
Algorithms for Informed Cows

Ming-Yang Kao and Michael L. Littman
Department of Computer Science

Duke University, Durham, NC 27708-0129
fkao, mlittmang@cs.duke.edu

Abstract

We extend the classic on-line search problem known
as the cow-path problem to the case in which goal
locations are selected according to one of a set of
possible known probability distributions. We present
a polynomial-time linear-programming algorithm for
this problem.

Introduction

In on-line search, a great deal of work has been car-
ried out concerning how to minimize the worst-case
performance of a search strategy, for example as com-
pared to an omniscient searcher. In many applica-
tions, this notion of optimal performance is simply too
conservative|the agent might know, based on its prior
experience, that some locations are more promising as
targets than others.
In this paper, we address the problem of �nding good

search strategies given a particular kind of prior knowl-
edge. The search scenario we consider is the classic
cow-path problem (Baeza-Yates, Culberson, & Rawl-
ins 1993), in which a cow stands on a path and wants to
�nd a pasture in which to feed (see Figure 1). There are
n locations to either side of the cow: p�n through p�1
on its left, and p1 through pn on its right. Exactly one
location contains a pasture and the cow can identify
a pasture only by standing in it. The prior knowledge
the cow has is expressed in terms of discrete probability
distributions over the 2n possible locations of the pas-
ture. We assume the cow knows that the pasture loca-
tion is distributed according to one of m possible prob-
ability distributions �1; : : : ;�m, but it doesn't know
which. The cow would like to follow a search pattern
that minimizes the worst possible expected value of the
ratio of the number of steps it takes to �nd a pasture
to the number of steps it would need if it knew the
probability distribution in advance (i.e., that the pas-
ture location is distributed according to �i for some
1 � i � m). Thus, the cow is required to minimize its
worst-case competitive ratio (Sleator & Tarjan 1985;
Yao 1980).
In the next section, we look at the case in which

the cow knows the probability distribution of the pas-

start

?

 p-1 p-n p1 pn......

Π1
-n Π1

nΠ1
-1 Π1

1

Π2
-n Π2

nΠ2
-1 Π2

1

Πm
-n Πm

nΠm
-1 Πm

1

...

Figure 1: The informed-cow cow-path problem. This
cow has already explored 3 of the 8 locations. Cow
artwork used with permission (Max's Mom and Dad
1994).

ture location and must simply minimize the expected
number of steps to �nd it; we provide a quadratic-time
dynamic-programming algorithm for this problem. In
the section following, we show how to extend this re-
sult to �nd a worst-case optimal randomized search
strategy when there are multiple possible probability
distributions (m > 1). We show how to solve the prob-
lem in time polynomial in n and m (and the number of
bits in the probability values used to specify the prob-
lem), via linear programming. In the �nal section, we
discuss some possible future directions of this work and
connections to earlier work.

Minimizing Expected Search Time

In this variation of the problem, the cow knows that
the pasture location is distributed according to a prob-
ability distribution �i. All the relevant probabilities
concerning the dynamics of the search problem are
known, but the cow does not know a priori which lo-
cation has the pasture. This problem can be formu-
lated as a �nite-horizon partially observable Markov

decision process (pomdp) and solved using standard
methods (Kaelbling, Littman, & Cassandra 1995).
Standard exact algorithms for pomdps work in the

space of information states of the searcher; these in-
formation states summarize this history of the search
process as a probability distribution over the underly-
ing states (in this case, the cross product of locations of
the cow and locations of the pasture). Unfortunately,
the problem of solving �nite-horizon partially observ-
able Markov decision processes is PSPACE-hard (Pa-
padimitriou & Tsitsiklis 1987) in general, so a general-
purpose pomdp solver would probably not be appro-
priate for this problem.
The particular pomdp for the informed-cow cow-

