
Data Min Knowl Disc (2016) 30:1–46
DOI 10.1007/s10618-015-0401-6

Decomposition-by-normalization (DBN): leveraging
approximate functional dependencies for efficient CP
and tucker decompositions

Mijung Kim · K. Selçuk Candan

Received: 10 October 2013 / Accepted: 4 January 2015 / Published online: 28 January 2015
© The Author(s) 2015

Abstract For many multi-dimensional data applications, tensor operations as well
as relational operations both need to be supported throughout the data lifecy-
cle. Tensor based representations (including two widely used tensor decompo-
sitions, CP and Tucker decompositions) are proven to be effective in multi-
aspect data analysis and tensor decomposition is an important tool for captur-
ing high-order structures in multi-dimensional data. Although tensor decomposi-
tion is shown to be effective for multi-dimensional data analysis, the cost of ten-
sor decomposition is often very high. Since the number of modes of the ten-
sor data is one of the main factors contributing to the costs of the tensor oper-
ations, in this paper, we focus on reducing the modality of the input tensors to
tackle the computational cost of the tensor decomposition process. We propose a
novel decomposition-by-normalization scheme that first normalizes the
given relation into smaller tensors based on the functional dependencies of the
relation, decomposes these smaller tensors, and then recombines the sub-results
to obtain the overall decomposition. The decomposition and recombination steps
of the decomposition-by-normalization scheme fit naturally in settings
with multiple cores. This leads to a highly efficient, effective, and parallelized
decomposition-by-normalization algorithm for both dense and sparse
tensors for CP and Tucker decompositions. Experimental results confirm the effi-
ciency and effectiveness of the proposeddecomposition-by-normalization

Responsible editors: Chih-Jen Lin.

M. Kim (B) · K. S. Candan
Arizona State University, Tempe, AZ, USA
e-mail: mijung.kim.1@asu.edu

K. S. Candan
e-mail: candan@asu.edu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-015-0401-6&domain=pdf

2 M. Kim, K. S. Candan

scheme compared to the conventional nonnegative CP decomposition and Tucker
decomposition approaches.

Keywords Tensor decomposition · CP decomposition · Tucker decomposition ·
Parallel tensor decomposition · Parallel CP decomposition · Parallel Tucker
decomposition

1 Introduction

Relational data have various representations. Let A1, . . . , An be a set of attributes
in a relation and D1, . . . , Dn be the attribute domains. The tensor model maps each
attribute to amode in ann-modal arraywhere eachpossible tuple is a cell. The existence
(absence) of a particular tuple in the database instance is denoted by inserting a 1 (0)
in the cell; the model can also represent fuzzy or probabilistic tuples by filling the cell
with a value between 0 and 1.

Tensor based representations, including two widely used decompositions, CP (Car-
roll and Chang 1970; Harshman 1970) and Tucker (Tucker 1966) decompositions, are
proven to be effective in multi-aspect data analysis. Consequently, tensor decomposi-
tion is an important tool for capturing high-order structures in multi-dimensional data
in many application domains including scientific data management (Andersson and
Bro 2000; Harshman 1970; Phan and Cichocki 2011; Tucker 1966; Zhang et al. 2009),
sensor data management (Sun et al. 2008; Tsourakakis 2010), and social network data
analysis (Kolda et al. 2005; Kolda and Sun 2008; Mahoney et al. 2006).

Tensor decomposition gives benefits over matrix-based tools, which allow more
powerful data analysis such as cross-mode clustering (Sun et al. 2009) and time evolv-
ing streaming data analysis (Sun et al. 2008). In particular, we focus on using tensor
decomposition on clustering problems. Tensor decomposition is widely used for clus-
tering (Kolda and Sun 2008; Sun et al. 2009, 2008).

Unfortunately, tensor decomposition operation can be prohibitively costly when
the tensor data have a large number of modes:

– One obvious problem is the space needed to hold the input tensors. When the
tensor is dense (i.e., has a large number of nonzero entries) or when a dense tensor
representation is used for algorithmic reasons, the space required to hold the data
increases exponentially with the number of modes.

– The Tucker decompositionmay be infeasible for large data sets (even if the original
tensor is sparse) since the tensors needed to represent intermediate results are often
dense.

Recent attempts to overcome these problems using parellel tensor decomposi-
tion (Antikainen et al. 2011; Phan and Cichocki 2011; Zhang et al. 2009) techniques
also face difficulties, including synchronization and data exchange overheads.

1.1 Contributions of this paper: decomposition-by-normalization (DBN)

Our goal in this paper is to tackle the high computational cost of the tensor decompo-
sition process. Since, as described above, the number of modes of the tensor data is

123

Decomposition-by-normalization (DBN) 3

(a)

(b) (c)

Fig. 1 a Normalization of a relation R(workclass, education, ID, occupation,
income) into two relations R1(workclass, education, ID) and R2(ID, occupation,
income) based on the key (ID); decomposition-by-normalization (DBN): normalization of
R into R1 and R2, b rank-r1 CP decomposition of R1 and rank-r2 CP decomposition of R2 that are
combined on the ID mode into rank-(r1 × r2) CP decomposition of R, and c rank-(. . . , r1, . . .) Tucker
decomposition of R1 and rank-(. . . , r2, . . .) Tucker decomposition of R2 that are combined on the ID
mode into rank-(. . . , r1 × r2, . . .) Tucker decomposition of R

one of the main factors contributing to the cost of the tensor operations, we argue that
if

– a tensor with large number of modes can be normalized (i.e., vertically partitioned)
into tensors with smaller number of modes and

– each sub-tensor is decomposed independently,

then the resulting partial decompositions can be efficiently combined to obtain the
decomposition of the original tensor. We refer to this as the decomposition-
by-normalization (DBN) scheme.

Example 1 Consider the 5-attribute relation,R(workclass, education, ID,
occupation, income) in Fig. 1a and assume that wewant to decompose the cor-
responding tensor for multi-dimensional analysis.

123

4 M. Kim, K. S. Candan

Figure 1a illustrates an example normalizationwhich divides this 5-attribute relation
into two smaller relations with 3 attributes,R1(workclass, education, ID)
and R2(ID, occupation, income), respectively.

Figure 1b, c, then, illustrate the proposed DBN scheme for CP and Tucker decom-
positions, respectively: In both cases, once the two partitions are decomposed, we
combine the resulting core tensors and factor matrices to obtain the decomposition of
the original tensor corresponding to the relationR. ��
Benefits of DBN for CP Decompositions In the CP decomposition example above
(Fig. 1b),

– if the input relationR is dense, we argue that decompositions of partitionsR1 and
R2 will be much faster than that of the original relationR and the gain will more
than compensate for the normalization and recombination costs of DBN.

– If the input relation R is sparse, on the other hand, the decomposition cost is not
only determined by the number of modes, but also the number of nonzero entries
in the tensor. Consequently, unless the partitioning provides smaller numbers of
tuples in both partitions, we cannot theoretically expect DBN to provide large
gains. However, as we experimentally verify in Sect. 8, DBN scheme fits naturally
in multi-core implementations, thus in practice provides significant advantages
even for sparse input tensors.

Benefits of DBN for Tucker Decompositions Since the scale of the intermediate blowup
problem (Kolda and Sun 2008) depends largely on the modality of the input tensor,
we argue that dividing the tensor into sub-tensors with smaller number of modes
will help eliminate this notorious bottleneck. Moreover, similarly to the case in CP
decompositions, each individual sub-tensor decomposition can run on an available
core without having to communicate with other sub-tensor decompositions running
on different cores, leading to effective parallelizations of Tucker decompositions.
Challenges and Contributions Note that in general, a given tensor can be partitioned
into two in multiple ways. The key challenges we address in this paper are (a) how
best to partition a given tensor into smaller tensors and (b) how to recombine the
sub-result to obtain the decomposition of the original tensor. In particular, achieving
the projected advantages of the DBN strategy requires us to address the following key
challenges:

– Challenge 1 First of all, we need to ensure that the join attribute is selected in
such a way that the normalization (i.e., the vertical partitioning) process does not
lead to spurious tuples. Secondly, the join attribute needs to partition the data in
such a way that the later steps in which decompositions of the individual partitions
are combined into an overall decomposition do not introduce errors. One way
to prevent the normalization process from introducing spurious data is to select
an attribute which functionally determines the attributes that will be moved to
the second partition. This requires an efficient method to determine functional
dependencies in the data.

– Challenge 2 A second difficulty is that many data sets may not have perfect func-
tional dependencies to leverage for normalization. In that case, we need to be able
to identify and rely on approximate functional dependencies in the data.

123

Decomposition-by-normalization (DBN) 5

– Challenge 3Once the approximate functional dependencies are identified,we need
a mechanism to partition the data into two partitions in such a way that will lead to
least amount of errors during later stages. In this paper, we argue that partitioning
the attributes in a way that minimizes inter-partition functional dependencies and
maximizes intra-partition dependencies will lead to least amount of errors in the
recombination step.

