, we found the distribution by looking at the change in probability as
one time step passed. In the continuous–time case, we again will use the continuous analog:
differentiation. Thus, we will work towards finding

lim
h→0

Pr {X(t+ h) = i} − Pr {X(t) = i}
h

First, we will derive an expression for Pr {X(t+ h) = i}, conditioned on an observation of the state

at time t. In the following discussion, we use the notation i
t−→ j to mean that the CTMC changed

state from i to j at time t. We can enumerate all the ways the CTMC can be in state i at time
t+ h, based on the number of state changes since the last observation at time t:

Pr {X(t+ h) = i} = Pr {X(t) = i, and the CTMC did not change state}
+∑
j 6=i

Pr
{
X(t) = j, j

t1−→ i, and we remain in i
}

for t < t1 < t+ h

+∑
k 6=j

∑
j 6=i

Pr
{
X(t) = k, k

t1−→ j, j
t2−→ i, and we remain in i

}
for t < t1 < t2 < t+ h

+
...

This raises an interesting question: how many state changes are possible in a short time h? More
practically, we want to know, for what n does

lim
h→0

Pr {The CTMC changes state n times in time h}
h

175

become zero, so we can limit our work on the above sums.

Example 18.1

Suppose we want to know the time required for a CTMC to change from state i to state
j. This can be modeled by a random variable X ∼ Expo(λ). Thus, we can compute:

lim
h→0

Pr {X < h}
h

= lim
h→0

1− e−λh
h

= lim
h→0

λe−λh

1
= λ

Example 18.2

Suppose we want to know the time required for a CTMC to change from state i to state
j, then from state j to state k. This can be modeled by a random variable X = X1+X2,
where X1 ∼ Expo(λ), X2 ∼ Expo(µ). First, we need to know the CDF of X:

Pr {X < t} = Pr {X1 +X2 < t}

=

∫ t

0
Pr {X1 +X2 < t|X2 = x} · µe−µx dx

=

∫ t

0

(
1− e−λ(t−x)

)
· µe−µx dx

...

Pr {X < t} = 1− λe−µt − µe−λt
λ− µ for λ 6= µ

Now, we can compute the limit, as in the previous example:

lim
h→0

Pr {X < h}
h

= lim
h→0

λ− µ− λe−µh + µe−λh

(λ− µ)h

= lim
h→0

λµe−µh − λµe−λh
(λ− µ)

= 0

The case λ = µ is left as an exercise.

From the previous two examples, we see that we do not need to consider two or more state changes
in the CTMC in our derivation of πt+h[i] = Pr {X(t+ h) = i}, since these have a limit of zero.

lim
h→0

πt+h[i]

h
= lim

h→0

πt[i] · Pr {X(t+ h) = i|X(t) = i}
h

+

lim
h→0

∑
j 6=i πt[j] · Pr {X(t+ h) = i|X(t) = j}

h

= lim
h→0

∑
∀j πt[j] · Pr {X(t+ h) = i|X(t) = j}

h

= lim
h→0

∑
∀j πt[j] ·Ph[j, i]

h

176

As usual, the above sum reduces to vector–matrix multiplication, and we have

lim
h→0

πt+h
h

= lim
h→0

πtPh

h

lim
h→0

πt+h − πt
h

= lim
h→0

πtPh − πt
h

= πt lim
h→0

Ph − I

h
d

dt
πt = πtQ

We have a differential equation!

Example 18.3

The equations for transient analysis of DTMCs can be rewritten as

pn+1 = pnP

pn+1 − pn = pnP− pn

pn+1 − pn = pn(P− I)

which is the discrete version of the above differential equation.