path problem has a great deal of additional structure
that makes the use of a general-purpose algorithm un-
necessary. In particular, the situations in which the
cow needs to make a decision can be represented in an
extremely e�cient way: (`; r; s) where ` is the number
of explored locations to the left of the starting location,
r is the number of explored locations to the right of the
starting location, and s is 0 if the cow is currently on
the left side of the explored region and 1 if the cow is
currently on the right side of the explored region. Us-
ing this situation notation, the cow's initial situation
is (0; 0; 0) (or (0; 0; 1), equivalently), and the situation
depicted in Figure 1 is (1; 2; 0). The e�ect of moving
to the left from (`; r; s) is to either �nd the pasture
in location p�(`+1) or to move to situation (`+ 1; r; 0)
(if ` < n), and the e�ect of moving to the right is to
either �nd the pasture in location p(r+1) or to move to
situation (`; r + 1; 1) (if r < n).
Given a situation (`; r; s), we can compute an in-

formation state quite easily. We know the cow is at
location p�`(1�s)+r(s) (i.e., the extreme left or extreme
right side depending on s of the explored region), and
the probability that the pasture is in location pj is
�i
j=�

i(`; r; s) where

�i(`; r; s) =

�(`+1)X
j0=�n

�i
j0 +

nX
j=r+1

�i
j0 : (1)

The function �i(`; r; s) represents the probability that
the pasture is not found in a search that leaves the cow
in situation (`; r; s).
There are several properties of the informed-cow

cow-path problem that justify this situation represen-
tation. First, the �rst time a location is visited, either
the cow discovers the pasture and the search ends, or it
discovers that the pasture is elsewhere, and the search
continues. This implies that while the cow is search-
ing, all locations are either known to be pasture-free
or presently unexplored. Second, the linear nature of
the path means that the explored locations will form a
contiguous region around the starting location. Third,
given that the cow is at one end of the explored region,
it can choose to move to the left or to the right. If it
moves into the explored region, its only rational course

(0,0,0)

(1,0,0)

(3,3,1)

(0,1,1)

(2,0,0) (1,1,1) (1,1,0) (0,2,1)

(1,2,0) (0,3,1)(3,0,0) (2,1,1) (2,1,0) (1,2,1)

(1,3,1) (1,3,0)(3,1,1) (3,1,0) (2,2,1) (2,2,0)

(3,2,1) (3,2,0) (2,3,1) (2,3,0)

(3,3,0)

Figure 2: Relationship between the possible situations
for n = 3 arranged as a situation DAG.

of action is to continue moving in the same direction
until it reaches the opposite edge of the explored re-
gion; turning around midstream is wasteful because it
provides no additional information and uses steps.
The set of reachable situations can be arranged into

a directed acyclic graph, called the situation DAG, il-
lustrated in Figure 2. The expected number of steps
to the pasture from a given situation can be com-
puted by considering the two choices, left and right.
If the cow chooses to go left from situation (`; r; s), it
will �nd the pasture in the next step with probabil-
ity �i

�(`+1)(1�s)+r(s)=�
i(`; r; s) and with the remain-

ing probability, it will enter situation (` + 1; r; 0). It
is a simple matter to compute the expected number
of steps from these quantities as a function of the ex-
pected number of steps from situation (`+1; r; 0) (this
can be computed recursively). Similarly, we can com-
pute the expected number of steps to the pasture given
that the cow moves right from (`; r; s). The optimal ex-
pected number of steps to the pasture from (`; r; s) is
just the minimum over the expected number of steps
given an initial rightward step and an initial leftward
step.
To be a bit more concrete, we can �nd an optimal

search strategy for the cow by computing, for all situ-
ations (`; r; s),

Q((`; r; s); l)

= d((`; r; s); l) +

1�

�i
�(`+1)

�i(`; r; s)

!
V i((`+ 1; r; 0))

Q((`; r; s); r)

= d((`; r; s); r) +

�
1�

�i
r+1

�i(`; r; s)

�
V i((`; r + 1; 1))

V i((`; r; s)) = min(Q((`; r; s); l); Q((`; r; s); r)) (2)

where �i(`; r; s) is de�ned by Equation 1, and d is the

action-distance function de�ned by d((`; r; s); l) = (r+
`)s+1 and d((`; r; s); r) = (r+`)(1�s)+1. The optimal
search strategy for the cow is, in situation (`; r; s), to
move left to an unexplored location if Q((`; r; s); l) <
Q((`; r; s); r) and right otherwise.
The resulting algorithm computes optimal expected

numbers of steps for each situation in a bottom-up
fashion. Because the total number of situations is
�(n2), the run time of the algorithm is quadratic in
n.

