
CMSC 630 April 13, 2015 1'

&

$

%

Process Algebra

Sources:

• R. Cleaveland and O. Sokolsky. Equivalence and preorder checking for finite-state systems. In

J.A. Bergstra, A. Ponse and S.A. Smolka, editors, Handbook of Process Algebra, pages

391–424. Elsevier, Amsterdam, 2001.

• R. Milner. A Calculus of Communicating Systems, volume 92 in Lecture Notes in Computer

Science. Springer-Verlag, Berlin, 1980.

• R. Milner Communication and Concurrency. Prentice Hall, New York, 1989.
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Process Algebras

... an approach to specifying and verifying concurrent systems

• Emphasis on modeling open systems, i.e. ones that can be embedded in other systems

• Theories built around notion of interaction between systems and environments

• Behavioral equivalences, refinement orderings used to relate systems, specifications

• Compositionality of modeling, verification a key feature

c©2015 Rance Cleaveland. All rights reserved.
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Mathematically...

... process algebras contain:

• A specification language containing operators for assembling subsystems into systems;

• A formal operational semantics of the language defining the atomic interactions a system may

engage in with its environment;

• A notion of behavioral refinement for determining when one system “implements” another.

Traditionally, refinement relations are equivalence relations, although preorders also possible.

c©2015 Rance Cleaveland. All rights reserved.
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How Specification/Verification Works in Process Algebra

1. Formulate system Spec describing desired high-level behavior.

2. Devise candidate design Des.

3. Show Des is correct by establishing that Des refines Spec

c©2015 Rance Cleaveland. All rights reserved.
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CCS: A Calculus of Communicating Systems

We’ll study the process-algebraic approach by looking at a specific process algebra, CCS.

• Devised by Robin Milner (a Turing Award winner!) in the late 1970’s/early 1980’s.

• Features binary handshaking as basic means of interaction.

• Processes built up from set of atomic actions using process constructors.

c©2015 Rance Cleaveland. All rights reserved.
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Actions in CCS

... are either inputs/outputs on ports or internal. Formally:

Let Λ be a(n infinite) set of labels (i.e. port names) not containing the reserved symbol τ .

Then an action in CCS is either:

• an input on port λ ∈ Λ: λ

• an output on port λ ∈ Λ: λ

• an internal action: τ

c©2015 Rance Cleaveland. All rights reserved.



CMSC 630 April 13, 2015 7'

&

$

%

Notation for Actions

Λ set of labels and set of input actions

Λ = {λ | λ ∈ Λ } set of output actions

Λ ∪ Λ set of external actions

Act = Λ ∪ Λ ∪ {τ} set of all actions

Convention

• a = a if a ∈ Λ ∪ Λ.

• τ is undefined.

c©2015 Rance Cleaveland. All rights reserved.
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What’s the Idea with CCS Actions?

CCS systems communicate with their environments (and each other) by synchronizing on ports.

• If one partner can input and the other can output on the same port, then a synchronization

may occur and both evolve.

• Inputs and outputs are blocking; only action a system can perform autonomously is τ .

• Thus the external actions a system can perform can be thought of as its interface.

Note No values exchanged in basic CCS; “output” means “emit a signal”.

c©2015 Rance Cleaveland. All rights reserved.
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The Syntax of CCS

Let a ∈ Act, L ⊆ Λ, f : Λ → Λ, C ∈ C where C is infinite set of process names.

E ::= 0 “Termination”

| a.E “Prefixing”

| E1 +E2 “Choice”

| E1|E2 “Parallel”

| E\L “Restriction”

| E[f ] “Relabeling”

| C “Invocation”

c©2015 Rance Cleaveland. All rights reserved.
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The Syntax of CCS (cont.)

A CCS expression E is closed if every process name has been “declared”.

Declarations have form: C
∆
= E.

Example A declaration for process name A:

A
∆
= a.b.A

Once this declaration has been made, expressions such as A, A|A become closed.

P ≡ set of CCS processes ≡ set of closed CCS expressions.

c©2015 Rance Cleaveland. All rights reserved.
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Huh?

Idea CCS is used to encode textually a system like the following.

send

Sender

send

out

ackin

Sys

Medium

out in

Receiver

in

ackout

rec rec

ackout
ackin

c©2015 Rance Cleaveland. All rights reserved.
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Individual Components of Sys

ackin

in

rec

ackout

out

out ackout

ReceiverMedium

in

Sender

send

ackin

c©2015 Rance Cleaveland. All rights reserved.
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Here’s the CCS

Sender
∆
= send.out.ackin.Sender

Medium
∆
= out.in.Medium + ackout.ackin.Medium

Receiver
∆
= in.rec.ackout.Receiver

Sys
∆
= (Sender |Medium |Receiver)\{in, out, ackin, ackout}

c©2015 Rance Cleaveland. All rights reserved.
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What Do CCS Descriptions Mean?

So far we’ve seen the syntax of CCS: a.,+, |, \L, [f ], C

The next step: define the behavior of CCS expressions by giving the language an operational

semantics.

• The semantics will define the execution steps of CCS systems.

• It will also be the basis for behavioral equivalences we will study.

c©2015 Rance Cleaveland. All rights reserved.
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The Operational Semantics of CCS ...

... is intended to capture a notion of “button-pushing”.

• Systems are boxes with buttons labeled by visible actions.

• Two kinds of buttons:

– Input actions: usual kind of button that user presses.

– Output actions: button is concealed by a little door.

• In different states, systems enable different buttons.

– If button is an input, user may press it, and system changes state.

– If button is an output, user may move little door to one side; then system “pushes out”

button and changes state.

c©2015 Rance Cleaveland. All rights reserved.
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CCS Operators and Button-Pressing

Given button-pushing intuition, CCS operators can be viewed as operations for building boxes and

composing them.

0: Box that responds to nothing.

a.E: Box that only enables a, behaves like E after a is performed.

E + F : Box that initially all buttons in both E,F , then behaves E or E based on buttons

pressed.

c©2015 Rance Cleaveland. All rights reserved.
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CCS Operators and Button-Pressing II

E|F : Composite box responding to all button presses E, F can. In addition, outputs of E have

doors swung to one side and “lined up” with inputs of F on same port, and vice versa (so

boxes can “press each other’s buttons”)

E\L: Box obtained by “taping over” buttons whose ports are in L.

