GPU Teaching Kit
Accelerated Computing

Lecture 2.1 - Introduction to CUDA C

CUDA C vs. Thrust vs. CUDA Libraries



Objective

— To learn the main venues and developer resources
for GPU computing
— Where CUDA C fits in the big picture




3 Ways to Accelerate Applications

Applications

Compiler Programming

Libraries Directives Languages

Easy to use Easy to use Most Performance
Most Performance Portable code Most Flexibility




Libraries: Easy, High-Quality Acceleration

Fase of use: Using libraries enables GPU acceleration without in-
depth knowledge of GPU programming

“Drop-in": Many GPU-accelerated libraries follow standard APIs,
thus enabling acceleration with minimal code changes

Quality: Libraries offer high-quality implementations of functions
encountered in a broad range of applications




GPU Accelerated Libraries

Linear Algebra NVIDIA o . rr

T BLAS, k. 4l cuLaltools RGN LI F
’ ’ CUBLAS, *

SPARSE, MatriX CUSPARSE iceor

-NVIBIA

i L5
Numerical & Math P e A ArravFire
RAND, Statistics -__ .- Lib

GPUAI -
Board

Games
" NVIDIA

Video Sundog

: um Encode Software

Data Struct. & Al

Sort, Scan, Zero Sum

Visual Processing
Image & Video




Vector Addition in Thrust

thrust::device_vector<float> devicelnputl(inputLength);
thrust::device_ vector<float> devicelnput2(inputLength);
thrust::device_vector<float> deviceOutput(inputLength);

thrust::copy(hostinputl, hostinputl + inputLength,
devicelnputl.begin());

thrust:.copy(hostlnput2, hostinput2 + inputLength,
devicelnput2.begin());

thrust::transform(devicelnputl.begin(), devicelnputl.end(),
devicelnput2.begin(), deviceOutput.begin(),

thrust::plus<float>());




Compiler Directives: Easy, Portable
Acceleration

Fase of use: Compiler takes care of details of parallelism
management and data movement

Portable: The code is generic, not specific to any type of hardware
and can be deployed into multiple languages

Uncertain: Performance of code can vary across compiler versions




OpenACC

— Compiler directives for C, C++, and FORTRAN

#pragma acc parallel loop
copyin(inputl[O:inputLength],input2[0:inputLength]),
copyout(output[O:inputLength])
for(i = O; | < inputLength; ++i) {
output[i] = inputl][i] + input2][i];

}




Programming Languages: Most Performance and
Flexible Acceleration

Performance: Programmer has best control of parallelism and
data movement

Flexible: The computation does not need to fit into a limited set of
library patterns or directive types

\Verbose: The programmer often needs to express more details




OIGEIRIE R Eifold MATLAB Mathematica, LabVIEW

=ogic:ltld CUDA Fortran
olld CUDAC

=4 CUDAC++

=Viulhlld PyCUDA, Copperhead, Numba

Sl d Alea.cuBase

.
S




CUDA-C

Applications

Compiler Programming

SIRIEIIES Directives Languages

Most Performance
Most Flexibility




GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.



http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Lecture 2.1 - Introduction to CUDA C
	Objective
	3 Ways to Accelerate Applications
	Libraries: Easy, High-Quality Acceleration
	GPU Accelerated Libraries
	Vector Addition in Thrust
	Compiler Directives: Easy, Portable Acceleration
	OpenACC
	Programming Languages: Most Performance and Flexible Acceleration
	GPU Programming Languages�
	CUDA - C
	Slide Number 12