Minimizing the Worst-Case

Competitive Ratio

In this section, we consider the problem of �nding a
search strategy for the cow to minimize its worst-case
competitive ratio given that there are multiple possi-
ble probability distributions �1; : : : ;�m according to
which the pasture location might be distributed. This
scenario is intended to model the situation in which
an online searcher possesses some information about
where it should look, but is uncertain of precisely how
reliable the information is.
The worst-case competitive ratio of a search strategy

� (for the cow) is the maximum over all choices of �i

(by an adversary) of the expected number of steps to
�nd the pasture (\online" performance) divided by the
expected number of steps the best searcher would take
knowing �i in advance (\o�ine" performance):

max
i2f1;::: ;mg

E�i [search steps of strategy �]

E�i [search steps optimal strategy for �i]
:

An optimal search strategy is one that minimizes the
worst-case competitive ratio above.
This de�nition of optimality is di�erent from simply

minimizing the expected number of steps in the worst
case because the cow is penalized less severely in the
case in which the pasture location might be quite far
from the starting location. This has the desirable ef-
fect that the optimal search strategy does not change
radically as the length of the path (size of the search
space) is increased. For example, the strategy of the
adversary in the case in which the cow tries to mini-
mize the expected number of steps is roughly to put
the pasture as far as possible from the starting loca-
tion. On the other hand, under the competitive-ratio
criterion, the adversary's strategy is roughly to force
the cow to change directions as often as possible; this
puts the emphasis on the decision of where to turn
around instead of on the act of walking.
The cow's optimal search strategy can be random-

ized. As an example, consider the case in which n = 1,
�1 = h1; 0i (pasture is de�nitely on the left in location
p�1), �

2 = h0; 1i (pasture is de�nitely on the right
in location p1). The only deterministic strategy is for
the cow to take one step in one direction and then to
take two steps in the other direction. The worst-case
competitive ratio for this strategy is 3, because, in this

case, the adversary can always place the pasture in the
last place the cow looks. On the other hand, if the
cow
ips an unbiased coin to decide which direction
to move in �rst, the adversary cannot tell in advance
where the cow will search last. The worst-case com-
petitive ratio for this randomized strategy is 2, because
the adversary is only able to force the cow to take 3
steps half the time and the rest of the time the cow
�nds the pasture in a single step.

Solution Methodology

The problem of �nding a search strategy to minimize
the worst-case competitive ratio is equivalent to a type
of two-player zero-sum game. The two players are
the cow and the adversary; the cow chooses a search
strategy and the adversary chooses which of the m
probability distributions to use for the pasture loca-
tion. There are e�cient computational approaches to
solving many types of games including matrix games,
�nite-horizon Markov games, and incomplete informa-
tion game trees. We will show that the standard com-
putational approaches for these problems do not apply
directly to the informed-cow cow-path problem. The
remainder of the section shows that a variation of the
linear-programming approach to incomplete informa-
tion game trees can be used to solve the informed-cow
cow-path problem in polynomial time.
Given a search strategy and �i, it is not di�cult to

compute the competitive ratio. As a result, the prob-
lem of choosing the optimal search strategy for the cow
can naturally be cast as a matrix game (Owen 1982).
In a matrix game, the set of all deterministic strate-
gies for one player corresponds to the rows of a ma-
trix, and the set of all deterministic strategies for the
other player corresponds to the columns. The entries
of the matrix give the payo� to the row player for play-
ing the corresponding strategies against one another.
Optimal randomized strategies for each player can be
determined using linear programming.
To apply the matrix-game approach to the informed-

