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Lecture 2.1 - Introduction to CUDA C

CUDA C vs. Thrust vs. CUDA Libraries



Objective

— To learn the main venues and developer resources
for GPU computing
— Where CUDA C fits in the big picture




3 Ways to Accelerate Applications

Applications

Compiler Programming

Libraries Directives Languages

Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility




Libraries: Easy, High-Quality Acceleration

Fase of use: Using libraries enables GPU acceleration without in-
depth knowledge of GPU programming

“Drop-in": Many GPU-accelerated libraries follow standard APIs,
thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions
encountered in a broad range of applications
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Vector Addition in Thrust

thrust::device_vector<float> devicelnputl(inputLength);
thrust::device_ vector<float> devicelnput2(inputLength);
thrust::device_vector<float> deviceOutput(inputLength);

thrust::copy(hostinputl, hostinputl + inputLength,
devicelnputl.begin());

thrust:.copy(hostlnput2, hostinput2 + inputLength,
devicelnput2.begin());

thrust::transform(devicelnputl.begin(), devicelnputl.end(),
devicelnput2.begin(), deviceOutput.begin(),

thrust::plus<float>());




Compiler Directives: Easy, Portable
Acceleration

Fase of use: Compiler takes care of details of parallelism
management and data movement

Portable: The code is generic, not specific to any type of hardware
and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions




OpenACC

— Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(inputl[O:inputLength],input2[0:inputLength]),
copyout(output[O:inputLength])
for(i = O; | < inputLength; ++i) {
output[i] = inputl][i] + input2][i];

}




Programming Languages: Most Performance and
Flexible Acceleration

Performance: Programmer has best control of parallelism and
data movement

Flexible: The computation does not need to fit into a limited set of
library patterns or directive types

\Verbose: The programmer often needs to express more details
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