– Challenge 4Moreover, after data is vertically partitioned and individual partitions
are decomposed, the individual decompositions need to be recombined to obtain
the decomposition of the original relation. This process needs to be done in a way
that is efficient and parallelizable.

The paper is organized as follows:We first provide the relevant background and dis-
cuss the relatedworks in Sect. 2.We provide an overview of the proposedDBN scheme
in Sect. 3. In Sect. 4, we extend the CP-based join-by-decomposition (JBD-
CP) (Kim and Candan 2011) approach to Tucker decompositions. We then focus on
selecting the best partitions for the normalization step of DBN (Sect. 5). In Sect. 6, we
present rank-pruning strategies to further reduce the cost of DBN. We experimentally
evaluate DBN in Sect. 8 in both stand-alone and parallel configurations. We focus on
the accuracy and the running time of the alternative algorithms. Note that although the
proposed algorithms are developed for nonnegative CP and Tucker decompositions,
experiments show that in practice they work well also for general tensor decomposi-
tions involving negative values. Experimental results provide evidence that in addition
to being significantly faster than conventional decompositions, DBN can approximate
well the accuracy of the conventional tensor decomposition techniques. We conclude
the paper in Sect. 9.

2 Background and related work

2.1 Tensors and tensor decomposition

Tensors Tensors are generalizations of matrices: while a matrix is essentially a two
dimensional array, a tensor is an array of arbitrary dimensions. Thus, a vector can be
thought of as a tensor of 1st order and an object-feature matrix is a tensor of 2nd order,
while a multi-sensor data stream (i.e., sensors, features of sensed data, and time) can
be represented as a tensor of 3rd order. As in the case of matrices, the dimensions of
the tensor array are referred to as its modes.

Tensor Decomposition Tensor decomposition has been used in a large number of
domains, including signal processing, computer vision, and data mining. Tensor-
based data representation and tensor analysis are also increasingly popular in emerging
fields, such as social network analysis (Kolda et al. 2005). The two most popular ten-
sor decompositions are the Tucker (Tucker 1966) and the CANDECOMP/PARAFAC
(Harshman 1970; Carroll and Chang 1970) decompositions, which are considered to
be higher-order generalization of matrix singular value matrix decomposition (SVD).
CANDECOMP (Carroll and Chang 1970) and PARAFAC (Harshman 1970) decom-
positions (together known as the CP decomposition) take a different approach and

123

6 M. Kim, K. S. Candan

decompose the input tensor into a sum of component rank-one tensors. More specifi-
cally, the rank-r CP Decomposition of the tensor PI1×I2×···×IN can be defined as

CP(PI1×I2×···×IN) = P̃I1×I2×···×IN = 〈λ,U(1), . . . ,U(N)〉,

such that

PI1×I2×···×IN ≈
r∑

k=1

λk ◦U (1)
:k ◦U (2)

:k ◦ · · · ◦U (N)
:k , (1)

where λi is the i-th element of vector λ of size r andU (n)
:i is the i-th column vector of

the matrix U(n) of size In × r , for n = 1, · · · , N .
Note that the CP decomposition operation is an approximate operation and P may

not be exactly reconstructed from P̃. In other words, the following weighted sum, P̂,
of the rank-one tensors may be different from P:

P̂I1×I2×···×IN =
r∑

k=1

λk ◦U (1)
:k ◦U (2)

:k ◦ · · · ◦U (N)
:k . (2)

Therefore, the norm of P denoted by ‖P‖ may also be different from ‖P̂‖. Note that
‖P̂‖ can be computed directly from the decomposition P̃without having to reconstruct
the tensor P̂, since ‖P̂‖ = ‖P̃‖, which is computed in Bader and Kolda (2006) as

‖P̃‖ = λT (U(N)TU(N) ∗ · · · ∗ U(1)TU(1))λ. (3)

Tucker decomposition (Tucker 1966) is a higher-order generalization of principal
component analysis (PCA) (Kolda and Bader 2009). The rank-(r1, r2, . . . , rN) Tucker
Decomposition of the tensor PI1×I2×···×IN can be defined as

Tucker(PI1×I2×···×IN) = P̃I1×I2×···×IN = 〈G,U(1), . . . ,U(N)〉,

such that
PI1×I2×···×IN ≈ G ×1 U(1) ×2 U(2) · · · ×N U(N), (4)

where G is a core tensor of size r1 × r2 × · · · × rN and U(n) is the nth factor matrix of
size In × rn , for n = 1, . . . , N . Again, the norm of Tucker decomposition of P, ‖P̂‖
is computed directly from the decomposition P̃ (see Bader and Kolda (2006) for the
computation of ‖P̃‖).

Many of the algorithms for decomposing tensors are based on an iterative process
that approximates the best solution until a convergence condition is reached. The alter-
nating least squares (ALS) method is relatively old and has been successfully applied
to the problem of tensor decomposition (Carroll and Chang 1970; Harshman 1970).
Non-iterative approaches to tensor decomposition include closed form solutions, such
as generalized rank annihilation method (GRAM) (Sanchez and Kowalski 1986) and

123

Decomposition-by-normalization (DBN) 7

direct trilinear decomposition (DTLD) (Sanchez and Kowalski 1990), which fit the
model by solving a generalized eigenvalue problem.

Related approaches to tensor decomposition include probabilistic methods (Chu
and Ghahramani 2009; Hoff 2011; Xu et al. 2012), which aim to capture correlations
between different tensor modes to handle missing and imprecise entries. In this paper,
we also interpret tensor decomposition probabilistically by imposing additional con-
straints (nonnegativity and summation to 1) on the decomposition. In the case of the
CP decomposition, for example, each nonzero element in the core can be thought of
denoting a cluster strength and the values of the entries of the factor matrices can be
interpreted as the conditional probabilities of the entries given clusters. Our proba-
bilistic treatment of the tensor decomposition process, however, is motivated not by
handling imprecise data, but to support lossless (or minimal loss) partitioning and
recombination of the tensors.

Scalable and Parallel Tensor Decompositions Randomized sampling has been used to
approximate tensor decomposition for space and time savings (Mahoney et al. 2006;
Tsourakakis 2010). Kolda et al. (2005) developed a greedy PARAFAC algorithm
for large-scale, sparse tensors in MATLAB. A memory-efficient Tucker (MET) pro-
posed in Kolda and Sun (2008) addressed the intermediate blowup problem in Tucker
decomposition. According to the ALS method for solving Tucker Decomposition, the
bottleneck computation is the input tensor X of size I1 × I2 × · · · × IN times factor
matrices A(n) of size In × rn for n = 1, . . . , N ,

Y = X ×1 A(1) · · · ×(n−1) A(n−1) ×(n+1) A(n+1) · · · ×N A(N).

Since the intermediate result of a sparse tensor multiplied by factor matrices can be
dense, intermediate results may be too big to fit in the available memory, even when
the final result Y, whose size is maxn(In

∏
m
=n rm) may easily fit. MET addresses

this problem by calculating Y in an element-wise manner for reducing the size of
intermediate memory. Instead of updating the whole Y, MET updates a subset of the
modes (e.g., each slice Y: j2: or fiber y: j2 j3). As a result, the size of intermediate result
of MET is

∏
m /∈ε Im, where ε is a subset of modes computed element-wise. We show

later in Sect. 8, MET still suffers from the intermediate blowup problem in high mode
(more than 4-mode) input tensors whereas DBN performs well.

Phan and Cichocki (2011) proposed a modified ALS PARAFAC algorithm called
grid PARAFAC for large scale tensor data. The grid PARAFAC divides a large tensor
into sub-tensors that can be factorized using any available PARAFAC algorithm in
a parallel manner and iteratively combines into the final decomposition. The grid
PARAFAC can be converted to grid NTF by enforcing nonnegativity.

The grid PARAFAC reduces the dimensionality of the input tensor, while our
approach reduces the number of modes of the input tensor, in order to address the
high cost of tensor decomposition.

Zhang et al. (2009) parallelizedNTF by dividing a given original 3-mode tensor into
three semi-non negative matrix factorization problems. These matrices are distributed
to independent processors to facilitate parallelization. A parallelized NTF algorithm

123

8 M. Kim, K. S. Candan

that is specialized for Compute Uniform Device Architecture (CUDA) parallel com-
puting framework was presented in Antikainen et al. (2011).

Note that since block-based parallel algorithms are based on ALS where one vari-
able can be optimized given that the other variables are fixed, the communication cost
among the blocks is not avoidable. In the proposed parallelized DBN strategy, on the
other hand, each block is completely separable and run independently.

Zhou et al. (2009) provide an efficient way of performing N-way CP decomposition
where they leverage the fact that one factor matrix is correctly estimated, the other
factor matrices can be computed and estimate two factors first then perform the full
CP decomposition by the Khatri-Rao product.