Example 18.4

Suppose we have the differential equation

d

dx
y = y · q

and we want to know y as a function of x. In other words, for what y = f(x) does the
above hold? While solving differential equations is not a prerequisite for this course, we
can “guess” a solution and verify it using calculus (which is a prerequisite):

y = c · eqx c is a constant

d

dx
y =

d

dx
c · eqx

= cq · eqx
= y · q

Thus, f(x) = c eqx is a solution. Note that, since a differential equation simply specifies
the “slope” of the function, we cannot solve for the constant c unless we have more
information, in particular one point of the function, say y0 = f(0):

y0 = f(0) = c e0 = c

Thus, if the point y0 is known, then the solution is

y = y0 · eqx

177

Note the previous example has the same form as our differential equation for πt. Therefore, the
solution must be

Property 18.1 (CTMC distributions at finite time t)

πt = π0 · eQt

The above equation uses the matrix exponential, which can be computed using the Taylor expansion
for ex:

πt = π0 · eQt

= π0 ·
∞∑
n=0

tn

n!
Qn

The above is useful mathematically, but it is impractical for computing πt for two important
reasons:

1. If Q is large and sparse, as n increases, Qn will become less and less sparse. So computing
Qn will not be possible for large CTMCs.

2. The matrix Q contains positive and negative elements. That means that computing Qn will
require lots of floating–point subtractions.

There is another approach that does not suffer from the above two problems.

18.1.1 Uniformization

As discussed earlier, a CTMC remains in state i for Expo(−qii) time, before changing states. Then,
it changes to state j with probability −qij/qii. In the method of uniformization, we adjust the
CTMC so that the time spent in state i before changing states is Expo(q). To achieve this, while
still keeping the original behavior of the CTMC, we allow the CTMC to return to state i with the
appropriate probability, and adjust the probabilities of changing states, as follows.

j

i

z

k

. .
 .

qij
−qii

qik
−qii

qiz
−qii

Expo(−qii)

j

i

z

k

. .
 .

qij
q

qik
q

qiz
q

Expo(q)

1 +
qii
q

Original CTMC Uniformized CTMC

First, note that the outgoing probabilities on the dotted arcs of the “uniformized CTMC” sum to
one:

1 +
qii
q

+
qij
q

+ · · ·+ qiz
q

= 1 +

∑
k qik
q

= 1 +
0

q
= 1

178

Next, note that the expected rate of leaving state i in the uniformized CTMC

q · Pr {We do not loop back to state i} = q ·
(

1−
(

1 +
qii
q

))
= − qii

is the same as in the original CTMC. Finally, the expected rate of going from state i to state j in
the uniformized CTMC

q · Pr {We switch to state j} = q · qij
q

= qij

is the same as in the original CTMC.

The above transformation works only if the above values on the dotted arcs are indeed probabilities,
which implies q ≥ qij and q ≥ −qii. Thus, we must have q at least as large in magnitude as the
largest element of matrix Q. There is no other restriction as to how we select q.

Now, the time between state changes in the uniformized CTMC is Expo(q), regardless of which
state the CTMC is currently in. If we ignore (or treat separately) the time required to change state,
and look only at the state changes, we obtain a DTMC. The transition probabilities for this DTMC
correspond exactly to the probabilities on the dotted arcs in the above picture. We therefore can
obtain a uniformized DTMC using the matrix equation

P =
1

q
Q + I

Note that time in the DTMC corresponds to “attempt number to change state” (at rate Expo(q)).

Example 18.5

For the CTMC below (left), we can obtain the following uniformized DTMCs, using
various values of q:

C

A B
4.7

0.91.9
3.5

C

A B
4.7 / 5.6

0.9 / 5.61.9 / 5.6
3.5 / 5.6

2.1 / 5.6

3.7 / 5.6

C

A B
4.7 / 6

0.9 / 61.9 / 6
3.5 / 6

2.5 / 6

4.1 / 6

0.4 / 6

q = 5.6 q = 6.0
Original CTMC Uniformized DTMCs

Note that the smallest possible value of q is 5.6.

Note we can rewrite the uniformization equation as

Q = q · (P− I)

179

Let’s substitute this into the matrix exponential and see what happens:

πt = π0 · eQt
= π0 · eqt(P−I)
= π0 · eqtP · e−qtI

= π0 ·
(∞∑
n=0

(qt)n

n!
Pn

)
·
(∞∑
n=0

(−qt)n
n!