E[f ]: Box obtained by relabeling buttons according to f .

c©2015 Rance Cleaveland. All rights reserved.
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Capturing Button-Pressing Mathematically

The semantics of CCS is defined mathematically as a ternary relation −→⊆ P × Act×P .

• 〈P, a,Q〉 ∈−→ means “P enables a, then behaves like Q after a performed.”

• Notation: we write P
a

−→ Q in lieu of 〈P, a,Q〉 ∈−→.

c©2015 Rance Cleaveland. All rights reserved.
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Defining −→: Structural Operational Semantics

−→ given inductively as collection of rules.

• Each rule has form:

premises

conclusion
(side condition) (name)

• Premises, conclusion are statements (judgments) of form P
a

−→ Q.

• Intention: P
a

−→ Q is true if it can be derived using rules.

Rules may be grouped according to CCS operator; so this rule-based style is often called

Structural Operational Semantics (SOS).

c©2015 Rance Cleaveland. All rights reserved.
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SOS Rules I

a.P
a

−→ P
(Act)

P
a

−→ P ′

P +Q
a

−→ P ′
(Sum1)

Q
a

−→ Q′

P +Q
a

−→ Q′
(Sum2)

c©2015 Rance Cleaveland. All rights reserved.



CMSC 630 April 13, 2015 21'

&

$

%

SOS Rules II

P
a

−→ P ′

P |Q
a

−→ P ′|Q
(Com1)

Q
a

−→ Q′

P |Q
a

−→ P |Q′
(Com2)

P
a

−→ P ′ Q
a

−→ Q′

P |Q
τ

−→ P ′|Q′
(Com3)

c©2015 Rance Cleaveland. All rights reserved.
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SOS Rules III

P
a

−→ P ′

P\L
a

−→ P ′\L
(a, a 6∈ L) (Res)

P
a

−→ P ′

P [f ]
f̂(a)
−→ P ′[f ]

(Rel)

P
a

−→ P ′

C
a

−→ P ′
(C ∈ C, C

∆
= P ) (Con)

c©2015 Rance Cleaveland. All rights reserved.
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Notes on Rules

1. Each rule has a name for ease of reference.

2. Act rule has no premises and hence can be viewed as an axiom.

3. Rules for +, | make precise the “button-pressing” intuitions for these operators.

4. Result of synchronization (Com3) is always τ .

5. In Rel, recall f : Λ → Λ. f̂ : Act → Act is given by:

f̂(a) =





a if a ∈ Λ

f(b) if a = b and b ∈ Λ

τ if a = τ

c©2015 Rance Cleaveland. All rights reserved.
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SOS and Transitions for CCS Systems

Question In what sense do the SOS rules “define” −→?

The answer:

• The SOS rules define an inference system, where statements inferred have form “P
a

−→ Q”.

• A transition P
a

−→ Q can be inferred if one can construct a proof using the rules.

• So the relation −→ contains exactly those process-action-process triples that can be inferred

from the rules.

c©2015 Rance Cleaveland. All rights reserved.
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Example: Infer ((a.P + b.0) | a.Q)\{a}
b

−→ (0 | a.Q)\{a}

((a.P + b.0) | a.Q)\{a}
b

−→ (0 | a.Q)\{a}

b.0
b

−→ 0

a.P + b.0
b

−→ 0

Act

Sum2

Com1

Res
(a.P + b.0) | a.Q

b
−→ 0 | a.Q b, b 6∈ {a}

c©2015 Rance Cleaveland. All rights reserved.
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Example: Infer ((a.P + b.0) | a.Q)\{a}
τ

−→ (P |Q)\{a}

(a.P + b.0) | a.Q
τ

−→ P |Q τ 6∈ {a}

Sum2

a.P + b.0
a

−→ P

a.P
a

−→ P

a.Q
a

−→ Q
Act

Act

Res

Com3

((a.P + b.0) | a.Q)\{a}
τ

−→ (P |Q)\{a}

c©2015 Rance Cleaveland. All rights reserved.
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Notes

1. Proofs built in forward-chaining manner: use inference rules to infer new conclusions from

existing ones.

2. Such forward-chaining proofs always “begin” with an application of Act rule.

3. Side condition in Res rule must hold for rule to be applied; so

((a.P + b.0)|a.Q)\{a}
a

−→ (P |a.Q)\{a}

cannot be proved!

c©2015 Rance Cleaveland. All rights reserved.
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Static and Dynamic CCS Operators

Based on form of rules, one can categorize CCS operators as either:

• Dynamic: 0, a., +

• Static: |, \L, [f ]

Distinction: whether or not operator appears in target of conclusion of operator’s rules!

(Of course, 0 has no rules ... it nevertheless has traditionally called a dynamic operator.)

c©2015 Rance Cleaveland. All rights reserved.
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Building Systems in CCS: Labeled Transition Systems

Labeled transition systems (LTSs): like finite-state automata, but with no accepting states.

E.g.

ackout

in ackin

out

q0

q1 q2

c©2015 Rance Cleaveland. All rights reserved.
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CCS and LTSs

CCS may be viewed as a (infinite-state) LTS with no initial state.

• States are closed terms.

• Transitions given by −→, i.e. by operational semantics.

Any finite-state LTS can be encoded in CCS.

• Associate a process name S to each LTS state s.

• In declaration of S, sum together terms of form a.T for each transition s
a

−→ t in LTS.

• Process name for start state is then CCS encoding of LTS.

c©2015 Rance Cleaveland. All rights reserved.
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Example

For LTS:

ackout

in ackin

out

q0

q1 q2

CCS declarations are:

Q0
∆
= out.Q1+ ackout.Q2

Q1
∆
= in.Q0

Q2
∆
= ackin.Q0

and CCS for over-all system is Q0.

c©2015 Rance Cleaveland. All rights reserved.
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Note

Encoding of LTS’s requires only the dynamic operators (and declarations)!