3 Decomposition-by-normalization (DBN)

Our goal in this paper is to tackle the high computational cost of decomposition process
through what we refer to as the decomposition-by-normalization (DBN).
In this section, we first introduce the relevant notations, provide background on key
concepts, and then present an overview of the DBN process.

3.1 Key concepts

Without loss of generality, we assume that relations are represented in the form of
occurrence tensors Kim and Candan (2011).

3.1.1 Tensor representation of relational data

Let A1, . . . , An be a set of attributes in the schema of a relation, R, and D1, . . . , Dn

be the attribute domains. Let the relation instance R be a finite multi-set of tuples,
where each tuple t ∈ D1 × . . . × Dn .

Definition 1 (Occurrence Tensor) An occurrence tensor Ro corresponding to the
relation instanceR is ann-mode tensor,where each attribute A1, . . . , An is represented
by a mode. For the i-th mode, which corresponds to Ai , let D′

i ⊆ Di be the (finite)
subset of the elements such that

∀v ∈ D′
i ∃t ∈ R s.t. t.Ai = v,

where t.Ai denotes the i-th attribute of the tuple t and let idx(v) denote the rank of v

among the values (or a category in case that the attribute is categorical) in D′
i relative

to an (arbitrary) total order,<i , defined over the elements of the domain, Di . The cells
of the occurrence tensor Ro are such that

Ro[u1, . . . , un] = 1 ↔ ∃t ∈ R s.t. ∀1≤ j≤n idx(t.A j) = u j

and 0 otherwise.
Intuitively, each cell indicates whether the corresponding tuple exists in the multi-

set corresponding to the relation or not. ◦

123

Decomposition-by-normalization (DBN) 9

3.1.2 Tensor join

Since in this paper we represent relations as occurrence tensors, we rely on the defi-
nition of tensor join operation introduced in Kim and Candan (2011) when we need
to combine data sets represented as tensors: Let P and Q be two tensors, repre-
senting relation instances P and Q, with attribute sets, A

P = {AP
1 , . . . , AP

n } and

A
Q = {AQ

1 , . . . , AQ
m }, respectively. In the rest of this section, we denote the index of

each cell of P as (i1, i2, . . . , in); similarly, the index of each cell of Q is denoted as
(j1, j2, . . . , jm). The cell indexed as (i1, . . . , in) ofP is denoted byP[i1, . . . , in] and
the cell indexed as (j1, . . . , jm) of Q is denoted by Q[j1, . . . , jm].
Definition 2 (Tensor Join (��) and Tensor Equi-Join) Given two relational tensors P
and Q, and a condition ϕ, we define their join as

P ��ϕ Q
def= σϕ(P × Q).

Given two relations P and Q, with attribute sets, A
P = {AP

1 , . . . , AP
n } and A

Q =
{AQ

1 , . . . , AQ
m }, and a set of attributes A ⊆ A

P and A ⊆ A
Q , the equi-join operation,

��=,A, is defined as the join operation, with the condition that matching attributes in
the two relations will have the same values, followed by a projection operation that
eliminates one instance of A from the resulting relation. ��

3.1.3 Functional dependencies

A functional dependency (FD) between two sets of attributes, X and Y, is defined as
follows (Elmasri and Navathe 1994).

Definition 3 (Functional Dependency) A functional dependency (FD), denoted by
X → Y, holds for relation instanceR, if and only if for any two tuples t1 and t2 inR
that have t1[X] = t2[X], t1[Y] = t2[Y] also holds.

We refer to a functional dependency as a pairwise functional dependency if the sets
X and Y are both singleton. ◦
Intuitively, a functional dependency is a constraint between two sets of attributes X

and Y in a relation denoted by X → Y, which specifies that the values of the X

component of a tuple uniquely determine the values of the Y component. Note that if
A = {A1, . . . , An} is a set of attributes in the schema of a relation, R, and X, Y ⊆ A

are two subsets of attributes such that X → Y, then the relation instance R can be
vertically partitioned into two relation instances R1, with attributes A \ Y, and R2,
with attributes X ∪ Y, such thatR = R1 �� R2; in other words the set of attributes X

serves as a foreign key and joining vertical partitionsR1 andR2 on X gives back the
relation instance R without any missing or spurious tuples.

Note that, discovery of FDs in a given data set is a challenging problem since the
complexity increases exponentially in the number of attributes (Mannila and Räihä
1992). Moreover, in many data sets, attributes may not have perfect FDs due to excep-
tions and outliers in the data. In such cases, we may only be able to locate approximate
FDs (Huhtala et al. 1999) instead of exact FDs:

123

10 M. Kim, K. S. Candan

Fig. 2 Pseudo-code of DBN

Definition 4 (Approximate Functional Dependency)
An approximate functional dependency (aFD), denoted by X

σ→ Y holds for rela-
tion instance R, if and only if

– there is a subsetR′ ⊆ R, such that |R′| = σ × |R| and, for any two tuples t1 and
t2 inR′ that have t1[X] = t2[X], t1[Y] = t2[Y] also holds; and

– there is no subsetR′′ ⊆ R, such that |R′′| > σ × |R| where the condition holds.

We refer to the value of σ as the support of the aFD, X
σ→ Y. ��

Many algorithms for FD and approximate FD discovery exist, including TANE
(Huhtala et al. 1999), Dep-Miner (Lopes et al. 2000), FastFD (Wyss et al. 2001), and
CORDS (Ilyas et al. 2004).

3.2 Overview of the decomposition-by-normalization (DBN) process

The overall structure of the decomposition-by-normalization (DBN)
process, visualized in Fig. 1, is similar for both CP and Tucker decompositions. In this
subsection, we present and discuss the pseudo code of DBN. In the following sections,
we will study the key steps of the process in greater detail.

The pseudo code of DBN algorithm is presented in Fig. 2. In its first step (Line
1), DBN evaluates the pairwise (approximate) FDs among the attributes of the input
relation. For this purpose, we employ and extend TANE (Huhtala et al. 1999), an
efficient algorithm for discovering FDs. Our modification of the TANE algorithm
returns a set of (approximate) FDs between attribute pairs and, for each candidate
dependency, Ai → A j , it provides a corresponding support value, σi, j .

123

Decomposition-by-normalization (DBN) 11

findInterFDPartition (input: paFD, balanced)
1: Create a complete pairwise approximate FD graph with weighted nodes, G, where each node is an attribute with

the weight, which is the size of the corresponding attribute and edge weights are the support values of paFD.
2: if balanced == false then
3: Run minimum average cut on G to find a maximally independent partitioning (Desideratum 5)
4: else i.e., balanced == true
5: Run balanced cut on G to find a balanced cut first and in case that there are alternative balanced cuts, maxi-

mally independent partitioning (Desideratum 3 and 5)
6: end if

Fig. 3 Pseudo-code of interFD-based partition algorithm; this is detailed in Sect. 5.2

Fig. 4 Rank-12 decomposition of a joined tensor by join-by-decomposition where there are 6
pairs of decompositions and a pair with the least likelihood of error is chosen as the final decomposition

The next steps of the algorithm involve selecting the attribute, X , that will serve as
the foreign key (Line 2) and partitioning the input relationR intoR1 andR2 around
X (Lines 3 through 16). If the selected join attribute X does not perfectly determine
the attributes ofR1, then to prevent introduction of spurious tuples, we need to remove
(outlier) tuples fromR to restore the discovered FDs between the attribute, X , and the
attributes that are selected to be moved to partition R1 (Line 17). Note that a major
part of the DBN algorithm involves deciding how to partition the input data into two
in the most effective manner. In Sect. 5, we will discuss the partitioning process in
detail (Fig. 3).

Finally, once R1 and R2 are obtained, we create the occurrence tensors for the
two partitions (Line 18) and execute the JBD-CP and JBD-Tucker modules (Fig. 4),
to obtain the final decomposition through a join-by-decomposition process
(Line 19). We discuss the join-by-decomposition step next.

4 Join-by-decomposition

The join-by-decomposition (JBD-CP) algorithm for CP decompositions was proposed
in Kim and Candan (2011) to efficiently obtain non-negative CP decompositions of
joined tensors. Instead of first performing a join and then decomposing the result
using CP, JBD-CP first performs CP decompositions of the input data sets, and then
combines the results. In this section, we first provide an overview of this JBD-CP
scheme, and then extend it to Tucker decompositions of joined tensors. We refer to
the JBD algorithm for Tucker decompositions as JBD-Tucker. The pseudo-codes of

123

12 M. Kim, K. S. Candan

JBD-CP algorithm (input: two tensors , , rank r , and the modes of the join factor matrix of and
)

1: for each pair of factors, rp and rq such that rp rq r do
2: Run any available CP algorithm to get rp and rq such that rp = rank-rp CP of , rq = rank-rq CP

of
3: Combine rp and rq on their join factor matrices into rp rq using Equation (5)
4: Compute and record the pair selection measure, psm rp rq , for rp and rq
5: end for
6: Return rp rq corresponding to rp rq with the best psm rp rq value

Fig. 5 Pseudo-code of JBD-CP algorithm

Fig. 6 Pseudo-code of JBD-Tucker algorithm

the JBD algorithm for CP (JBD-CP) and Tucker decompositions (JBD-Tucker) are
shown in Figs. 5 and 6 respectively. Table 1 shows notations used in the paper.