In

)

=

(∞∑
n=0

(qt)n

n!
π0P

n

)
·
(
e−qtI

)
πt =

∞∑
n=0

e−qt
(qt)n

n!
pn

Thus we have

Property 18.2 Transient analysis using uniformization

πt =
∞∑
n=0

e−qt
(qt)n

n!
pn

In the above equation:

• pn is the distribution of the uniformized DTMC at time n using an initial distribution of π0.

• e−qt (qt)nn! is the PDF of Poisson: if Yqt ∼ Poisson(qt), then

Pr {Yqt = n} = e−qt
(qt)n

n!

Why do we obtain the Poisson distribution?

Property 18.3 Let X1, X2, . . . be an iid sequence of Expo(q) random variables. Let (random
variable) N be the largest n such that

X1 +X2 + · · ·+Xn < t

Then N ∼ Poisson(qt).

For a proof of Property 18.3, see for example Discrete–Event Simulation: A First Course by Leemis
and Park.

The intuitive meaning of Property 18.2 is therefore:

πt =

∞∑
n=0

e−qt
(qt)n

n!
pn

=
∞∑
n=0

Pr {Yqt = n} · pn

=

∞∑
n=0

Pr {The CTMC changes state exactly n times before time t} · pn

How can we compute πt in practice, using Property 18.2?

180

1. Decide the uniformization parameter q.

2. Compute the Poisson distribution for parameter qt. There is an efficient algorithm to do this
with high accuracy, due to Fox and Glynn1. The algorithm gives left and right “truncation
points”, l and r, so that

Pr {l ≤ Yqt ≤ r} ≥ 1− ε

where Yqt ∼ Poisson(qt) and ε is a user–desired precision. The algorithm also computes
Pr {Yqt = n} for all l ≤ n ≤ r.

3. Compute

πt ≈
r∑
n=l

Pr {Yqt = n} · pn

and the resulting approximation to πt will have elements that sum to at least 1− ε.

Example 18.6

For the following CTMC, if the CTMC is initially in state A, what is the probability
distribution at time t = 10?

CA B
0.6 0.6

0.6

First, we produce a uniformized DTMC, using q = 0.6:

CA B
1 1

1

To compute π10 with q = 0.6, we need the PDF of Y6.0 ∼ Poisson(6.0) The table below
shows how the approximation to π10 converges as the number of terms in the sum in
Property 18.2 increases. Note, the column Pr {Y6.0 > n} gives an indication as to the
achieved precision of our approximation to π10. The estimate of π10 for n is given by
the estimate of π10 for n− 1, plus pn multiplied by Pr {Y6.0 = n}.

1B. L. Fox and P. W. Glynn. “Computing Poisson Probabilities”, in Communications of the ACM 31 (4), April
1988, pages 440–445

181

n pn Pr {Y6.0 = n} Pr {Y6.0 > n} Estimate of π10

0 [1, 0, 0] 0.00247875 0.99752125 [0.00247875, 0.0 , 0.0]
1 [0, 1, 0] 0.01487251 0.98264873 [0.00247875, 0.01487251, 0.0]
2 [0, 0, 1] 0.04461754 0.93803120 [0.00247875, 0.01487251, 0.04461754]
3 [0, 1, 0] 0.08923508 0.84879612 [0.00247875, 0.10410759, 0.04461754]
4 [0, 0, 1] 0.13385262 0.71494350 [0.00247875, 0.10410759, 0.17847016]
5 [0, 1, 0] 0.16062314 0.55432036 [0.00247875, 0.26473073, 0.17847016]
6 [0, 0, 1] 0.16062314 0.39369722 [0.00247875, 0.26473073, 0.33909330]
7 [0, 1, 0] 0.13767698 0.25602024 [0.00247875, 0.40240771, 0.33909330]
8 [0, 0, 1] 0.10325773 0.15276251 [0.00247875, 0.40240771, 0.44235103]
9 [0, 1, 0] 0.06883849 0.08392402 [0.00247875, 0.47124620, 0.44235103]