So how are static operators used? To encode architectural information.

c©2015 Rance Cleaveland. All rights reserved.
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Representing Architectures in CCS

How do we represent information like the following in CCS?

send send

Sender

out

ackin

Medium Receiver

in

ackout

rec rec

Sys

in0 out0

in1out1

c©2015 Rance Cleaveland. All rights reserved.
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What Architectures Contain

• Boxes with ports

• Wires connecting ports on different boxes

• Subarchitectures embedded inside boxes

c©2015 Rance Cleaveland. All rights reserved.
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Basic Ideas Underlying Encoding

• Associate a name to each box, and a name to each “wire”.

• Boxes in same architecture run in parallel.

• Use renaming to “connect” a port to a wire if wire name is different from port name.

• Use restriction when embedding an architecture inside a box.

c©2015 Rance Cleaveland. All rights reserved.
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Example Revisited

Here is the example with wires named.

send send

Sender

out

ackin

Medium Receiver

in

ackout

rec rec

Sys

in0 out0

in1out1

w1

w2

w3

w4

send rec

c©2015 Rance Cleaveland. All rights reserved.
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Here Is the CCS

send send

Sender

out

ackin

Medium Receiver

in

ackout

rec rec

Sys

in0 out0

in1out1

w1

w2

w3

w4

send rec

Sys
∆
= ( Sender [w1/out, w2/ackin]

|Medium [w1/in0, w2/out1, w3/out0, w4/in1]

|Receiver [w3/in, w4/ackout]

) \{w1, w2, w3, w4}

c©2015 Rance Cleaveland. All rights reserved.
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Notes

1. Notation for relabeling: P [a/b, c/d] means “substitute a for b, c for d, leave all other labels

unchanged.”

2. Relabeling used to do “wiring”.

3. Restriction used to “localize” wires, ports.

4. Only static operators (and process names) needed!

5. This scheme works if wire names are distinct from all ports that they are not connected to.

c©2015 Rance Cleaveland. All rights reserved.
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The CCS Verification Framework

Sys: CCS expressions

Spec: CCS expressions

sat : Behavioral equivalence ≡

Intuition If I ≡ S then implementation I behaves the same as spec S.

c©2015 Rance Cleaveland. All rights reserved.



CMSC 630 April 13, 2015 40'

&

$

%

When Should We Consider Two CCS Agents Equivalent?

• Consider P = a.(b.0 + c.0) and Q = a.b.0 + a.c.0.

• Now consider P and Q’s respective LTSs (from CCS’s operational semantics), and imagine

every state to be “accepting”.

a a

b c

a

bc

• P and Q both accept {ε, a, ab, ac} and should therefore be considered equivalent in

classical theory of NFA and regular languages.

• But is this what we want in a theory based on “interaction”?

c©2015 Rance Cleaveland. All rights reserved.
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On the (In)Equivalence of P and Q: Another View

• Consider now a “test” or “probe” process T = a.b.w.0 (w indicates “success”) ...

• ... and consider (P |T )\L and (Q|T )\L where L = {a, b, c}.

• In the former, the test invariably “succeeds” while in the latter the interaction between Q and

T may come to a halt before success can be reported.

• This is because of the nondeterminism in Q. What to do?

c©2015 Rance Cleaveland. All rights reserved.
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Strong Bisimulation

A bisimulation is a kind of invariant holding between a pair of dynamic systems, and the

technique is to prove two systems equivalent by establishing such an invariant, much as

one can prove correctness of a single sequential program by finding an invariant property.

[Milner89]

c©2015 Rance Cleaveland. All rights reserved.
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Definition of a Strong Bisimulation

A binary relation S ⊆ P × P is a strong bisimulation if (P,Q) ∈ S implies, for all a in Act,

1. Whenever P
a

−→ P ′ then, for some Q′, Q
a

−→ Q′ and (P ′, Q′) ∈ S.

2. Whenever Q
a

−→ Q′ then, for some P ′, P
a

−→ P ′ and (P ′, Q′) ∈ S.

It helps to draw a diagram!

c©2015 Rance Cleaveland. All rights reserved.
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Bisimulation Diagramatically

aa

P

Q′

S

S

Q

P ′

∀ ∃

c©2015 Rance Cleaveland. All rights reserved.



CMSC 630 April 13, 2015 45'

&

$

%

Strong Equivalence

Two agents P and Q are strongly equivalent or strongly bisimilar, written P ∼ Q, if (P,Q) ∈ S

for some strong bisimulation S. This may be equivalently expressed as follows:

∼ =
⋃

{S | S is a strong bisimulation}

This definition immediately suggests a proof technique for ∼: exhibit a strong bisimulation that

relates P and Q.

c©2015 Rance Cleaveland. All rights reserved.
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Examples

1. a.c.0 + b.0 ∼ (a.c.0 + b.0) + a.c.0

2. a.(b.0 + c.0) 6∼ a.b.0 + a.c.0

3. a.b.0 6∼ a.b.0 + a.0

c©2015 Rance Cleaveland. All rights reserved.
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A Larger Example: A Counting Semaphore

Semn(0)
∆
= get.Semn(1)

Semn(k)
∆
= get.Semn(k + 1) + put.Semn(k − 1) (0 ≤ k ≤ n)

Semn(n)
∆
= put.Semn(n− 1)

Sem
∆
= get.Sem

′

Sem
′ ∆

= put.Sem

S = { (Sem2(0), Sem|Sem),

(Sem2(1), Sem|Sem′),

(Sem2(1), Sem
′|Sem),

(Sem2(2), Sem
′|Sem′) }

c©2015 Rance Cleaveland. All rights reserved.
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Proving P ∼ Q

Idea Build strong bisimulation S ⊆ P × P containing 〈P,Q〉!

Why does this work? Definition of ∼:

P ∼ Q iff there exists strong bisimulation S relating P , Q.

Example Prove that a.b.0 ∼ a.b.0 + a.b.(0 + 0).

c©2015 Rance Cleaveland. All rights reserved.



CMSC 630 April 13, 2015 49'

&

$

%

Building a Bisimulation for a.b.0 ∼ a.b.0 + a.b.(0 + 0)

c©2015 Rance Cleaveland. All rights reserved.
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Proving P 6∼ Q

Recall: P ∼ Q iff some strong bisimulation relates P,Q.

So, to prove P 6∼ Q, need to show that no bisimulation relates P,Q. Proofs proceed by

contradiction.