4.1 JBD for CP decomposition (JBD-CP)

Given two tensors, P and Q, JBD-CP constructs a rank-r CP decomposition of the
joined tensor X = P �� Q, by selecting two integers, r1 and r2, such that r1 × r2 =
r , obtaining rank-r1 and rank-r2 decompositions of the two input tensors, and then
combining these two decompositions along the given factor matrix corresponding to
the join attribute.

Consider two 3-mode relational tensors, P and Q, with u × l × m and u × d × s
dimensions, respectively, and an equi-join operation on the first mode of these ten-
sors (note that for simplicity, we assume that both modes have u slices along the
join attribute, representing the common values for the two relations along the equi-
join attribute). The rank-rp and rank-rq CP decompositions of P and Q are as
follows:

Pu×l×m ≈
rp∑

a=1

λa ◦U:a ◦ L :a ◦ M:a, Qu×d×s ≈
rq∑

b=1

λ
′
b ◦U ′

:b ◦ D:b ◦ S:b.

When decompositions are nonnegative and the tensors are properly normalized, the
equation for P can be interpreted probabilistically as

123

Decomposition-by-normalization (DBN) 13

Table 1 Notation
Notation Description

P A tensor

P̃ Tensor decomposition ofP

P̃r Rank-r CP decomposition ofP

P̃r1,r2,...rn Rank-r1, r2, . . . , rn Tucker decomposition of P

P̂ Reconstructed tensor from P̃

‖P‖ The Fronenius norm of P

Vi : i-th row vector

V: j j-th column vector

λ Core of CP decomposition

G Core of Tucker decomposition

R A relation

X Join attribute

Ak k-th attribute

σi, j Support value of approximate FD between
attribute pair (Ai , A j) (see Definition 4)

τsupport A support lower-bound

FD Functional dependency

aFD Approximate FD

paFD Pairwise approximate FDs

G A graph

Pu×l×m ≈
rp∑

a=1

P(C p
a)

u∑

i=1

P(Ui :|C p
a)

×
l∑

j=1

P(L j :|C p
a)

m∑

k=1

P(Mk:|C p
a).

Here C p∗ are the clusters of P; analogously, the equation forQ can also be interpreted
probabilistically. Let us denote the equi-join tensor P ��=,U Q as X. Similarly to the
input tensorsP andQ, we can also probabilistically interpret the rank-r decomposition
of X:

Xu×l×m×d×s ≈
r∑

c=1

P(Cx
c)

u∑

i=1

P(Ui :|Cx
c)

×
l∑

j=1

P(L j :|Cx
c)

m∑

k=1

P(Mk:|Cx
c)

×
d∑

f =1

P(D f :|Cx
c)

s∑

g=1

P(Sg:|Cx
c),

123

14 M. Kim, K. S. Candan

where Cx∗ are the clusters of the joined tensor. Note that if the rp and rq clusters of the
input tensors are independent from each other and rp × rq = r , we can rewrite this in
terms of the clusters and membership probabilities of the input tensors as

Xu×l×m×d×s ≈ X̂u×l×m×d×s =
rp∑

a=1

rq∑

b=1

P(C p
a)P(Cq

b)

u∑

i=1

P(Ui :|C p
a)P(Ui :|Cq

b)

×
l∑

j=1

P(L j :|C p
a)

m∑

k=1

P(Mk:|C p
a)

×
d∑

f=1

P(D f :|Cq
b)

s∑

g=1

P(Sg:|Cq
b). (5)

This gives us a way to reconstruct the CP decomposition of the join tensor directly
from the CP decompositions of the input tensors, which are much cheaper to obtain.
However, this reconstruction makes sense only if the clusters of the input tensors are
independent from each other.

P(Cx
a,b) = P(C p

a ∧ Cq
b) = P(C p

a)P(Cq
b),

P(U∗|Cx
a,b) = P(U∗|C p

a ∧ Cq
b) = P(U:a |C p

a)P(U:b|Cq
b),

P(L∗|Cx
a,b) = P(L∗|C p

a ∧ Cq
b) = P(L∗|C p

a),

P(M∗|Cx
a,b) = P(M∗|C p

a ∧ Cq
b) = P(M∗|C p

a),

P(D∗|Cx
a,b) = P(D∗|C p

a ∧ Cq
b) = P(D∗|Cq

b),

P(S∗|Cx
a,b) = P(S∗|C p

a ∧ Cq
b) = P(S∗|Cq

b).

Otherwise, there will be a nonzero difference between X and X̂. We consider the
norm-based pair selection measure defined as

psmnorm(rp, rq) = |‖X‖ − ‖X̂rp,rq‖|−1,

that leads to the minimum approximation error, ‖X− X̂‖. Note that this term will be
efficiently computed since ‖X̂‖ can be computed directly from the decomposition X̃

as discussed in Sect. 2.1.
The intuition behind the psmnorm is as follows: For W,Ŵ ≥ 0, ‖W − Ŵ‖ ≥

|‖W‖ − ‖Ŵ‖| holds, i.e., while the term |‖W‖ − ‖Ŵ‖| is only a lower bound on
‖W − Ŵ‖, it may still provide an indication of the size of the term and thus we may
be able to minimize the term ‖W − Ŵ‖ by minimizing |‖W‖ − ‖Ŵ‖|.

Note that in general it is possible to find two tensors X and Y, such that ‖X‖ is
close to ‖Y‖, but ‖X − Y‖ is large. However, in this case, the two tensors are not
independent: Ŵ is created through W through a decomposition process. Therefore,
it is not likely for the process to return some unrelated Ŵ, such that ‖W‖ is close to
‖Ŵ‖, but ‖W− Ŵ‖ is large. In other words, by construction Ŵ is constrained to be

123

Decomposition-by-normalization (DBN) 15

related toW and the constraint ‖W‖−‖Ŵ‖ is sufficient, in practice, to help identify
good solutions. This is confirmed in experiments reported in Sect. 8.

4.2 JBD for tucker decomposition (JBD-Tucker)

In this subsection, we extend JBD to Tucker decompositions (JBD-Tucker). Similarly
to the formulation of JBD-CP, we formulate JBD-Tucker as follows. Consider two
3-mode relational tensors, P and Q, with u × a × b and u × d × e dimensions,
respectively. The rank-(Rp, S, T) and rank-(Rq , V,W) Tucker decompositions of P
and Q are as follows:

P ≈ Gp ×1 U ×2 A ×3 B =
Rp∑

rp=1

S∑

s=1

T∑

t=1

Gp[rp, s, t] U:rp ◦ A:s ◦ B:t .

Q ≈ Gq ×1 U
′ ×2 D ×3 E =

Rq∑

rq=1

V∑

v=1

W∑

w=1

Gq [rq , v, w] U ′
:rq ◦ D:v ◦ E:w.

Here, each core tensor of P and Q, Gp and Gq respectively, expresses the weight
(or strength) of the interaction between the different components. Similarly to CP
decomposition in Sect. 4.1, if decompositions are nonnegative and normalized, the
Tucker decomposition for P can be interpreted probabilistically with respect to rank
Rp as

P ≈
Rp∑

rp=1

P(C p
rp)

u∑

i=1

P(Ui :|C p
rp)

a∑

j=1

A j :
b∑

k=1

Bk:,

where C p∗ are the clusters of the values of the join attribute for P and P(C p
rp) =

∑S
s=1

∑T
t=1 P(C p

rp ∧ C p
s ∧ C p

t). Analogously, the Tucker decomposition for Q can
also be interpreted probabilistically with respect to rank Rq as

Q ≈
Rq∑

rq=1

P(Cq
rq)

u∑

i=1

P(Ui :|Cq
rq)

d∑

l=1

Dl:
e∑

m=1

Em:,

where Cq∗ are the clusters of the values of the join attribute for Q and P(Cq
rq) =

∑V
v=1

∑W
w=1 P(Cq

rq ∧ Cq
v ∧ Cq

w).
Let us denote the equi-join tensor P ��=,U Q as X. Similarly to the input tensors

P and Q, we can also interpret the rank-(R, S, T, V,W) Tucker decomposition of X
probabilistically with respect to R:

X ≈ X̂ =
R∑

r=1

P(Cx
r)

u∑

i=1

P(Ui :|Cx
r)

a∑

j=1

A j :
b∑

k=1

Bk:
d∑

l=1

Dl:
e∑

m=1

Em:,

123

16 M. Kim, K. S. Candan

where Cx∗ are the clusters of the values of the join attribute for the joined tensorX and
P(Cx

r) = ∑S
s=1

∑T
t=1

∑V
v=1

∑W
w=1 P(Cx

r ∧ Cx
s ∧ Cx

t ∧ Cx
v ∧ Cx

w).
Note that if the Rp and Rq clusters of the input tensors are independent from each

other and Rp × Rq = R, we can rewrite this in terms of the clusters and membership
probabilities of the input tensors as

X≈
Rp∑

rp=1

Rq∑

rq=1

P(C p
rp)P(Cq

rq)P(Ui :|C p
rp)P(Ui :|Cq

rq)

a∑

j=1

A j :
b∑

k=1

Bk:
d∑

l=1

Dl:
e∑

m=1

Em:.