10 [0, 0, 1] 0.04130309 0.04262092 [0.00247875, 0.47124620, 0.48365412]
11 [0, 1, 0] 0.02252896 0.02009196 [0.00247875, 0.49377516, 0.48365412]
12 [0, 0, 1] 0.01126448 0.00882748 [0.00247875, 0.49377516, 0.49491860]
13 [0, 1, 0] 0.00519899 0.00362849 [0.00247875, 0.49897415, 0.49491860]
14 [0, 0, 1] 0.00222814 0.00140035 [0.00247875, 0.49897415, 0.49714674]
15 [0, 1, 0] 0.00089126 0.00050910 [0.00247875, 0.49986541, 0.49714674]
16 [0, 0, 1] 0.00033422 0.00017488 [0.00247875, 0.49986541, 0.49748096]
17 [0, 1, 0] 0.00011796 0.00005692 [0.00247875, 0.49998337, 0.49748096]
18 [0, 0, 1] 0.00003932 0.00001760 [0.00247875, 0.49998337, 0.49752028]
19 [0, 1, 0] 0.00001242 0.00000518 [0.00247875, 0.49999578, 0.49752028]
20 [0, 0, 1] 0.00000373 0.00000146 [0.00247875, 0.49999578, 0.49752401]
21 [0, 1, 0] 0.00000106 0.00000039 [0.00247875, 0.49999685, 0.49752401]
22 [0, 0, 1] 0.00000029 0.00000010 [0.00247875, 0.49999685, 0.49752430]
23 [0, 1, 0] 0.00000008 0.00000002 [0.00247875, 0.49999692, 0.49752430]
24 [0, 0, 1] 0.00000002 0.00000001 [0.00247875, 0.49999692, 0.49752432]
25 [0, 1, 0] 0.00000000 0.00000000 [0.00247875, 0.49999693, 0.49752432]

18.2 Irreducible CTMCs

As with DTMCs, CTMC states can be classified into transient and recurrent. Recall, our earlier
definition for i; j was in terms of “probability of reaching a state”. Therefore, all the discussion
for DTMCs applies also to CTMCs. Namely, for a finite CTMC, we can determine recurrent classes
and transient states by examining the strongly–connected components of the CTMC graph. As
with DTMCs, we say a CTMC is irreducible if all pairs of states are mutually reachable (i.e., S is
a recurrent class).

Recall that each recurrent class in a DTMC has a period, based on the possible return times for
each state in the recurrent class. For a CTMC, though, if i ; j then Pr {X(t) = j|X(i) = 0} > 0
for all positive t. That is because, for any path i→ i1 → i2 → · · · → j, the time to go from state i
to state j is the sum of (independent) Expo random variables, and therefore the possible times are
between 0 and infinity (of course, some of these times may be extremely improbable). Thus, the
set of return times for any recurrent state is always equal to the interval (0,∞). As such, there is
no notion of “period” for CTMCs.

Definition 18.4 A CTMC is ergodic if it is irreducible.

182

Suppose we have an irreducible CTMC. Can we determine

π = lim
t→∞

πt

18.2.1 Argument 1

Using uniformization we can obtain a DTMC. Note that as time goes to infinity, the number of state
changes of the CTMC must also go to infinity. So, the steady–state distribution of the uniformized
DTMC is the same as the steady–state distribution of the original CTMC. Therefore, we have

π(P− I) = 0

π((Q/q + I)− I) = 0

π(Q/q) = 0

πQ = 0

18.2.2 Argument 2

The steady–state distribution does not change over time. Thus, in steady–state, we have

d

dt
πt = 0

Plugging this into the differential equation we obtain

d

dt
πt = πtQ

0 = πtQ

18.2.3 Argument 3

In steady–state, the probability flow out of a state must equal the probability flow into a state.
The probability flow out of state i is

π[i] ·
∑
j 6=i

Q[i, j]

and the probability flow into state i is ∑
j 6=i

π[j]Q[j, i]

Setting these equal, we obtain ∑
j 6=i

π[j]Q[j, i] = π[i] ·
∑
j 6=i

Q[i, j]

∑
j 6=i

π[j]Q[j, i] = π[i] · −Q[i, i]

∑
∀j

π[j]Q[j, i] = 0

183

which says that the dot product of π and column i of Q is 0. Since this holds for all columns, the
above equations can be written as

πQ = 0

As such, the above equation is sometimes called the “flow balance equations”.