cow cow-path problem, it is necessary to enumerate the
set of all deterministic search strategies for the cow; a
search strategy is constructed roughly by assigning a
choice of \right" or \left" to each of the possible situa-

tions. Because each of the �(2n
2

) deterministic strate-
gies would be included as a row in the game matrix,
this approach is computationally infeasible.
In �nite-horizon Markov games, the possibly expo-

nential-size set of deterministic strategies is expressed
compactly by a set of separate strategic decisions for
each state of the game. The obvious candidates for
states in the informed-cow cow-path problem are the
(`; r; s) situations. As long as states are \Markov"
(outcome probabilities are independent of the past),
this type of game can be solved e�ciently via dynamic
programming (Shapley 1953). This can result in expo-
nential savings over the matrix-game approach in the
case in which action decisions can be made locally at

the level of situations.
The informed-cow cow-path problem doesn't �t into

the Markov-game framework because the adversary's
choice of �i is never revealed to the cow; situations
are not Markov. This makes the game one of incom-
plete information and defeats the use of dynamic pro-
gramming. Optimization cannot proceed systemati-
cally from the bottom up|the values that need to be
computed at the bottom of the situation DAG depend
on the adversary's choice of �i, but the adversary's
choice of �i is made to give the largest value at the
top of the situation DAG. The result is a circularity
that is not easily broken.
Note that if it were the case that we forced the ad-

versary to choose �rst, then the cow would be able to
select a search strategy knowing which �i it was fac-
ing. In this case, the dynamic-programming algorithm
from the previous section can be applied by comput-
ing the best search strategy for each of the m possible
choices of �i separately.
Framing the informed-cow cow-path problem as a

game of incomplete information means we have to con-
sider the complete strategies for both the cow and the
adversary simultaneously to �nd a pair that is in equi-
librium. Incomplete information games can be solved
in polynomial time in the size of the game tree (Koller,
Megiddo, & von Stengel 1994) via linear programming
using an interesting representation of strategies based
on the \sequence form" of the game. Unfortunately,
even when the number of states is small, the game tree
can be exponentially large (consider converting the sit-
uation DAG of Figure 2 into a game tree; the result is
shown in Figure 3).
In the next few sections, we show that any random-

ized strategy for the cow can be expressed as a vector
x with �(n2) components subject to a polynomial-size
set of linear constraints. A randomized strategy for
the adversary can be expressed similarly as a vector
y of m probabilities related by a set of linear con-
straints (we consider randomized strategies for the ad-
versary because it simpli�es �nding a strategy that is in
equilibrium with the cow's strategy). The competitive
ratio of strategy x against strategy y can be written
as xTRy. Because a game between two linearly con-
strained vector-represented strategies with a bilinear
objective function can be solved in polynomial time
using linear programming (Koller, Megiddo, & von
Stengel 1994), we can compute an optimal randomized
search strategy for the cow in polynomial time.

Evaluating Search Strategies

The set of randomized strategies for the adversary can
be expressed quite simply as a vector y of probabilities:
yi is the probability that the adversary will choose dis-
tribution �i for 1 � i � m. The vector y must satisfy

yi � 0 for all i, and
X
i

yi = 1 (3)

A natural representation for the cow's randomized
strategy is a mapping � from situations and actions
(left or right) to probabilities: the value �((`;r;s);a) rep-
resents the probability that the cow will move in direc-
tion a when in situation (`; r; s). This type of situation-
local randomized strategy is called a \behavior strat-
egy" and is a bit di�erent from the \sweep"-type ran-
domized strategy used in earlier work (Kao, Reif, &
Tate 1996). We chose this form for search strategies
because it is succinct and simple; however, we show
in the appendix that an optimal search strategy can
always be expressed in this form.
The vector of probabilities � representing a behavior

strategy has an advantageous property that it is eas-
ily constrained to represent a valid strategy via linear
constraints: �((`;r;s);a) � 0 for all (`; r; s) and a, andP

a �((`;r;s);a) = 1 for all (`; r; s).
To evaluate the competitive ratio achieved by play-

ing the cow's behavior strategy � against adversary
strategy y, we have

mX
i=1

yi
E�i [search steps of strategy �]