(6)
Once again, this gives us a way to reconstruct the Tucker decomposition of the join
tensor directly from the Tucker decompositions of the input tensors, which are much
cheaper to obtain. However, this reconstruction makes sense only if the clusters of the
input tensors are independent from each other:

P(Cx
rp,rq) = P(C p

rp ∧ Cq
rq) = P(C p

rp)P(Cq
rq),

P(U∗|Cx
rp,rq) = P(U∗|C p

rp ∧ Cq
rq) = P(U∗|C p

rq)P(U∗|Cq
rq).

Otherwise, there will be a nonzero difference between X and X̂. As in JBD-CP,
we employ the norm-based pair selection (psmnorm) method for selecting the rank-
(…,Rp,…) and rank-(…,Rq ,…) Tucker decompositions of P and Q. Again, ‖X̂‖ can
be computed directly from the decomposition X̃, thus psmnorm is computed much
more efficiently than ‖X − X̂‖. Also psmnorm approximates the fit error in JBD-
Tucker.

Although the JBD algorithm is developed for nonnegative CP and Tucker decom-
positions, it works well also for general tensor decompositions involving negative
values. For this purpose, we relax this requirement and experiment with general ten-
sor decompositions for JBD and DBN, which we will show in Sect. 8.

5 Vertical data partitioning

As discussed in Sect. 3.2, a significant challenge that DBN has to address is to partition
the input data into two in such a way that they can be recombined effectively through
the JBD process introduced in the previous section. In this section, we discuss vertical
partitioning strategies for CP and Tucker decompositions. Below we first list the key
desiderata that govern how the DBN algorithm makes the partitioning decision.

– Desideratum 1 As we discussed above, when we need to use approximate FDs
when partitioning the input data, this may result in the removal of outlier tuples
to preserve the semantics of the FDs. Therefore, to prevent over-thinning of the
relation R, the considered approximate FDs need to have few outliers and high
support; i.e., σi, j ≥ τsupport , for a sufficiently large support lower-bound, τsupport .

Secondly,whenwevertically partition the relationRwith attributesA = {A1, . . . , An}
into R1 and R2, one of the attributes (X) of R2 should serve as a foreign key into

123

Decomposition-by-normalization (DBN) 17

R1 to ensure that joining of the vertical partitions R1 and R2 (on X) gives back R
without missing any tuples or introducing any spurious ones.

– Desideratum 2 If A1 is the set of attributes of vertical partition R1 and A2 is the
set of attributes of vertical partition R2, then there must be an attribute X ∈ A2,
such that for each attribute Y ∈ A1, X

σ→ Y , for σ ≥ τsupport .

Since the overall size (in terms of modes and their dimensionalities) of the input
tensor is a major cost factor for dense (for CP and Tucker decompositions) or Tucker
decomposing sparse tensors, we prefer that the partitions are balanced in terms of their
dimensionalities.

– Desideratum 3 For dense (CP and Tucker decompositions) and sparse (Tucker
decomposition), vertical partitioning should be such that the sizes of R1 and R2
are similar.

When CP decomposing sparse tensors, the major contributor to the decomposition
cost is the number of nonzero entries in the tensor.

– Desideratum 4 For CP decomposition of sparse tensors, vertical partitioning
should be such that the total number of tuples of R1 and R2 are minimized.

Any information encoded by the FDs crossing the two relations R1 andR2 is poten-
tially lost when R1 and R2 are individually decomposed. This leads to our final
desideratum:

– Desideratum 5 The vertical partitioning should be such that the support for the
inter-partition FDs (except for the FDs involving the join attribute X) are mini-
mized.

5.1 Overview of the partitioning strategies

We use different strategies to satisfy the above desiderata depending on whether we
work on sparse or dense tensors and whether we seek CP or tucker decompositions:

– Case 1: CP Decomposition on Sparse Tensors This case has two subcases:
– Case 1.1: Exact Functional Dependencies When the join attribute X deter-
mines all attributes of R, we apply the interFD-based vertical partitioning
strategy detailed in Sect. 5.2.

– Case 1.2: Approximate Functional Dependencies When the join attribute X
approximately determines a subset of the attributes ofR, we create a partition
R1 with all the attributes determined with a support higher than the threshold
(τsupport) by the join attribute. This helps us satisfy Desiderata 1 and 2. The
second partition, R2, consists of the join attribute X and all the remaining
attributes.
Note that, since we can include any attribute inR1 as long as it is determined
by X , there may be still multiple ways to partition the data. Therefore, we
apply the interFD-based partitioning strategy discussed in Sect. 5.2 to choose
the two partitions. Note also that, the size of R2 is, by construction, equal to
the number of tuples in R independent of which attributes are included in it.

123

18 M. Kim, K. S. Candan

On the other hand, the size ofR1 can be reduced down to the number of unique
values of X by eliminating duplicate tuples (to satisfy Desideratum 4).

– Case 2: CP Decomposition on Dense Tensors or Tucker DecompositionWhen
we are operating on dense tensors or when we seek Tucker decompositions of
sparse or dense tensors, we consider Desideratum 3, which prefers balanced par-
titions as discussed in Sect. 5.2. When there are alternative balanced partitioning
cases, we apply the interFD-based vertical partitioning strategy to break ties, which
is also discussed in Sect. 5.2.

5.2 InterFD criterion and vertical partitioning algorithms

5.2.1 Minimizing the likelihood of decomposition errors

As discussed in Sect. 4, given a partitioning, R = R1 ��A R2, the accuracy of the
decomposition is likely to be high if the non-join attributes of the two relations R1
andR2 are independent from each other. Building on this observation (which we also
validate in Sect. 8), DBN tries to partition the input relational tensor R in such a
way that the resulting partitions, R1 and R2, are as independent from each other as
possible. We refer to this as the InterFD criterion.

Remember that the support of an approximate FD is defined as the percentage of
tuples in the data set for which the FD holds. Thus, in order to quantify the dependence
of pairwise attributes, we rely on the supports of pairwise FDs. Since we have two
possible FDs (X → Y and Y → X) for each pair of attributes, we use the average of
the two as the overall support of the pair of attributes X and Y . Given these pairwise
supports, we approximate the overall dependency between two partitionsR1 andR2
using the average support of the pairwise FDs (excluding the pairwise FDs involving
the join attribute) crossing the two partitions.

Let the pairwise FD graph, Gpf d(V, E), be a complete, weighted, and undirected
graph, where:

– each vertex v ∈ V represents an attribute (mode),
– the size of the domain (dimensionality) of the mode corresponding to vertex, v, is
represented as a weight of the vertex, wv , and

– the weight, we, of the edge e between nodes vi and v j is the average support of
the approximate FDs vi → v j and v j → vi .

We argue that the interFD-based vertical data partitioning problem can be formu-
lated in terms of locating a cut onGpf d with theminimum averageweight. To solve the
problem efficiently, we extend the minimum total weighted cut algorithm presented
in Stoer and Wagner (1997) to identify the minimum average weight. The overall
process is similar to that presented in Stoer and Wagner (1997) and has the same time
complexity of complexity, O(|V ||E | + |V |2log|V |):

Given an undirected graph Gpf d(V, E), the algorithm copies V into V ′, where
each edge e ∈ E is annotated with a counter ne initially set to 1. The algorithm then
first picks a vertex v with the cut with the minimum average weight. We compute the
average edge weight of a cut between a set of vertices S and V \S, denoted by w̄S ,
such that

123

Decomposition-by-normalization (DBN) 19

(a) (b) (c)

(d) (e)

Fig. 7 An example of the minimum average cut algorithm for Gpf d (V, E) (see Example 2)

w̄S =
∑

we/
∑

ne, for e ∈ {(v1, v2) ∈ E |v1 ∈ S, v2 ∈ V \S}. (7)

Then, the algorithm selects a neighbor v′ of v such that {v,v′} has a cut from V ′\{v, v′}
with the smallest average weight. The algorithm shrinks V ′ by merging v and v′ into
a new vertex, v′′. Any pair of edges e = a → v and e′ = a → v′ originating from
the same vertex a is replaced by a new edge e′′ = a → v′′, where w′′

e = we + w′
e

and n′′
e = ne + n′

e. Any other edge to v or v′ is simply re-routed to v′′. The process is
stopped when |V ′| = 1. The minimum of the minimum average cuts at each step of
the algorithm is returned as the minimum average cut. The following example shows
how the minimum average cut algorithm runs on a graph step by step.