Property 18.5 For an irreducible CTMC, the steady–state distribution is the unique probability
vector π satisfying

πQ = 0

As with DTMCs, note that the steady–state distribution of an ergodic CTMC does not depend on
the initial distribution.

Example 18.7

What is the steady–state distribution for the following CTMC?

C

A B
4.7

0.91.9
3.5

We can write the flow balance equations by looking at the CTMC (or, equivalently,
write down the matrix Q and multiply out the equations):

1.9 · C = 5.6 ·A
4.7 ·A = 3.5 ·B

0.9 ·A+ 3.5 ·B = 1.9 · C

and of course we also require A+B + C = 1. The first equation gives us

C =
5.6

1.9
A

and the second equation gives us

B =
4.7

3.5
A

Note that plugging these into the third equation gives us 0 = 0, so we instead use

A+B + C = 1

A+
4.7

3.5
A+

5.6

1.9
A = 1

A =
1

1 + 4.7
3.5 + 5.6

1.9

≈ 0.189028

184

Thus we obtain

C =
5.6

1.9
A ≈ 0.557135

B =
4.7

3.5
A ≈ 0.253837

and therefore we have π = [0.189028, 0.253837, 0.557135].

18.3 Absorbing CTMCs

In an absorbing CTMC, as with the discrete–time case, we have that all states are either transient
or absorbing:

• Z is the set of transient states

• A is the set of abosrbing states

• S = Z ∪A
How can we compute the usual quantities:

1. The expected time spent in each transient state before absorption, as a vector σ.

2. The probability of being absorbed into each absorbing state.

Note that when we organize the rows and columns of Q for an absorbing CTMC, we obtain the
following block structure:

Q =

[
Q[Z,Z] Q[Z,A]

0 0

]
Note that the absorbing states have no outgoing arcs, so the corresponding rows of Q are entirely
0. Compare this to the DTMC case.

18.3.1 Time spent in each transient state

We can obtain the expected number of visits to each transient state in the uniformized CTMC by
studying the uniformized DTMC:

n(P[Z,Z]− I) = − p0[Z]

But how does this relate to the expected time spent in each state? In the discrete case, the time
spent in each state is ∼ Const(1). In the uniformized CTMC, the time spent in each state is
∼ Expo(q). Since the expected value of an Expo(q) random variable is 1/q, we have

σ = n/q

Therefore, we can rewrite the above linear system as

n(P[Z,Z]− I) = −p0[Z] = − π0[Z]

qσ(P[Z,Z]− I) = −π0[Z]

qσ((Q[Z,Z]/q + I)− I) = −π0[Z]

σQ[Z,Z] = −π0[Z]

185

Property 18.6 The vector σ, which holds the expected time spent in each transient state, is the
unique solution to

σQ[Z,Z] = − π0[Z]

where π0 is the initial probability distribution.

Property 18.7

σ =

∫ ∞
0

πt[Z] dt

where πt is the probability distribution at time t. Proof:∫ ∞
0

πt[Z] dt =

∫ ∞
0

π0[Z]eQ[Z,Z]t dt

=
[
π0[Z]eQ[Z,Z]tQ[Z,Z]−1

]∞
0

=
[
πt[Z]Q[Z,Z]−1

]∞
0

= (π∞[Z]− π0[Z])Q[Z,Z]−1

= −π0[Z]Q[Z,Z]−1 = σ

18.3.2 Probability of reaching each absorbing state

From an earlier discussion, recall that the limiting distribution of the uniformized DTMC is the
same as the limiting distribution for the original CTMC. Thus, the probability of reaching each
absorbing state is

p∞[A] = nP[Z,A] + p0[A]

We can rewrite this in terms of the matrix Q using the uniformization equation:

p∞[A] = nP[Z,A] + p0[A]

= n(Q/q + I)[Z,A] + p0[A]

= nQ[Z,A]/q + p0[A]

π∞[A] = σQ[Z,A] + π0[A]

And of course we have π∞[Z] = 0.