• Assume a strong bisimulation exists relating P,Q.

• Show that this leads to a contradiction.

c©2015 Rance Cleaveland. All rights reserved.
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Example Proof: P ≡ a.(b.0 + c.0) 6∼ Q ≡ a.b.0 + a.c.0

• Assume S is a strong bisimulation with 〈P,Q〉 ∈ S .

• Since:

– P
a

−→ b.0 + c.0

– S is a bisimulation

– Q
a

−→ b.0 and Q
a

−→ c.0

it must be that either 〈b.0 + c.0, b.0〉 ∈ S or 〈b.0 + c.0, c.0〉 ∈ S

• But b.0 + c.0
c

−→ 0 while b.0 6
c

−→, and b.0 + c.0
b

−→ 0 while c.0 6
b

−→.

• Therefore, no such S can exist, and P 6≈ Q.

c©2015 Rance Cleaveland. All rights reserved.
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Observational Equivalence

Problem with ∼: too sensitive to τ (i.e. internal) transitions!

E.g a.τ.b.0 6∼ a.b.0

c©2015 Rance Cleaveland. All rights reserved.
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Defining Observational Equivalence: Preliminaries

Need to introduce derived transition relation, =⇒, that “absorbs” internal computation.

• P
ε

=⇒ Q iff P
τ

−→ · · ·
τ

−→︸ ︷︷ ︸
≥0

Q.

• P
a

=⇒ Q iff for some P ′, Q′, P
ε

=⇒ P ′ a
−→ Q′ ε

=⇒ Q.

i.e. P
a

=⇒ Q if P
τ

−→ · · ·
τ

−→︸ ︷︷ ︸
≥0

a
−→

τ
−→ · · ·

τ
−→︸ ︷︷ ︸

≥0

Q.

• â, the visible content of a, is ε if a = τ and a otherwise.

=⇒ sometimes called the weak transition relation.

c©2015 Rance Cleaveland. All rights reserved.
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Examples

τ.τ.b.0 + τ.a.τ.0
ε

=⇒ τ.τ.b.0 + τ.a.τ.0

τ.τ.b.0 + τ.a.τ.0
τ̂

=⇒ b.0

τ.τ.b.0 + τ.a.τ.0
τ

=⇒ b.0

τ.τ.b.0 + τ.a.τ.0 6
τ

=⇒ τ.τ.b.0 + τ.a.τ.0

τ.τ.b.0 + τ.a.τ.0
a

=⇒ τ.0

τ.τ.b.0 + τ.a.τ.0
â

=⇒ τ.0

τ.τ.b.0 + τ.a.τ.0
a

=⇒ 0

c©2015 Rance Cleaveland. All rights reserved.
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Defining Observational Equivalence

Definition A relation S ⊆ P × P is a (weak) bisimulation if whenever 〈P,Q〉 ∈ S then:

1. P
a

−→ P ′ implies Q
â

=⇒ Q′ some Q′ such that 〈P ′, Q′〉 ∈ S .

2. Q
a

−→ Q′ implies P
â

=⇒ P ′ some P ′ such that 〈P ′, Q′〉 ∈ S .

Definition P ≈ Q iff there exists a bisimulation S with 〈P,Q〉 ∈ S .

c©2015 Rance Cleaveland. All rights reserved.
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Proving/Disproving ≈

Definitions of strong/weak bisimulations, ∼/≈ are very similar.

Consequence: proof techniques for ≈, 6≈ similar to those for ∼, 6∼.

• To show P ≈ Q, build a weak bisimulation containing 〈P,Q〉.

• To show P 6≈ Q, use a proof by contradiction.

c©2015 Rance Cleaveland. All rights reserved.
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Example: a.τ.b.0 ≈ a.b.0

c©2015 Rance Cleaveland. All rights reserved.
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Example: a.0 + τ.b.0 6≈ a.0 + b.0
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A Larger Example

Consider:

Sender
∆
= send.out.ackin.Sender

Medium
∆
= out.in.Medium + ackout.ackin.Medium

Receiver
∆
= in.rec.ackout.Receiver

Sys
∆
= (Sender |Medium |Receiver)\{in, out, ackin, ackout}

Spec
∆
= send.rec.Spec

Then Sys ≈ Spec!
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A Weak Bisimulation for the Larger Example
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Assessing Observational Equivalence

Positives

• Recursive character eliminates problems of =L (traditional language equivalence).

• Relative insensitivity to τ -transitions remedies deficiency of ∼.

• It inherits elegant proof techniques from ∼.

Alas, there is a fly in the ointment:

≈ is not a congruence for CCS.
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Huh?

Intuition An equivalence relation is a congruence for a language if you can substitute “equals

for equals”.

Why do we care about congruences? They support compositional reasoning (reasoning about a

system by reasoning about its parts).
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∼ Is a Congruence for CCS

Definition A CCS context C[] is a CCS term with a “hole” [] (e.g. a.[], a.b.0|c.[], etc.)

If C[] is a context and p is a term, then C[p] is the term formed by replacing [] by p in C[].

Theorem (Congruence-hood of ∼ for CCS) Let C[] be a CCS context. Then for any P,Q, if

P ∼ Q then C[P ] ∼ C[Q].

Proof proceeds “operator-wise”: show that for any P,Q, if P ∼ Q and a.P ∼ a.Q,

P +R ∼ Q+R, etc.
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Congruence-hood and Compositional Reasoning

.

Recall:

Semn(0)
∆
= get.Semn(1)

Semn(k)
∆
= get.Semn(k + 1) + put.Semn(k − 1) (0 ≤ k ≤ n)

Semn(n)
∆
= put.Semn(n− 1)

Sem
∆
= get.Sem

′

Sem
′ ∆

= put.Sem

• We showed Sem2(0) ∼ Sem |Sem by constructing a bisimulation.

• We can use this fact and congruence-hood (“substitutivity”) of ∼ to prove

Sem2(0) |Sem2(0) ∼ Sem |Sem |Sem |Sem
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≈ Is Not a Congruence for CCS

In setting of CCS, if ≈ were a congruence then p ≈ q would imply:

1. a.p ≈ a.q

2. p+ r ≈ q + r any r

3. p|r ≈ q|r any r

4. p\L ≈ q\L any L

5. p[f ] ≈ q[f ] any f

All hold except (2).
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The Problem with ≈ and +

... best illustrated by an example.

