Branch-and-Bound

Un altro approccio al problema del commesso viaggiatore

A.A. 2016-2017

Altra soluzione branch & bound

La seguente soluzione si applica a *grafi completi orientati*.

La scelta avviene sempre tra le citta` (branch); il lower bound del costo viene definito usando la matrice dei costi ridotta.

Una riga (colonna) di una matrice è ridotta se e solo se contiene almeno uno 0 e gli altri elementi sono non negativi.

Una matrice è ridotta se ogni riga e ogni colonna è ridotta.

L'uso di matrici ridotte per trovare una limitazione inferiore al costo di ogni vertice si basa sulla seguente osservazione:

sottrarre una costante t agli elementi di una colonna o di una riga riduce la lunghezza di ogni giro esattamente di t.

Per ottenere una matrice ridotta si sottrae il minimo di ogni riga a tutti gli elementi della riga e analogamente per le colonne, in modo da ottenere almeno uno zero in ogni riga e in ogni colonna.

si riduce la lunghezza di ogni ciclo di r

Ogni ciclo non puo' costare meno di r

re` un lower bound della lunghezza di un ciclo di costo minimo

Esempio di riduzione di una matrice. L è la quantità totale sotratta.

(a) Cost Matrix

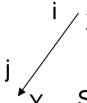
$$\begin{bmatrix} \infty & 10 & 17 & 0 & 1 \\ 12 & \infty & 11 & 2 & 0 \\ 0 & 3 & \infty & 0 & 2 \\ 15 & 3 & 12 & \infty & 0 \\ 11 & 0 & 0 & 12 & \infty \end{bmatrix}$$

<u>Osservazione</u>: ogni giro include un arco <i,k> e un arco <k,j> $(1 \le k \le n)$, cioè per ogni vertice vi è esattamente un arco entrante e un arco uscente.

Ad ogni nodo nello spazio degli stati associamo una matrice e una stima del costo nel modo seguente:

- alla radice dell'albero che descrive lo spazio degli stati viene associata una matrice ridotta e come costo stimato la quantità sottratta per ottenere dalla matrice dei costi la matrice ridotta.

 ad ogni altro vertice si associano la matrice e il rango nel modo seguente:



Sia A la matrice associata al nodo X

Se Y non è una foglia si associa ad esso la matrice B ottenuta da A in questo modo:

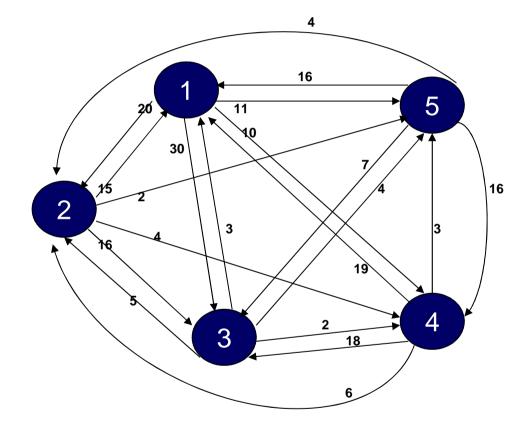
- 1. Cambia la riga i e la colonna j a ∞ (impedisce di usare un altro arco che entra in j o esce da i)
- 2. $A[j,1] = \infty$ per impedire di tornare alla città iniziale
- 3. Riduci le righe e le colonne eccetto quelle che contengono solo ∞.

Se r è la quantità sottratta in 3, $c^s(Y) = c^s(X) + A[i,j] + r$

Per le foglie $c^s(.) = c(.)$

Come u si può usare inizialmente ∞ per tutti i nodi, da aggiornare ogni volta che viene trovata una soluzione più conveniente.

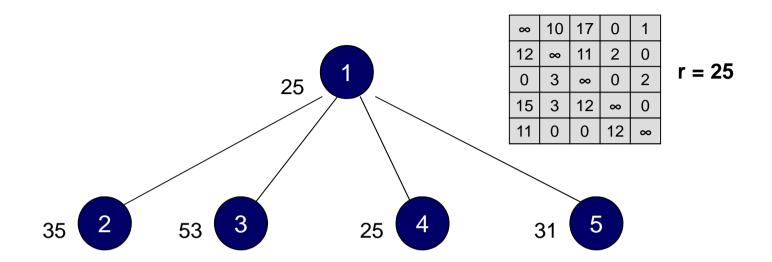
∞	20	30	10	11
15	8	16	4	2
3	5	8	2	4
19	6	18	8	3
16	4	7	16	8



∞	20	30	10	11
15	8	16	4	2
3	5	8	2	4
19	6	18	8	3
16	4	7	16	∞

∞	10	17	0	1
12	8	11	2	0
0	3	8	0	2
15	3	12	8	0
11	0	0	12	8

r = 25



∞	∞	∞	∞	∞
∞	8	11	2	0
0	8	8	0	2
15	8	12	8	0
11	8	0	12	8

$$1 \rightarrow 2$$
: $r = 0$

∞	∞	∞	∞	∞
1	∞	∞	2	0
∞	3		0	2
4	3	∞	∞	0
0	0	∞	12	∞

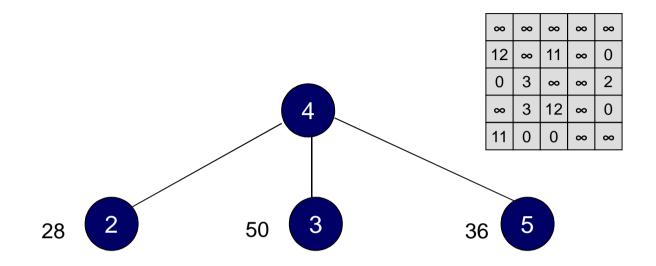
$$1 \to 3$$
: r = 11

∞	∞	∞	∞	∞
12	8	11	8	0
0	3	8	8	2
∞	3	12	8	0
11	0	0	8	8

$$1 \rightarrow 4: r = 0$$

8	8	8	8	8
10	8	9	0	8
0	3	8	0	8
12	0	9	8	8
8	0	0	12	8

$$1 \rightarrow 5$$
: $r = 5$



∞	∞	∞	∞	∞
∞	8	11	8	0
0	8	8	∞	2
∞	8	8	8	8
11	8	0	8	8

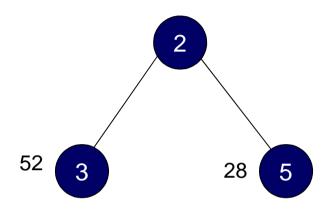
$$1 \rightarrow 4 \rightarrow 2: r = 0$$

∞	8	8	8	8
1	8	8	8	0
∞	1	8	8	0
∞	8	8	8	8
0	0	8	8	8

$$1 \rightarrow 4 \rightarrow 3: r = 13$$

∞	∞	∞	∞	8
1	8	0	8	8
0	3	∞	8	8
∞	∞	∞	∞	8
∞	0	0	∞	8

$$1 \rightarrow 4 \rightarrow 5$$
: r = 11



∞	8	8	∞	8
∞	∞	11	∞	0
0	∞	8	∞	2
∞	∞	8	∞	∞
11	∞	0	∞	∞

∞	8	8	8	8
∞	8	8	8	8
∞	8	8	8	0
∞	8	8	8	8
0	8	8	8	8

$$1 \rightarrow 4 \rightarrow 2 \rightarrow 3$$
: r = 13

∞	8	8	8	8
∞	8	8	8	8
0	∞	8	8	8
∞	∞	8	8	8
∞	8	0	8	8

$$1 \rightarrow 4 \rightarrow 2 \rightarrow 5$$
: r = 0