18.4 Reducible CTMCs and measures

The discussion in a previous lecture about how to analyze reducible DTMCs applies equally well
to reducible CTMCs, except with CTMCs we do not have to worry about the period for each
recurrent class. Thus, given a reducible CTMC and its initial distribution, we can always find the
limiting distribution: first find the probability of reaching each recurrent class (using the equations
for absorbing CTMCs), then find the steady–state distribution for each recurrent class.

Similarly, the discussion about “reward measures” for DTMCs applies also to CTMCs. In this
case, the rewards are accumulated based on the amount of time spent in each state, rather than
the number of visits to each state2. To express rewards in terms of the number of visits to each state
of a CTMC, we must first convert the CTMC into a DTMC, but rather than using uniformization
to do this, we must use another technique. We will discuss this later.

2For a DTMC, these are equal: the time spent in a state is equal to the number of visits to the state, since the
time per visit is always 1.

186

Chapter 19

Stochastic Petri Nets

So far, the Petri nets we discussed can be used for reachability questions. What about for measuring
performance? We need to somehow assign stochastic behavior to the Petri net. We call this a
“stochastic Petri net”, or SPN.

19.1 Extending Petri nets to include stochastic behavior

Stochastic behavior is usually associated with transition firings. Since several transitions may be
enabled in a given marking, we must specify how to choose between them, how time elapses, etc.
This is usually done by specifying the following information.

19.1.1 Pre-selection priorities

If multiple transitions are enabled simultaneously, these priorities specify which ones may fire, or
probabilities of doing so.

For example, we could assign an integer priority to each transition, which says that if transition
t is enabled in a given marking m, it cannot fire if another transition with higher priority1 is also
enabled in marking m.

19.1.2 Firing distributions

A distribution is assigned to each transition, which specifies the random amount of time required
to fire the transition. In general, we can allow the distribution to depend on the current marking.
If more than one transition is enabled, then normally a race semantic is assumed, meaning that
whichever transition has the shortest firing time will fire first, and will fire after that much time
has elapsed. Conceptually, this says that each transition has its own internal clock, which is set to
a random time (according to its distribution) when it becomes enabled, and counts down until it
reaches zero, at which point the transition fires. (More about this later.) We must address several
important questions:

1. What happens to the remaining time of a transition, if it becomes disabled due to another
transition firing?

1As usual, there is no agreement if greater or lesser integers represent higher priority.

187

This is addressed by setting the appropriate policy, per transition, possibly depending on the
current marking:

Resample: The next time the transition is enabled, throw away the previous remaining
firing time and “start over” using a newly sampled firing time. This policy is useful for
modeling a true “race” between activities, where the losing activity is discarded.

Resume: The next time the transition is enabled, “continue” with whatever is leftover from
the previous firing time. This policy is useful for modeling service interruptions, where
an interruption does not increase the time for an activity. Example: the activity is
“drilling a hole through a sheet of metal”, and an interruption is “loss of electricity to
the drill”.

Restart: Like “Resample”, except the previously–sampled time is used again. Useful for ser-
vice interruptions where the service must “start over” if it does not complete successfully.
(This policy usually requires simulation, rather than numerical analysis.)

2. What if a transition becomes enabled a second time? Do we use a second clock for the
transition, and take the minumum of the two clocks as the next firing time (the two enablings
proceed in parallel), or do we wait until after the transition fires to consider the second
enabling (the second enabling is added to a queue)?

19.1.3 Post-selection priorities

If we have discrete firing time distributions, and we use a race semantic, then it is possible that
two enabled transitions will have the same firing time. What happens in this case? (Note this issue
goes away if we have only continuous firing time distributions, since the probability of equal firing
times will be zero.)