Fact τ.b.0 ≈ b.0

Another Fact a.0 + τ.b.0 6≈ a.0 + b.0
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What To Do?

• Problem with ≈ stems from initial internal computation.

• Perhaps we can just hack the definition of ≈ to fix this.

Definition P ≈C Q if for all a ∈ Act:

1. P
a

−→ P ′ implies Q
a

=⇒ Q′ and P ′ ≈ Q′ some Q′.

2. Q
a

−→ Q′ implies P
a

=⇒ P ′ and P ′ ≈ Q′ some P ′.
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Fact about ≈C

1. τ.b.0 6≈C b.0

2. a.τ.b.0 ≈C a.b.0

3. If P ≈ Q, P 6
τ

−→ and Q 6
τ

−→ then P ≈C Q.

4. If P ≈ Q then either P ≈C Q, τ.P ≈C Q, or P ≈C τ.Q

And yet ... ≈C is still a hack: is there a reason to believe it is the “best hack”?
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Justifying ≈C

It turns out that ≈C is the largest congruence contained in ≈. That is:

• Whenever P ≈C Q then P ≈ Q (equivalently: ≈C⊆≈).

• For any other congruence ≈D⊆≈, ≈D⊆≈C .

So ≈C is the “most permissive” congruence consistent with ≈.
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Practical Ramifications of ≈, ≈C

1. Since problem with ≈ stems solely from +, some researchers suggest that + is really the

issue.

2. On the other hand, in most scenarios compositional reasoning only exploited in context of

static operators of CCS; i.e. one does not substitute inside +.

3. So people still use ≈ in many cases.
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Equivalence and Property Preservation

Temporal logic: Focus is on establishing individual properties of systems

Process algebra: Focus is on establishing equivalences between systems

The two points of view turn out to be related: ∼ and ≈ have logical characterizations.
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Hennessy-Milner Logic (HML)

... a logic for writing simple modal formulas

... proven by Hennessy and Milner to characterize ∼: two processes are ∼ iff they satisfy the

same HML formulas.

So if P 6∼ Q, there exists a formula satisfied by one and not the other.
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Syntax of HML

Let a ∈ Act.

φ ::= tt “True”

| ¬φ “Not”

| φ1 ∨ φ2 “Or

| 〈a〉φ “Possibility”

Φ: set of all HML formulas.
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Semantics of HML ...

... given as a relation |=⊆ P × Φ.

• We write P |= φ rather than 〈P, φ〉 ∈|=.

• P |= φ: “P makes φ true.”
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Defining |=

P |= tt for any P

P |= ¬φ if P 6|= φ

P |= φ1 ∨ φ2 if P |= φ1 or P |= φ2

P |= 〈a〉φ if P
a

−→ P ′ and P ′ |= φ, for some P ′
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Derived Operators

“False” ff ≡

“And” φ1 ∧ φ2 ≡

“Necessity” [a]φ ≡
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Examples

Does...

• a.0 |= 〈a〉tt?

• a.(b.0 + c.0) |= 〈a〉〈b〉tt?

• a.b.0 + a.c.0 |= 〈a〉(〈b〉tt ∧ 〈c〉tt)?

• a.(b.0 + c.0) |= [a]〈b〉tt?

• a.b.0 + a.c.0 |= [a]〈b〉tt?

• 0 |= [a]ff?
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HML and ∼

By itself, HML is not very expressive (any formula can only talk about a finite part of process

behavior).

Nevertheless, we have the following.

Definition P =HML Q iff for all φ ∈ Φ, P |= φ iff Q |= φ.

Result P ∼ Q iff P =HML Q.

In other words P ∼ Q iff P , Q satisfy exactly the same HML formulas!

(There is a minor technical restriction on P , Q: image-finiteness.)
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Hmm....

So we can give formulas that “distinguish”:

• a.b.0 and a.c.0

• a.(b.0 + c.0) and a.b.0

• a.(b.0 + c.0) and a.b.0 + a.c.0

Note This gives us another method for proving P 6∼ Q!
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Proving the Correspondence Between ∼, =HML

Proof breaks into two directions.

⇒ Assume P ∼ Q, show P =HML Q. Proof uses case analysis, induction on structure of

HML formulas.

⇒ Assume P =HML Q, show P ∼ Q. What do we do?
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What About ≈?

The results for HML and ∼ can be ported to ≈ once we notice the following.

Fact ≈ is the largest relation such that the following hold for all a ∈ Act.

1. P
â

=⇒ P ′ implies Q
â

=⇒ Q′ some Q′ such that P ′ ≈ Q′.

2. Q
â

=⇒ Q′ implies P
â

=⇒ P ′ some P ′ such that P ′ ≈ Q′.
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How Does this Help?

Can now define “weak HML” (WHML) just like HML except with a weak modality, 〈〈a〉〉!

P |= 〈〈a〉〉φ if P
â

=⇒ P ′ and P ′ |= φ some P ′.

Derived operator: [[a]]φ ≡ ¬〈〈a〉〉¬φ

Can define =WHML analogously with =HML.

Then P ≈ Q iff P =WHML Q!
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Axiomatizing ∼ / ≈

In other verification frameworks, we showed how to prove correctness of systems vis à vis

specifications.

In CCS we’ll show how to give equational proofs of equivalences.
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Equational Proof Systems ...

... proof systems for establishing equalities!

Recall components of a symbolic logic:

• Syntax

• Semantics

• Proof system (= axioms + inference rules) for establishing judgments

In equational proof systems, judgments have form P = Q, where P , Q are terms in the syntax.

Equational proof systems consist of logical axioms and inference rules and non-logical axioms.

Such proof allow development of proofs like this.

5 + (3 · 8) + 11 = 5 + 24 + 11 (Mult)

= 29 + 11 (Add)

= 40 (Add)
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Logical Axioms and Inference Rules for Equational Proof Systems

−

P = P
(R)

P = Q

Q = P
(S)

P = Q Q = R

P = R
(T )

P = Q

C[P ] = C[Q]
(C)
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Non-logical Axioms in Equational Proof Systems

... depend on semantics of judgments.