E�i [search steps optimal strategy for �i]
(4)

=
mX
i=1

yi
V i((0; 0; 0))

E�i [search steps of strategy �];

where V i is de�ned in Equation 2. Evaluating the
expected number of search steps gives us

E�i [search steps of strategy �]

=
X

(`;r;s);a

Pr((`; r; s) reached, a chosenj�;�i)

�(steps from (`; r; s) to next situation via a)

=
X

(`;r;s);a

Pr(pasture not in (`; r; s)j�;�i)

�Pr((`; r; s) reached, a chosenjno pasture; �)

�(steps from (`; r; s) to next situation via a)

=
X

(`;r;s);a

�i(`; r; s)x((`;r;s);a)d((`; r; s); a) (5)

where �i is de�ned in Equation 1, d is the distance
function used in Equation 2, and x((`;r;s);a) =

Pr((`; r; s) is reached, a chosenjno pasture; �):
(6)

Equation 5 is justi�ed by breaking up the expected
number of steps according to the contribution of each
edge in the situation DAG.
We discuss x in detail in the next subsection.

Realization Weights

As de�ned in Equation 6, x is the probability of reach-
ing situation (`; r; s) and taking action a while follow-
ing behavior strategy � from (0; 0; 0) given that the

(1,2,0)

(3,3,0)

(2,3,0)

(1,3,1)

(2,3,1)(3,2,0)

(3,3,1)(3,3,0)

(2,2,0)

(0,2,1)

(0,3,1)

(3,3,0)

(2,3,0)

(1,3,0)

(1,1,1)

(2,1,0)

(3,3,1)

(3,2,1)

(3,1,0)

(3,2,0)(2,3,1)

(3,3,0)(3,3,1)

(2,2,1)

(1,2,1)

(3,2,0)(2,3,1)

(3,3,0)(3,3,1)

(2,2,0)

(2,3,0)

(3,3,0)

(1,3,1)

(0,0,0)

(1,0,0) (0,1,1)

(2,1,1)

(3,3,1)

(3,2,1)

(3,1,0)

(3,2,0)(2,3,1)

(3,3,0)(3,3,1)

(2,2,1)

(2,0,0)

(3,0,0)

(3,3,1)

(3,2,1)

(3,1,1)

(1,1,0)

(2,1,0)

(3,3,1)

(3,2,1)

(3,1,0)

(3,2,0)(2,3,1)

(3,3,0)(3,3,1)

(2,2,1)

(1,2,1)

(3,2,0)(2,3,1)

(3,3,0)(3,3,1)

(2,2,0)

(2,3,0)

(3,3,0)

(1,3,1)

Figure 3: Complete game tree for n = 3.

pasture was not found. We can express x in terms of
itself and � by

x((`;r;s);a) = (x((`1;r1;s1);a1) + x((`2;r2;s2);a2))�((`;r;s);a)
(7)

where a1 is the action that causes a transition from sit-
uation (`1; r1; s1) to situation (`; r; s) and a2 is the ac-
tion that causes a transition from situation (`2; r2; s2)
to (`; r; s). Note that any situation (`; r; s) has at most
two immediate predecessors: (`� (1� s); r � s; 0) and
(`� (1� s); r� s; 1). Equation 7 states that the prob-
ability that action a is taken from situation (`; r; s) is
the probability that situation (`; r; s) is reached times
the probability that a is taken from (`; r; s).
The components of the x vector are called realization

weights (Koller, Megiddo, & von Stengel 1994), and
they provide an alternative to � for representing the
cow's randomized strategy. In particular, note that we
can compute � from x by