Example 2 Consider the graph Gpf d(V, E) in Fig. 7a. Initially, as shown in Fig. 7a,
the weight of each edge is assigned with the average support of pairwise approx. FDs.

– Step 1: Among the vertices a, b, c, and d (w̄{a} = (0.4 + 0.5 + 0.43)/3 = 0.443,
w̄{b} = (0.4 + 0.48 + 0.44)/3 = 0.44, w̄{c} = (0.43 + 0.48 + 0.45)/3 = 0.45,
and w̄{d} = (0.44 + 0.5 + 0.45)/3 = 0.46), the minimum average cut is the cut
between {b} and {a,c,d} with the average weight (w̄{b} = 0.44) (see Fig. 7b).

– Step 2:Vertex b ismergedwith vertex c into {b, c}with the smallest averageweight
among vertices a (w̄{a,b} = (0.43 + 0.48 + 0.5 + 0.44)/4 = 0.46), c (w̄{b,c} =
(0.43+0.4+0.45+0.44)/4 = 0.43), andd (w̄{b,d} = (0.45+0.48+0.5+0.4)/4 =
0.46). Edges a → b and a → c are replaced by the edge a → {b, c} with weight
wa→{b,c} = 0.4+0.43 = 0.83 and counter na→{b,c} = 2. Edges d → b and d → c
are replaced by the edge d → {b, c} with weight wd→{b,c} = 0.44+ 0.45 = 0.89
and counter nd→{b,c} = 2. The minimum average cut is the cut between {b,c} and
{a,d} with the average weight (w̄{b,c} = 0.43) (see Fig. 7c).

– Step 3: {b, c} is merged with vertex d into {b, c, d} with the smallest aver-
age weight among vertices a (w̄{a,b,c} = (0.89 + 0.5)/3 = 0.46) and d
(w̄{b,c,d} = (0.83+0.5)/3 = 0.44). Edges a → {b, c} and a → d are replaced by

123

20 M. Kim, K. S. Candan

the edge a → {b, c, d} with weight wa→{b,c,d} = 0.83 + 0.5 = 1.33 and counter
na→{b,c,d} = 3. The cut between {a} and {b, c, d} is the last cut with weight
w̄{b,c,d} = 0.44 (see Fig. 7d).

– Step 4: The process ends since |V ′| = 1 (see Fig. 7e). The minimum of the min-
imum average cuts at each step is {b, c} and {a, d} in Step 2.

5.2.2 Balanced partitioning

When targeting Desideratum 3, we seek a balanced partitioning of the attributes.
Unfortunately, the general problem of obtaining balanced partitions is anNP-complete
problem even for simple sets of values (Garey and Johnson 1979). While there are
various approximation and heuristic algorithms including (Karmarker andKarp 1983),
applying these directly would only optimize balance, but ignore other criteria. We
therefore choose the average cut based partitioning scheme discussed above in a way
that also considers balance of attributes. In particular, we associate a balance score to
each vertex, v:

balance_score(v) = max{si ze(Vv), si ze(V \Vv)}
min{si ze(Vv), si ze(V \Vv)} , (8)

where Vv is the set of original vertices merged into v (if v is a original vertex, then Vv

is {v}) and si ze(Vv) is
∏

vorg∈Vv
wvorg (wvorg is the weight of vorg), and minimize the

balance score as the vertices are merged in a similar manner that interFD-based vertex
partitioning minimizes the average edge weight. Note that the balance score will be
1.0 for the most balanced cut and the higher the score is, the less the partitions are
balanced. Instead of using average weights as in interFD based partitioning, we now
select the next cut based on the resulting balance score.

Given an undirected graph Gpf d(V, E), the algorithm makes a copy V ′ or V and
first picks the vertex v with the minimum balance score, among all vertices in V ′.
If there are multiple alternatives, then the algorithm selects the one which has the
cut with the minimum average weight among the alternatives. Then, the algorithm
selects a neighbor v′ of v such that {v, v′} has the smallest balance score; again, if
there are alternatives, then the algorithm selects the neighbor such that {v,v′} has a cut
from V ′\{v, v′} with the smallest average weight. The algorithm then shrinks V ′ by
merging v and v′ into a new vertex, v′′, with the vertex weight, wv′′ = wv × wv′ and
the balance score of v′′ is computed using Eq. 8. For any pair of edges e = a → v and
e′ = a → v′ originating from the same vertex a, we create a new edge e′′ = a → v′′,
where the edge weight w′′

e = we + w′
e and counter n′′

e = ne + n′
e. Any other edge

to v or v′ is simply re-routed to v′′. The process is stopped when the balance score is
1.0 or |V ′| = 1. The most balanced cut among the most balanced cuts of each step is
returned. The following is an example of the balanced cut algorithm.

Example 3 For the balanced cut algorithm, we consider the graph Gpf d(V, E) with
weighted edges and weighted vertices (see Fig. 8a).

– Step 1: The cut between {b} and {a, c, d} with the minimum average cut is chosen
out of the two alternative cuts, (1) {b} and {a, c, d} (w̄{b} = 0.44) and (2) {c}

123

Decomposition-by-normalization (DBN) 21

(a) (b) (c)

Fig. 8 An example of the balanced cut algorithm for Gpf d (V, E) with weighted edges and weighted
vertices (see Example 3)

and {a, b, d} (w̄{c} = 0.45), with the equal balance score, (10 × 20 × 10) / 20
(see Fig. 8b).

– Step 2: The vertex d is chosen with the minimum average weight out of two
neighbors of the vertex b, (1) vertex a (w̄{a,b} = (0.43+ 0.48+ 0.5+ 0.44)/4 =
0.463) and (2) vertex d (w̄{b,d} = (0.45 + 0.48 + 0.5 + 0.4)/4 = 0.458) with
the equal smallest balance score 1.0 and merged with the vertex b into {b, d} with
the vertex weight (20×10). Edges a → b and a → d are replaced by the edge
a → {b, d} with weight wa→{b,d} = 0.4 + 0.5 = 0.9 and counter na→{b,d} = 2.
Edges c → b and c → d are replaced by the edge c → {b, d} with weight
wc→{b,d} = 0.48 + 0.45 = 0.93 and counter nc→{b,d} = 2. The cut between {a,
c} and {b, d} is the most balanced cut (balance score: 1.0) with the minimum
average weight (w̄{b,d} = 0.458); the process ends since the balance score is 1.0
(see Fig. 8c).

6 Further optimizations: rank pruning based on intra-partition dependencies

As discussed in the previous section, given a partitioning of R into R1 and R2, to
obtain a rank-r decomposition of R using JBD, we need to consider rank-r1 and
rank-r2 decompositions of R1 and R2, such that r = r1 × r2 and pick the (r1, r2)
pair which is likely to minimize recombination errors. In this section, we argue that
we can rely on the supports of the dependencies that make up the partitions R1 and
R2 to prune (r1, r2) pairs which are not likely to give good fits. In particular, we
observe that the higher the overall dependency between the attributes that make up
a partition, the more likely the data in the partition can be described with a smaller
number of clusters. Since the number of clusters of a data set is related to the rank of
the decomposition, this leads to the observation that the higher the overall dependency
between the attributes in a partition, the smaller should be the decomposition rank of
that partition.

Thus, given R1 and R2, we need to consider only those rank pairs (r1, r2), where
if the average intra-partition FD support forR1 is larger than the support forR2, then
r1 < r2 and vice versa. We refer to this as the intraFD criterion for rank pruning.
Similarly to interFD, given the supports of FDs, we define intraFD as the average
support of the pairwise FDs (excluding the pairwise FDs involving the join attribute)
within each partition. In Sect. 8,we evaluate the effect of the interFD-based partitioning

123

22 M. Kim, K. S. Candan

Table 2 Notation used for cost
analysis

Notation Description

X The input tensor of size K1×K2×· · ·×J×· · ·×KNx

let X be partitoned intoP andQ on the join mode J
of size J ; i.e., P��=,J Q

J The size of the join mode J

P The 1st partition tensor of size
I1 × I2 × · · · × J × · · · × INp

Q The 2nd partition tensor of size
I ′1 × I ′2 × · · · × J × · · · × I ′Nq

r The rank ofX

rp,i and rq,i The i th ranks ofP andQ, resp.; i.e.,
(rp,i , rq,i) ∈ {(rp,i , rq,i) | rp,i × rq,i = r}

Np # of modes ofP

Nq # of modes ofQ

Nx # of modes ofX

αr,∗ # of ALS iterations needed for the rank-r CP
decomposition of the tensor denoted by “*”

|P| # of nonzero entries of a tensor P

|Q| # of nonzero entries of a tensor Q

|X| # of nonzero entries of a tensor X

n pair # of (rp, rq); i.e., |{(rp,i , rq,i) | rp,i × rq,i = r}|
φ Join selectivity

φ⊥ A lower bound of join selectivity

and intraFD-based rank pruning strategy of DBN for both dense and sparse tensor
decomposition in terms of the efficiency and the accuracy.