For CCS, we will study two different semantics.

Strong equivalence: P = Q is true iff P ∼ Q.

Observational congruence: P = Q is true iff P ≈C Q.
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Equational Axiomatization of ∼ for Basic CCS

To develop proof system for ∼ and CCS, we’ll first look at Basic CCS:

• No |, \L, [f ].

• No process constants.

So only operators are 0, a.,+.
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(Non-logical) Axioms for ∼ and Basic CCS

P +Q = Q+ P (A1)

P + (Q+R) = (P +Q) +R (A2)

P + 0 = P (A3)

P + P = P (A4)
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Sample Proof

a.(b.0 + (c.0 + b.0)) + 0 = a.(b.0 + (c.0 + b.0)) (A3)

= a.(b.0 + (b.0 + c.0)) (A1)

= a.((b.0 + b.0) + c.0) (A2)

= a.(b.0 + c.0) (A4)
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Soundness and Completeness

Fact Axioms A1–A4 are sound for ∼ and Basic CCS. (That is, if one proves P = Q using

A1–A4 then P ∼ Q.)

Why? Can build bisimations; e.g. for any P :

{〈P + P, P 〉}∪ ∼ is a bisimulation.

Fact Axioms A1–A4 are complete for ∼ and Basic CCS. (That is, P ∼ Q then you can prove

P = Q using A1–A4.)

Why? If P
a

−→ Q then can prove P = a.Q+R for some R.
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Axiomatizing ∼ for Basic Parallel CCS

The next fragment of CCS: Basic Parallel CCS.

• Extends Basic CCS by including | operator.

• Still no \L, [f ] or process constants.

Note Axioms A1–A4 are sound for Basic Parallel CCS (why?); so what we need to do is add

axioms for handling |.
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The Expansion Law ...

... handles occurrences of |.

Notation Let I be a finite set, {Pi | i ∈ I } an I-indexed set of processes. Then
∑

i∈I Pi is

the process expression given by:

∑

i∈I

Pi =





0 if I = ∅

Pi1 if I = {i1}

Pi1 + · · ·+ Pin if I = {i1, . . . , in} and n ≥ 2
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The Expansion Law (cont.)

(Exp) Let P ≡
∑

i∈I ai.Pi, Q ≡
∑

j∈J bj .Qj . Then:

P |Q =
∑

i∈I ai.(Pi|Q)

+
∑

j∈J bj .(P |Qj)

+
∑

〈i,j〉∈{ 〈i,j〉∈I×J|ai=bj } τ.(Pi|Qj)
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Example

a.0|(a.0 + b.0)

= a.(0|(a.0 + b.0)) + a.(a.0|0) + b.(a.0|0) + τ.(0|0) (Exp)

= a.(0 + a.(0|0) + b.(0|0) + 0)

+ a.(a.0|0) + b.(a.0|0) + τ.(0|0) (Exp)

= a.(a.(0|0) + b.(0|0)) + a.(a.0|0)) + b.(a.0|0) + τ.(0|0) (A3)

= a.(a.0 + b.0) + a.(a.0|0)) + b.(a.0|0) + τ.0 (Exp)

= a.(a.0 + b.0) + a.a.0 + b.a.0 + τ.0 (Exp)

Note 0|0 = 0 + 0 + 0 = 0
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Soundness and Completeness for Basic Parallel CCS

• A1–A4, Exp are sound for ∼ and Basic Parallel CCS.

(Why? Can build strong bisimulations!)

• A1–A4, Exp are complete for ∼ and Basic Parallel CCS.

Why?

– Exp allows | to be “pushed inside” and eventually removed, provided arguments are of

correct form.

– Arguments of “innermost occurrences” of | can be put in correct form using A1–A4!
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Axiomatizing ∼ for Finite CCS

The next fragment of CCS: Finite CCS

• Extends Basic Parallel CCS with \L, [f ].

• No process constants.

A1–A4, Exp are sound; just need axioms for \L, [f ].
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Axioms for \L, [f ]

0\L = 0 (Res1)

(a.P )\L =





0 if a ∈ L or a ∈ L

a.(P\L) otherwise
(Res2)

(P +Q)\L = (P\L) + (Q\L) (Res3)

0[f ] = 0 (Rel1)

(a.P )[f ] = f̂(a).(P [f ]) (Rel2)

(P +Q)[f ] = (P [f ]) + (Q[f ]) (Rel3)
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Soundness and Completeness for Finite CCS

• A1–A4, Exp, Res1–Res3, Rel1–Rel3 are sound for ∼ and Finite CCS.

(Why? Can build strong bisimulations!)

• A1–A4, Exp, Res1–Res3, Rel1–Rel3 are also complete for ∼ and Finite CCS.

– Can use Exp to eliminate top-level occurrences of | inside \L, [f ].

– Can then use Res1–Res3, Rel1–Rel3 to “drive” \L, [f ] inside a., + and then remove

them!
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Axiomatizing ≈C for Finite CCS

Notes

1. All previous axioms are sound for ≈C (why?).

2. Previous axioms permit any CCS term to be rewritten into one involving only 0, a. and +

(Basic CCS!).

To handle ≈C , need to add axiom(s) for interplay between τ and the Basic CCS operators.

Is τ.P = P a good axiom?
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Axiomatizing ≈C : The τ Laws

a.τ.P = a.P (τ1)

P + τ.P = τ.P (τ2)

a.(P + τ.Q) = a.(P + τ.Q) + a.Q (τ3)
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Soundness and Completeness for ≈C , Finite CCS

• A1–A4, Exp, Res1–Res3, Rel1–Rel3, τ1–τ3 are sound for ≈C and Finite CCS.

(Why? Can build appropriate weak bisimulations.)

• A1–A4, Exp, Res1–Res3, Rel1–Rel3, τ1–τ3 are also complete for ≈C and Finite CCS.

(Why? It’s magic...)
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What About Full CCS?

All we need to do now is handle process constants.

Problem We can’t!

• CCS is Turing powerful.

• ∼,≈C are not recursively enumerable (r.e.).

• The set of things deducible from any axiomatization has to be r.e.