Again, we can set priorities or probabilities to resolve this issue. Note that, since the transitions
may be in conflict (the winner will cause the loser to become disabled), the firing time for the
“losing” transition will be determined by the resample/resume/restart policy.

19.1.4 Analysis

We can always use discrete–event simulation to analyze a stochastic Petri net, regardless of our
choice in firing distributions, priorities, and disabling policies. Numerical analysis is also possible
in certain cases. Specifically, the type of stochastic process described by the stochastic Petri net
will depend on the firing distributions, priorities, disabling policies, and the model itself. We will
start with a simple case, and consider cases with increasing complexity later.

19.2 Exponential firing times

Suppose we have a Petri net where the firing time distributions are all Expo. (To be confusing,
some people use this as the definition of “stochastic Petri net”.) This simplifies things considerably.

1. If X ∼ Expo(λ), it can be shown that

Pr {X < t+ h|X > h} = Pr {X < t}

188

which implies that, if the transition has not fired by time h, then its remaining firing time has
distribution Expo(λ). This says that the policies “resample” and “resume” are equivalent!

2. Because the minimum of two Expo(λ) firing times has distribution Expo(2λ), if we want to
have a “separate clock” for each enabling of the transition, we can simply use a marking–
dependent firing time.

3. No simultaneous firings are possible.

Consider the following tiny SPN:

p1 p2 p3t1 t2

t1 has firing distribution Expo(λ1)
t2 has firing distribution Expo(λ2)

From the specified initial marking, the Petri net

will fire t1 first if Expo(λ1) < Expo(λ2), putting a token in place p1
will fire t2 first if Expo(λ2) < Expo(λ1), putting a token in place p3

But this behavior is the same as the following CTMC:

100 010 001
λ1 λ2

Therefore, if all firing distributions are Expo,

1. the underlying stochastic process is a CTMC.

2. the CTMC is equivalent to the reachability graph, where transition names are replaced by
transition firing rates (the Expo parameter).

19.2.1 Multiple transitions between markings

What about multiple edges between the same pair of markings in the reachability graph? Consider
the following SPN:

p1 p2 p3t1

t2

t3

t1 has firing distribution Expo(λ1)
t2 has firing distribution Expo(λ2)
t3 has firing distribution Expo(λ3)

Due to the race semantics, transitions t2 and t3 can be merged into a single transition, with firing
distribution min(Expo(λ2),Expo(λ3)) ≡ Expo(λ2 + λ3).

So, if the reachability graph has a single edge labeled with several transitions, and the firing
distributions are all Expo, the corresponding edge in the underlying CTMC is obtained by summing
the rates of those transitions.

189

19.2.2 Self loops

What about self loops within the reachability graph? Consider the following SPN:

p1 p2 p3t1 t2

t3

Thanks to the memoryless property of the Expo distribution, firing t3 and causing t1 and t2 to
resample their firing times is statistically equivalent to not firing t3 and having t1 and t2 continue
their firing times. As such, the above SPN has the same behavior as the following CTMC:

100 010 001
λ1 λ2

Therefore, self loops in the reachability graph may be discarded in the CTMC.

19.2.3 Measures

Simple reward measures can be defined in terms of the Petri net structure. For example, we can
ask “what is the steady-state expected number of tokens in place p”, or “what is the probability
that transition t is enabled at time 15”. The first question can be answered by constructing the
underlying Markov chain, determining the steady-state distribution, and using a reward function
where, for a given state of the Markov chain, the reward value is given by the number of tokens
in place p. Similarly, the second question can be answered by constructing the underlying Markov
chain, determining the distribution at time 15, and using a reward function where the reward value
is 1 iff transition t is enabled in the given state.

19.2.4 Examples

Example 19.1

Consider a bounded queue, containing at most B customers, with one server. Assume
the time between arrivals is Expo(λ), and the service time for each customer is Expo(µ).
This can be modeled using the following simple Petri net:

jobsarrive depart

B

Transition Firing distribution

arrive Expo(λ)
depart Expo(µ)

This stochastic Petri net describes the following CTMC:

190

λ

µ

λ

µ

λ

µ

λ

µ
...0 1 2 B

We can ask, “how many customers are in the system, on average, in steady state”, using
a reward function of “number of tokens in place jobs”.