�((`;r;s);a) =
x((`;r;s);a)

x((`;r;s);l) + x((`;r;s);r)
: (8)

Intuitively, the probability that we choose action a
from situation (`; r; s) is the proportion of the proba-
bility assigned to action a compared to the total prob-
ability of taking an action from situation (`; r; s).
For x to specify a valid set of realization weights, we

only need to require that for all (`; r; s) and a,

x((`;r;s);a) � 0;

x((0;0;0);l) + x((0;0;0);r) = 1; and (9)

x((`1;r1;s1);a1) + x((`2;r2;s2);a2)
= x((`;r;s);l) + x((`;r;s);r):

The third constraint in Equation 9 is justi�ed by sub-
stituting Equation 8 into Equation 7 for � and dividing
through by x((`;r;s);a).

This shows that the vector x of realization weights is
equivalently expressive to the behavior strategy � and
that, like �, x can be constrained to represent a valid
strategy by a small set of linear constraints (Equa-
tion 9). The previous section expressed the compet-
itive ratio of a randomized strategy in terms of x. In
the next section, we put together a complete algorithm
for �nding the optimal competitive ratio.

The Complete Algorithm

De�ne the matrix

R((`;r;s);a);i =
�i(`; r; s)d((`; r; s); a)

V i((0; 0; 0))
; (10)

note that the entries of R do not depend at all on
the strategies adopted by the cow or the adversary.
Substituting Equation 5 into Equation 4 and using the
de�nition of R, we have that the expected competitive
ratio of policy x against policy y is

mX
i=1

X
(`;r;s);a

x((`;r;s);a)R((`;r;s);a);i yi = xTR y
(11)

in matrix notation.
Our goal is to compute the optimal competitive ra-

tio, which we can express as minymaxx x
TRy where

x is subject to the linear constraints in Equation 9
(which we write as Ex = e and x � 0) and y is subject
to the linear constraints in Equation 3. The value of
this expression is equal to the value of the following lin-
ear program (which is a special case of linear program
for solving incomplete information game trees (Koller,
Megiddo, & von Stengel 1994)):

maximize �q
x, q

s.t. xTR� q � 0

Ex = e
x � 0.

Here, q is a scalar that is related to the dual of the
adversary's strategy y.
This linear program has �(n2) variables and con-

straints and the optimal value of x is a representation
of the cow's optimal search strategy. The time required
to create this linear program depends on the time to
create E (�(n2), because it is sparse) and R. Each of
the �(mn2) entries of R is the combination of an entry
of �i, d, and V i; by precomputing all the values of �i

and V i, the total time to �ll in R is �(mn2). There-
fore, the total time required to compute the optimal
randomized search strategy for the cow is polynomial.

Discussion and Conclusions
This paper constitutes an early exploration of a sce-
nario that is very important to on-line search: the
searcher wants to minimize its search e�ort in the
worst case, but it has gathered some information that
constrains where the target of its search can be. In
our work, we have chosen to model this combination
of a worst-case criterion with an informed expected-
case criterion by postulating an adversary that is con-
strained to place the target according to any one of
a �nite set of probability distributions. The particu-
lar search problem we examined is the classic cow-path
problem, although we expect that this adversarymodel
could be used in other search problems.
We have not studied whether there are practical

situations in which this \informed searcher" model
applies; however, it is interesting that it includes as
special cases both the completely informed expected-
case model used for decision problems in operations
research (Puterman 1994) (m = 1), as well as the
worst-case model popular in theoretical computer sci-
ence (Kao, Reif, & Tate 1996) (m = 2n, the number
of locations, and the adversary has a separate proba-
bility distribution for each situation). In addition, the
model can express a simple kind of probability inter-
val notation, in which the searcher has bounds on the
probability that the search target resides in a given lo-
cation, with the width of the bound corresponding to
the searcher's degree of uncertainty.
The problem we address appears to have some deep