⇒ No complete axiomatization of ∼,≈C can exist.
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So What Do We Do?

• Inference rules for restricted classes of CCS can be defined.

• We will study one example: “Unique Fixpoint Induction”

• There are others, e.g. “Regular CCS”

• In practice, these often suffice.
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∼ and Unique Fixpoint Induction

Needed Rules for proving ∼ between process constants, other process terms.

Example Recall:

Semn(0) = get.Semn(1)

Semn(k) = get.Semn(k + 1) + put.Semn(k − 1) (0 ≤ k ≤ n)

Semn(n) = put.Semn(n− 1)

Sem = get.Sem
′

Sem
′ = put.Sem

• We know Sem2(0) ∼ Sem |Sem (why?)

• How can we prove Sem2(0) = Sem |Sem?
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Two Rules for ∼ and Process Constants

C
∆
= P

C = P
(Unr)

X = P is an equation with a unique solution up to ∼

Q = P [Q/X]

R = P [R/X]

Q = R

(UFI)
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UFI?

... stands for Unique Fixpoint Induction

• X = P is an equation, with X a variable and P a process term involving X .

E.g. X = a.X + b.X

• A solution to X = P is a process term Q such that Q ∼ P [Q/X] (P [Q/X] is P with

instances of variable X replaced by Q).

• If X = P has a unique solution up to ∼ then any two solutions must be ∼!

Question What equations have unique solutions?
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Equations and Solutions

Which have unique solutions?

1. X = a.0

2. X = X

3. X = a.0 +X

4. X = a.X + b.X

5. X = a.0|X

6. X = a.0|b.X
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Guardedness

Definition In equation X = P , X is guarded in P if every occurrence of X in P falls inside

the scope of a prefixing operator.

Theorem (Milner) If X is guarded in P then X = P has a unique solution up to ∼.
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Example

Consider:

A
∆
= a.A

B
∆
= a.a.B

We can prove A = B using axioms for ∼ as follows.

1. X is guarded in a.a.X , so X = a.a.X has a unique solution with respect to ∼

2. A = a.A (Unr)

= a.a.A (Unr)

B = a.a.B (Unr)

So A, B are both solutions to X = a.a.X

3. Therefore, by UFI, A = B
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UFI and Systems of Equations

UFI can be generalized to systems of equations.

Definition

1. A system of n equations has form:

X0 = P0

...

Xn−1 = Pn−1

where ~X = 〈X0, . . . , Xn−1〉 are the unknowns and ~P = 〈P0, . . . , Pn−1〉 are CCS terms

built up from ~X .

2. A solution to a system of n equations ~X = ~P is a vector of CCS terms
~Q = 〈Q0, . . . , Qn−1〉 such that for every equation Xi = Pi,

Qi ∼ P [Q0/X0, . . . , Qn−1/Xn−1].

Notions of uniqueness of solutions, guardedness can be extended to systems of equations.
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Example: Prove Sem2(0) = Sem |Sem

1. Consider the equation system E:

X0 = get.X1

X1 = get.X2 + put.X0

X2 = put.X1

2. Prove that 〈Sem2(0), Sem2(1), Sem2(2)〉 is a solution to E

3. Prove that 〈Sem |Sem, Sem′ |Sem, Sem′ |Sem′〉 is a solution to E
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UFI and ≈C

Unique Fixpoint Indunction for ≈C :

X = P is an equation with a unique solution up to ≈C

Q = P [Q/X]

R = P [R/X]

Q = R

(UFI)

Question What equations have unique solutions?
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Guardedness Is Not Enough

What are the solutions to X = τ.X?

“Strong” Guardedness Is Not Enough

What are solutions to X = (a.X|a.X)\{a}?
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Strong Sequential Guardedness

Definition Variable X is strongly sequential in P if every occurrence of X appears within at

least one prefixing operator whose action is visible (i.e. not τ ) and is not inside any parallel

composition operator.

Examples

1. X is not strongly sequential in τ.X .
2. X is strongly sequential in a.X if a 6= τ .
3. X is not strongly sequential in a.X | a.X .
4. X is not strongly sequential in a.X | b.X .
5. X is strongly sequential in a.X + b.X if a, b 6= τ .

Theorem (Milner89) Let X is strongly sequential in P . Then X = P has a unique solution

up to ≈C .

Less restrictive conditions also possible:

E. Brinksma. On the uniqueness of fixpoints modulo observation congruence. In R. Cleaveland,

editor, CONCUR ’92, volume 630 of Lecture Notes in Computer Science, pages 47–61, Stony

Brook, NY, August 1992. Springer-Verlag, Heidelberg.
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Computing ∼, ≈

For finite-state systems, both ∼, ≈ may be computed automatically.

How?

Basic approach is as follows.

1. Build LTS containing of all states reachable from P,Q; call set of states in LTS SP,Q.

2. Compute set of equivalence classes for ≈ / ∼ over SP,Q.

3. See if P,Q belong to same equivalence class.
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A Review of Equivalence Classes

Given a set S and an equivalence relation R ⊆ S × S, one can use R to partition S into

equivalence classes.

Definition Given S, equivalence relation R, S′ ⊆ S is an equivalence class with respect to R

if the following hold.

• For all s, s′ ∈ S′, sR s′.

• For all s ∈ S, if sR s′ some s′ ∈ S′ then s ∈ S′.

That is, S′ represents a maximal “clump” of equivalent elements in S.

Notation If s ∈ S then [s]R
∆
= { s′ ∈ S | sR s′ } is the equivalence class of s.
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Notes about Equivalence Classes

Let S be a set, R ⊆ S × S be an equivalence relation.

1. For any two equivalence classes S1, S2, either S1 = S2 or S1 ∩ S2 = ∅.

2. Every element s ∈ S belongs to exactly one equivalence class, namely, [s]R.

3. s1 R s2 iff s1, s2 belong to the same equivalence class.
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So How Does This Help Us Compute ∼ / ≈?

• SP,Q ⊆ P , and since ∼ / ≈ are equivalences over P , they are equivalences over SP,Q

also.

• If P,Q in same equivalence class of ∼ / ≈ over SP,Q, then they are equivalent; otherwise,

they are not.