Example 19.2

Suppose, like the previous example, we have a bounded queue, except there are two
servers, and the service time is the same regardless of the server used. This can be
modeled using the same Petri net, with different firing distributions:

Transition Firing distribution

arrive Expo(λ)
depart Expo(µ) if #jobs < 2

Expo(2µ) otherwise

This stochastic Petri net describes the following CTMC:

λ

µ

λ

2µ

λ

2µ

λ

2µ
...0 1 2 B

Example 19.3

Suppose we have 50 machines, each of which fails after Expo(λ) time. Failed machines
are repaired by one of 7 technicians, which requires Expo(µ) time. We can model this
using the following simple Petri net:

up downfail repair

50

Transition Firing distribution

fail Expo(#up · λ)
repair Expo(min(7,#down) · µ)

This stochastic Petri net describes the following CTMC:

50, 0 49, 1 48, 2
50λ

µ

49λ

2µ

48λ

3µ
2, 48 1, 49

3λ

7µ

2λ

7µ
0, 50

λ

7µ
...

To obtain the expected number of working machines in steady-state, we use the reward
function “number of tokens in place up”. In the above CTMC, this would assign a
reward of 50 to state (50, 0), a reward of 49 to state (49, 1), etc. Once the steady-state
distribution π is determined for the CTMC, we can apply the reward function to obtain
the desired measure.

191

19.3 SPNs in Smart

A stochastic Petri net can be defined in Smart similar to the definition of a Markov chain. For
example, the “bounded queue” Petri net is given as follows.

real lambda := 1.5;

real mu := 2.0;

pn bqn(int B) := {

place jobs;

trans arrive, depart;

firing(arrive: expo(lambda), depart: expo(mu));

arcs(arrive : jobs, jobs : depart);

inhibit(jobs : arrive : B);

real probempty := prob_ss(tk(jobs)==0);

real probfull := prob_ss(tk(jobs)==B);

real avgqueue := avg_ss(tk(jobs));

};

compute(warning_file("/dev/null"));

print("B":-6, "Pr{empty}":-15, "Pr{full}":-15, "Avg":-15, "\n");

for (int b in {10..100..10}) {

print(b:-6, bqn(b).probempty:-15);

print(bqn(b).probfull:-15, bqn(b).avgqueue:-15, "\n");

}

The measures specified are, “steady state probability of no customers”, “steady state probability of
being full”, and “steady state average number of customers”. Smart will print a warning message,
since the initial marking is empty; we therefore instruct Smart to send all warnings to “/dev/null”,
with the statement

compute(warning_file("/dev/null"));

We use a for loop to print measures for various values of B. The “:-6” in the print statements
causes Smart to left-justify the argument with 6 spaces, similar to printf("%-6d", b); in C.
When executed in Smart, this input file produces the following output.

B Pr{empty} Pr{full} Avg

10 0.261015 0.0147018 2.51506

20 0.25059 0.000795072 2.9501

30 0.250031 4.46829e-05 2.99593

40 0.249998 2.52989e-06 2.99988

50 0.249977 1.62495e-07 3.00113

60 0.249914 2.801e-08 3.00448

70 0.249743 1.81306e-08 3.01408

192

80 0.249343 1.5569e-08 3.03809

90 0.248515 1.38327e-08 3.09159

100 0.246985 1.24615e-08 3.19908

Example 19.4

The Petri net definition in Smart for the machine shop model is:

// M is number of machines

// T is number of technicians

pn machines(int M, int T) := {

place up, down;

trans fail, repair;

init(up:M);

firing(fail:expo(tk(up)*lambda), repair:expo(min(tk(down), T)*mu);

arcs(

up : fail, fail : down,

down : repair, repair : up

);

real avgup := avg_ss(tk(up));

};

193

194