7 Cost analysis

In this section, we provide cost analyses for decomposition-by-normalization strate-
gies for CP and Tucker decompositions (DBN-CP and DBN-Tucker, respectively).

Unlike the conventional tensor decomposition process, DBN involves a data parti-
tioning (normalization) step followed by a series of partial decompositions, joins, and
candidate selection steps (see Sect. 3.2): For a target r decomposition, DBN performs
as many partial decompositions as the number, n pair , of rank pairs (rp, rq) where
r = rp × rq . Join and norm-based candidate selection steps of the DBN are also
performed once for each pair (rp, rq). Since these costs are negligible compared to
the tensor decomposition cost, in this section, we focus on tensor compositions cost.

7.1 Cost of DBN-CP

Table 3 presents an overview of the execution times for conventional CP (simply called
CP in the rest of this section) andDBN-CP. Symbols used in this section are introduced
in Table 2.

123

Decomposition-by-normalization (DBN) 23

Table 3 Execution time cost for CP decomposition

Algorithm Cost

CP Dense tensors O(
∏Nx

i=1 Ki)
a

Sparse tensors O(αr,X r |X| Nx)
b

lDBN-CP Dense tensors O
(
n pair

(∏Np
i=1 Ii + ∏Nq

i=1 I
′
i

))
a

Sparse tensors O
(∑n pair

i=1

(
αrp,i ,P rp,i |P| Np + αrq,i ,Q rq,i |Q| Nq

))
b

a The execution time cost for dense tensors is based on Sun et al. (2008)
b The execution time cost for sparse tensors is based on the analysis of the code in Bader and Kolda (2007)

7.1.1 CP decomposition of dense tensors

As we see in Table 3, For dense tensors, the DBN strategy increases the number
of decomposition operations from one to n pair (the number of rank-pairs), but each
decomposition involves smaller numbers of modes. Since, in the case of dense ten-
sors, the cost of the CP decomposition is exponential in the numbers of modes and
since DBN-CP reduces the number of modes that need to be considered, as we exper-
imentally observe in Sect. 8, DBN-CP is more efficient than the conventional CP
decomposition.

7.1.2 CP decomposition of sparse tensors

As we also see in Table 3, the execution time cost of the conventional CP operation
for sparse tensors depends on the rank, the number of nonzero entries, the number of
modes, as well as the number of alternating least squares (ALS) iterations (Bader and
Kolda 2007).

When all things equal, the main contributor to the cost of the CP decomposition on
sparse tensors is the number of nonzero entries. Therefore, in order to predict whether
CP or DBN-CP will be more efficient, we need to consider the number of nonzero
entries in the input tensors: In particular, if the ratio

φ = |X|/(|P||Q|)

is high and we have more tuples (nonzero entries) in the input tensor than the partition
tensors, then DBN-CP is likely to be more efficient than the CP; otherwise, CP may be
competitive. In otherwords, DBN-CP is likely to outperformCP if the following holds:

r |X|Nx >

n pair∑

i=1

(rp,i |P|Np + rq,i |Q|Nq),

or, equivalently,

|X| >

n pair∑

i=1

(rp,i |P|Np + rq,i |Q|Nq)/(r Nx).

123

24 M. Kim, K. S. Candan

Table 4 Notation for Tucker
decomposition

a For eigen decomposition, we
assume that MATLAB’s eigs
function based on ARPACK
uses an iterative power method
to identify eigenvalues.
Therefore, the overall eigen
decomposition cost is a function
of this iteration count

Notation Description

rx,1, . . . , rx,Nx Decomposition ranks forX

rp,1, . . . , rp,Np Decomposition ranks forP

rq,1, . . . , rq,Nq Decomposition ranks forQ

rp,i,l , rq, j,l , and rx,k The lth rank pair (rp,i,l , rq, j,l) of the
join modes (i th and j th modes) of P
and Q and the rank (rx,k) of the join
mode (kth mode) ofX; i.e.,
(rp,i,l , rq, j,l) ∈ {(rp,i,l , rq, j,l)

| rp,i,l × rq, j,l = rx,k }
n pair # of (rp,i,l , rq, j,l); i.e., |{(rp,i,l , rq, j,l)

| rp,i,l × rq, j,l = rx,k }|
β(r1,...rN),∗ # of ALS iterations needed for the

rank-(r1, . . . , rN) Tucker
decomposition of the tensor denoted by
“*”

ε∗ A subset of modes that are computed
element-wise in MET for the tensor
denoted by “*”

Cm,∗ The eigen decomposition cost for the mth
mode of the tensor denoted by “*” a

Since we have |X| = |P ��=,J Q| = φ|P||Q|, we can rewrite the above inequality as

φ(|P||Q|) >

n pair∑

i=1

(rp,i |P|Np + rq,i |Q|Nq)/(r Nx).

This gives us a lower bound, φ⊥, on the join selectivity:

φ > φ⊥ =
n pair∑

i=1

(rp,i |P|Np + rq,i |Q|Nq)/(|P||Q|r Nx).

This lower bound threshold provides a practical predictor to judge whether DBN-CP
will be more advantageous, for sparse tensors, than CP.

7.2 Cost of DBN-tucker

Table 4 lists additional notations needed for the analysis of the Tucker decomposition
costs.

The main cost of Tucker decomposition for dense tensors is the number of modes,
which is similar to CP decomposition for dense tensors. Therefore, the costs analysis
for DBN-Tucker on dense tensors also follows the cost analysis of DBN-CP on dense
tensors presented in Table 3.

123

Decomposition-by-normalization (DBN) 25

Table 5 Execution time cost for Tucker decomposition on sparse tensors

Algorithm Cost

MET T T Mx (m)a O(
∑

m′
=m (|X|Km′rx,m′)
∏

m′
=εx
rx,m′)

SV Dx (m)a O(K 2
m × ∏

m′
=m rx,m′ + Cm,X)

Total O(β(rx,1,...,rx,Nx),X
∑Nx

m=1(T T Mx (m) + SV Dx (m))

DBN-Tucker
(using MET)

T T Mp(m)a O(
∑

m′
=m (|P|Im′rp,m′)
∏

m′
=εp
rp,m′)

SV Dp(m)a O(I 2m × ∏
m′
=m rp,m′ + Cm,P)

T T Mq (m)a O(
∑

m′
=m (|Q|I ′m′rq,m′)
∏

m′
=εq
rq,m′)

SV Dq (m)a O(I ′2m × ∏
m′
=m rq,m′ + Cm,Q)

Total O(
∑n pair

l=1 (β(rp,1,...,rp,i,l ,...,rp,Np),P
∑Np

m=1(T T Mp(m) + SV Dp(m))

+β(rq,1,...,rq, j,l ,...,rq,Nq),Q
∑Nq

m=1(T T Mq (m) + SV Dq (m))

a MET algorithm we consider consists of two major steps applied to each mode m: (a) TTM computation
and (b) SVD computation; see Kolda and Sun (2008) for details

Table 6 Bottleneck memory cost for Tucker decomposition

Algorithm Cost

MET O
(
maxεx

(∏
m /∈εx

Km

))a

DBN-Tucker (using MET) O
(
max

(
maxεp

(∏
m /∈εp

Im
)

,maxεq

(∏
m /∈εq

I ′m
)))

a The costs are based on Kolda and Sun (2008)

The cost analysis for sparse tensors, on the other hand, is more complex. We focus
on Tucker decomposition for sparse tensors.

In Table 5, we present the cost analysis of DBN-Tucker on sparse tensors assuming
that it is build on MET (Bader and Kolda 2006). As before, DBN-Tucker, involves as
many partial Tucker decompositions as the number, n pair , of rank pairs (rp, rq)where
r = rp × rq , but each decomposition involves smaller number of modes. Since, as we
see in Table 5, the cost of Tucker tensor decomposition is exponential in the number of
modes, we expect that DBN-Tucker will be more efficient than conventional Tucker
decompositions. Experiment results reported in Sect. 8 verify this.

Note that as reported in Table 6, one major benefit for the proposed DBN based
Tucker decomposition scheme is that the size of the intermediate results is smaller than
that for conventional Tucker decomposition: this is because DBN decomposes smaller
sub-tensors. Since a major challenge in Tucker decompositions is the memory needed
to store the intermediary results, for large data sets, and especially when the available
memory is limited, DBN-Tucker is likely to bemore advantageous.We experimentally
verify this in Sect. 8.