connections to the \minimum latency problem" (Blum
et al. 1994). In this problem, a searcher must visit
all nodes in a graph while minimizing the average
visit time. The informed-cow cow-path problem with
m = 1 is like the minimum latency problem on a one-
dimensional graph. In fact, the dynamic-programming
algorithm we describe above is nearly identical to one
described by Blum et al.
There are a number of directions in which the

informed-cow cow-path problem can be extended. In-
stead of having a probability distribution for the lo-
cation of the one pasture, independent distributions
could be de�ned for each location concerning whether

the location contains a pasture. A similar extension
can be made to the case in which there are 2 or more
pastures with probability distributions on their joint
locations. Both of these extensions can be solved eas-
ily within the framework developed in this paper.
Another natural extension is to the case in which

there are k paths branching o� from the starting loca-
tion (Kao et al. 1994); this paper looked at the k = 2
case. Larger values of k can be handled using similar
techniques; unfortunately, the run times of the algo-
rithms we proposed scale exponentially with k, because
the number of reachable situations scales exponentially
with k. We are not aware of any approaches that scale
more gracefully.
In our work, we choose to de�ne the competitive

ratio in one particular way (Equation 4). Generally,
competitive ratios have the form

Performance of online algorithm

Performance of o�ine algorithm
;

and there are many, many other ways to de�ne it for
this problem, depending on the amount of informa-
tion available to the \o�ine" algorithm and whether
expected values are taken inside or outside the ratio.
In fact, even the m = 1 case can be rede�ned using a
competitive ratio, in which the o�ine algorithm knows
precisely where the pasture is. We do not know of any
well-motivated way to select between these many op-
tions, although we feel the de�nition we chose is the
most natural.
An interesting open issue is to understand what hap-

pens to the optimal randomized strategy as n!1 in
the case in which �i = h0; : : : ; 0; 1; 0; : : : ; 0i �n � i �
n? Conceptually, this is analogous to the classic un-
informed cow-path problem, in which there is no limit
in the length of the path and the adversary can choose
to place the pasture at any location. An optimal ran-
domized search strategy for this problem has been de-
scribed (Kao, Reif, & Tate 1996), but it is possible that
viewing it as a limiting case of searching a �nite set of
locations could shed additional light on the structure
of the optimal strategy.
This paper also describes a modi�cation of an al-

gorithm for e�ciently solving incomplete information
game trees to a particular game played on a DAG.
For this game, our modi�ed algorithm is exponentially
faster than the original algorithm. It would be worth
understanding whether this modi�cation can be gener-
alized to solve an even wider class of DAG-structured
incomplete information games e�ciently.

Appendix: Situation-based Behavior

Strategies are Optimal

We show in this section that an optimal search strategy
for the cow can always be expressed as a situation-
based behavior strategy|a mapping from situations
to probability distributions over actions. This justi�es

our use of this compact representation in our worst-
case competitive-ratio algorithm.
To show this, we make use of the concept of realiza-

tion weights, introduced in Equation 7. Note that we
can take the situation DAG and unfold it into a tree of
all possible histories of the cow; this is the game tree
as illustrated in Figure 3. Let x� be the optimal real-
ization weights for the game-tree representation of the
situation space; x� must be optimal over all possible
search strategies because the cow is using its complete
history to make action choices|no amount of other
information could help it make better decisions.
De�ne S(t) to be the situation corresponding to

game-tree node t. De�ne a set of realization weights x
over the situation DAG by

x((`;r;s);a) =
X

t s.t. S(t)=(`;r;s)

x�(t;a);

x((`;r;s);a) is the sum of the realization weights in x�

for every edge in the game tree that corresponds to
situation-action pair ((`; r; s); a). The x vector sat-
is�es the constraints on realization weights in Equa-
tion 9 (non-negativity, initial state has probability 1,
\
ow" conservation), and therefore represents a valid
randomized strategy over the situation DAG.
De�ne R� to be a matrix of coe�cients de�ned anal-