• So ... if we can compute equivalence classes of ∼ / ≈ over SP,Q, we can determine

whether or not P , Q are strongly/observationally equivalent!

Thus, if we can compute the relevant equivalence classes, we can compute ∼ / ≈. To see how

we do this we’ll focus first on ∼.
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An Iterative Characterization of ∼

Note Definition of ∼ can be given for arbitrary LTSs (i.e. triples 〈S, Act,−→〉), not just CCS.

Assume LTS 〈S, Act,−→〉 satisfies: S, Act are finite.

Then ∼⊆ S × S is the same as
⋂∞

i=0 ∼i, where:

• P ∼0 Q holds all P,Q.

• P ∼i+1 Q holds if for all a ∈ Act:

1. P
a

−→ P ′ implies Q
a

−→ Q′ some Q′ with P ′ ∼i Q
′.

2. Q
a

−→ Q′ implies P
a

−→ P ′ some P ′ with P ′ ∼i Q
′.
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Facts About the ∼i

(Remember that S is finite.)

1. Each ∼i is an equivalence relation.

2. For all i, ∼i+1⊆∼i. (In other words, if P ∼i+1 Q then it follows that P ∼i Q holds also.)

3. For all i ≥ |S|, ∼i=∼i+1.

4. If ∼i+1=∼i, then ∼i is a strong bisimulation.

5. ∼⊆∼i for all i.
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Believe It Or Not ...

... we have most of the information necessary to compute ∼!

• Use equivalence classes (i.e. lists of subsets of S) to represent ∼i.

• Can then use a while loop like the following:

R := [S]; // Set R to ∼0

newR := refine(R); // Set newR to ∼1

while (R 6= newR) do

R := newR;

newR := refine(R);

When loop terminates, R contains equivalence classes of ∼.
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What Does refine Do?

Idea If R =∼i then refine(R) should return ∼i+1.

How? By using notion of partition refinement.

Terminology:

• Partition is another name for “list of equivalence classes”.

• Block is another name for “equivalence class”.
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Partition Refinement

Suppose B, S are blocks in R with a ∈ Act an action such that:

a

s1 s2 s3 s4
B

s5 s6
S

a aa a a

Then s4 ∼i s1, but s4 6∼i+1 s1!

⇒ In ∼i+1, B should be split into (at least) two pieces:

states with an a-transition into S, and states without.

(S called a splitter.)
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Defining split Operation

Let B,S ⊆ S , a ∈ Act; define (
a

−→ S) = { s | ∃s′ ∈ S.s
a

−→ s′ }

S

a

(
a

−→ S)

a a a a

s1 s2 s3

s5 s6

split(B, a, S) =





[B ∩ (
a

−→ S), B − (
a

−→ S)] if both nonempty

[B] otherwise
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Example

Consider previous example: split(B, a, S) given as follows.

a

s1 s2 s3

s5 s6
S

a a a a a

split(B, a, S)
s4

B ∩ (
a

−→ S) B − (
a

−→ S)
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Splitting Partitions

split can be lifted to partitions (lists of blocks).

Let Π be a partition.

split(Π, a, S) =

res := [ ];

foreach B in Π do

res := res @ split(B, a, S);

return res;

(That is, apply split(−, a, S) to every block in Π and “collect” the results into a single partition.

@ is “append” (i.e. list merge).)
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Splitting Over All Actions

Similarly, we can define all-split that splits a partition with respect to a splitter and all

actions.

all-split (Π, S) =

R := Π;

foreach a ∈ Act do

R := split(R, a, S);

return R;

Does order of actions matter? No....
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Splitting a Partition With Respect to Another

We can now lift the notion of “splitting a partition” to a list of “splitters”: just split with respect to all

splitters!

part-split(Π1,Π2) =

R := Π1;

foreach S ∈ Π2 do

R := all-split(R, S);

return R;

Then refine(R) is just part-split (R,R)!
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Complexity Analysis

• all-split(Π, S) can be implemented in O(Σa∈Act|(
a

−→ S)|). (How?)

• So refine(R) takes O(| −→ |). (Why?)

• Loop can iterate at most |S| times. (Why?)

• So complexity is O(|S| · | −→ |)!
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Optimizations

• If S′ is a yet-to-be-processed splitter in R that is itself split by another splitter S, then there is

no need to split with respect to S′; just use the “children” of S′.

(Note: this does not affect complexity, but it simplifies implementation. Just maintain a list of

splitters to be processed!)

• By doing some extra work, O(log(|S|) · | −→ |) possible.
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Computing P ∼ Q

1. Compute SP,Q = CCS expressions reachable from P , Q.

2. Compute equivalence classes of SP,Q with respect to ∼.

3. Determine whether P , Q belong to same equivalence class.
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Computing P ≈ Q

... combine LTS transformation with approach for computing ∼!

• 〈SP,Q, Act,−→〉 forms an LTS.

• So does 〈SP,Q, Âct,=⇒〉.

• We can transform 〈SP,Q, Act,−→〉 into 〈SP,Q, Âct,=⇒〉.

(Here Âct = { â | a ∈ Act }.)
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Computing P ≈ Q (cont.)

So we can compute P ≈ Q as follows.

1. Compute SP,Q = CCS expressions reachable from P , Q.

2. Build 〈SP,Q, Âct,=⇒〉 from 〈SP,Q, Act,−→〉.

3. Compute equivalence classes of 〈SP,Q, Âct,=⇒〉 with respect to ∼.

4. Determine whether P , Q belong to same equivalence class.
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Why Does This Work?

... because ≈ is the largest relation such that whenever P ≈ Q then the following hold for all

a ∈ Act.

1. P
â

=⇒ P ′ implies Q
â

=⇒ Q′ some Q′ such that P ′ ≈ Q′.

2. Q
â

=⇒ Q′ implies P
â

=⇒ P ′ some P ′ such that P ′ ≈ Q′.
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There Are Other Process Algebras...

1. CSP: like CCS, but multiway rendezvous is basic notion of synchronization.

2. ACP: like CCS except that notion of synchronization is parameterized.

3. LOTOS: CCS/CSP-like ISO standard.

4. SCCS: synchronous systems.

All, however, share emphasis on: operational semantics, equational reasoning.
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