ogously to R in Equation 10; R�
(t;a);i is the contribution

to the competitive ratio of the action a edge at game-
tree node t when �i is the distribution of the pasture
location. An important fact is that the components of
R� for a given game-tree node t depend only on the
situation corresponding to t, S(t).
The optimal worst-case competitive ratio for a

situation-based behavior strategy cannot be better
than the worst-case competitive ratio of x�, because
x� is optimal over all strategies. We show that, in
fact, the worst-case competitive ratio for x on the sit-
uation DAG is equal to that of x� on the full game
tree; therefore, restricting attention to situation-based
behavior strategies does not sacri�ce our ability to rep-
resent optimal search strategies.
By a similar argument to the one leading up to Equa-

tion 11, the worst-case competitive ratio for x� can be
written

min
i

X
t;a

x�(t;a)R
�
(t;a);i

= min
i

X
t;a

x�(t;a)R(S(t);a);i

= min
i

X
(`;r;s);a

X
t s.t. S(t)=(`;r;s)

x�(t;a)R(S(t);a);i

= min
i

X
(`;r;s);a

R((`;r;s);a);i

X
t s.t. S(t)=(`;r;s)

x�(t;a)

= min
i

X
(`;r;s);a

x((`;r;s);a)R((`;r;s);a);i:

The last expression is the worst-case competitive ratio
for x over the situation DAG; because this is exactly
equal to the optimal worst-case competitive ratio, this
implies that there is always a situation-based behavior
strategy that is as good as any other possible strategy.

Acknowledgments

We gratefully acknowledge Sven Koenig for helpful
conversations on this topic.

References

Baeza-Yates, R. A.; Culberson, J. C.; and Rawlins,
G. J. E. 1993. Searching in the plane. Information
and Computation 106:234{252.

Blum, A.; Chalasani, P.; Coppersmith, D.; Pulley-
blank, B.; Raghavan, P.; and Sudan, M. 1994. The
minimum latency problem. In Proceedings of the 26th
Annual ACM Symposium on Theory of Computing.

Kaelbling, L. P.; Littman, M. L.; and Cassandra,
A. R. 1995. Planning and acting in partially observ-
able stochastic domains. Technical Report CS-96-08,
Brown University, Providence, RI.

Kao, M. Y.; Ma, Y.; Sipser, M.; and Yin, Y. 1994.
Optimal constructions of hybrid algorithms. In Pro-
ceedings of the 5th Annual ACM-SIAM Symposium
on Discrete Algorithms, 372{381.

Kao, M.-Y.; Reif, J. H.; and Tate, S. R. 1996. Search-
ing in an unknown environment: An optimal random-
ized algorithm for the cow-path problem. Information
and Computation 131(1):63{79.

Koller, D.; Megiddo, N.; and von Stengel, B. 1994.
Fast algorithms for �nding randomized strategies in
game trees. In Proceedings of the 26th ACM Sympo-
sium on the Theory of Computing, 750{759.

Max's Mom and Dad. 1994. Max's Special Beginning.
http://www.cs.duke.edu/~mlittman/max/max-book/
story.html.

Owen, G. 1982. Game Theory: Second edition. Or-
lando, Florida: Academic Press.

Papadimitriou, C. H., and Tsitsiklis, J. N. 1987. The
complexity of Markov decision processes. Mathemat-
ics of Operations Research 12(3):441{450.

Puterman, M. L. 1994. Markov Decision Processes|
Discrete Stochastic Dynamic Programming. New
York, NY: John Wiley & Sons, Inc.

Shapley, L. 1953. Stochastic games. Proceedings of
the National Academy of Sciences of the United States
of America 39:1095{1100.

Sleator, D. D., and Tarjan, R. E. 1985. Amortized
e�ciency of list update and paging rules. Communi-
cations of the ACM 28(2):202{208.

Yao, A. C. C. 1980. New algorithms for bin packing.
Journal of the ACM 27:207{227.