7.3 Additional discussions

In this section, we discuss additional properties and extensions of the DBN strategy.

123

26 M. Kim, K. S. Candan

7.3.1 DBN with tight memory constraints

The main aim of DBN is to reduce the cost of tensor decomposition by reducing the
number of modes of the input tensor. However, there can still be cases in which, the
input tensor does not fit in memory thus a straight-forward application of DBN is
infeasible. In this case, however, we can split the tensor on each mode into multiple
blocks and run a block-based tensor decomposition scheme, such as Phan andCichocki
(2011), where tensor decomposition on each block leverages DBN.

7.3.2 DBN on multi-attribute dependencies

Now we consider cases where a single attribute is not enough to determine other
attributes, but two attributes together can determine the rest. In Sect. 4.1,we formulated
CP decomposition of a tensor P of size u × l × m as following.

Pu×l×m ≈
rp∑

a=1

λa ◦U:a ◦ L :a ◦ M:a,

which can be interpreted probabilistically as

Pu×l×m ≈
rp∑

a=1

P(C p
a)

u∑

i=1

P(Ui :|C p
a)

×
l∑

j=1

P(L j :|C p
a)

m∑

k=1

P(Mk:|C p
a).

Let us assume P has a compound key that consists of two attributes, U and L and
represent P as another tensor P′ of size w × m where w = u × l, in which the
compound key is represented as a single attribute, W . Then the CP decomposition of
P′ can be formulated as

P′
w×m ≈

rp∑

a=1

λa ◦ W:a ◦ M:a,

and probabilistically,

P′
w×m ≈

rp∑

a=1

P(C p
a)

w∑

i=1

P(Wi :|C p
a)

×
m∑

k=1

P(Mk:|C p
a).

We can formulate the other tensor, Q, similarly.

123

Decomposition-by-normalization (DBN) 27

Given these, we can approximately reconstruct the factor matrices of each orig-
inal attribute of the compound key, U and L , from the factor matrix of W . Since
P(Wk:|C p∗) = P(Ui :, Mj :|C p∗) where k = (i − 1) × u + j for i = 1..u and j = 1..l,
the factor matrices of the attributes U and L are obtained by marginal probabilities

P(Ui :|C p∗) =
l∑

j=1

P(W{(i−1)×u+ j}:|C p∗)

and

P(L j :|C p∗) =
u∑

i=1

P(W{(i−1)×u+ j}:|C p∗),

respectively.

7.3.3 Uniqueness

In Sect. 4, we introduced a method to determine a rank pair with minimum approx-
imation error for DBN. Now we discuss whether tensor decompositions with these
chosen ranks on each of tensors are guaranteed in terms of uniqueness.

When one of the partitions in DBN is a matrix, then its decomposition is a bilinear
decomposition, which may not be unique. However, in this case, it is possible to add
additional constraints, such as orthogonality constraints, for the bilinear decomposition
to make decomposition unique (Kolda and Bader 2009).

When one of the partitions in DBN is a tensor with 3 or more modes, we can use
Kruskal’s uniqueness condition (Kruskal 1977): in CP, the component matrices A, B
and C are essentially unique if

kA + kB + kC > = 2R + 2,

where kA, kB and kC are the k-ranks of A,B and C , respectively, R is the target rank
and kA, kB, kC ≤ R. Here the k-rank of a matrix is defined as the largest value of m
such that every subset of m columns of the matrix is linearly independent. When one
of the partial decomposition does not hold this condition, the final decomposition is
not guaranteed to be unique. Therefore, we recommend avoiding rank pairs for which
this condition does not hold to help guarantee uniqueness of the final decomposition.

8 Experimental evaluations

In this section,we present the result of the experimentswe have carried out to assess the
efficiency and effectiveness of the decomposition-by-normalization (DBN) strategy.
We consider both CP and Tucker decompositions and use both sparse and dense
tensors.We ran our experiments on a 6-core Intel(R)Xeon(R)CPUX5355@2.66GHz
machine with 24GB of RAM.

123

28 M. Kim, K. S. Candan

Table 7 Relational tensor data sets with the same number of nonzero entries for partitions for DBN

Data set Size # nonzero

D1 Adult 118 × 90 × 20,263 × 5 × 2 20,263

D2 7 × 20,263 × 5 × 6 × 16 20,263

D3 72 × 20,263 × 90 × 2 × 2 20,263

D4 20,263 × 14 × 2 × 6 × 94 20,263

D5 20,263 × 5 × 2 × 90 × 72 20,263

D6 Breast Cancer Wisconsin
(Mangasarian and Wolberg
1990)

645 × 10 × 11 × 2 × 10 630

D7 10 × 645 × 9 × 10 × 10 630

D8 10 × 10 × 11 × 10 × 645 630

D9 2 × 10 × 10 × 10 × 645 630

D10 10 × 10 × 645 × 9×10 630

D11 IPUMS Census Database
(Ruggles and Sobek 1997)

3,890 × 4 × 13 × 3 × 3 4,863

D12 545 × 3 × 17 × 3 × 2 698

D13 11 × 3 × 4 × 5 × 3 27

D14 Mushroom 10 × 3 × 5 × 2 × 7 24

D15 Dermatology 62 × 5 × 5 × 5 × 3 58

8.1 Setup: data sets

For evaluating DBN under different scenarios, we used various data sets from the UCI
MachineLearningRepository (Frank andAsuncion 2010). In particular,we considered
the two cases introduced in Sect. 5:

Case 1 We first evaluate DBN in situations where the join attribute X determines
all attributes of the relationR. For these experiments, we considered 15 different data
sets (D1-D15) with different sizes and different attribute sets (Table 7). All tensors
were encoded as occurrence tensors. In the cases where a suitable join attribute did
not exist in the data, we selected an attribute with FD support ≥ τsupport = 75%
against all other attributes. We then removed all non-supporting tuples to make sure
that the data set R satisfies the properties of Case 1. Note that, each partitioned data
set contains as many tuples (nonzero entries) as the input relation R.

Case 2 Secondly, we evaluate DBN in situations where the join attribute X deter-
mines only a subset of the attributes of the relation R. In this case, we considered
three different data sets (D16-D18). All tensors were encoded as occurrence tensors.
The tensor size and numbers of nonzero entries of each relation are shown in Table 8.
Note that the partitionR1 containing X and the attributes determined by X has poten-
tially smaller number of nonzero entries thanR; the number of nonzero entries of the
other partition R2 is same as that of R. As we discussed in Sect. 5, for dense ten-
sors and Tucker decompositions, we targeted partitions where sizes ofR1 andR2 are
similar.

123

Decomposition-by-normalization (DBN) 29

Table 8 Relational tensor data sets with different numbers of nonzero entries for partitions for DBN

Data set Mode Size # nonzero
ofR1

nonzero
ofR2

D16 Adult (subset)a 5 118 × 90 × 1,000 × 5 × 2 1, 000 1,102

D17 Adult 4 118 × 90 × 20,263 × 94 20,263 25,331

5 118 × 90 × 20,263 × 94 × 72 20,263 27,351

6 118 × 90 × 20,263 × 94 × 72 × 42 20,263 27,424

D18 IPUMS 4 2,241 × 1,096 × 191 × 209 1,096 2,359

Census 5 3,888 × 2,241 × 1,096 × 191 × 209 1,096 5,881

Database 6 3,890 × 2,241 × 51 × 1,096 × 192 × 209 1,096 6,436
a For D16, we used a subset of randomly selected 1,000 entries from this data set for experiments with
dense tensor model: the whole data set is too large for conventional decomposition operators under the
dense tensor model

Table 9 Algorithms

Algorithm Description

CP DBN-NWAY DBN-CP using N-way PARAFAC

DBN-CP-ALS DBN-CP using single grid NTF (CP-ALS)a

NNCP-NWAY NNCP using N-way PARAFAC

NNCP-CP-ALS NNCP using single grid NTF (CP-ALS)a

NNCP-NWAY-GRID* NNCP using grid NTF with “*” grid cells (N-way
PARAFAC)a

NNCP-CP-GRID* NNCP-CP-ALS with “*” grid cells

DBN*-CP-ALS intraFD-based DBN-CP-ALS with “*” pairs

DBN*-NWAY intraFD-based DBN-NWAY with “*” pairs

pp-DBN*-CP-ALS pairwise parallel DBN*-CP-ALS

pp-DBN*-NWAY pairwise parallel DBN*-NWAY

Tucker MET* “*” modes element-wise Memory-Efficient Tucker

DBN-MET* DBN-Tucker using MET*

pp-DBN-MET* pairwise parallel DBN-MET*
a The algorithms in parentheses are the base PARAFAC for grid NTF

8.2 Setup: target ranks

Both for CP and Tucker decomposition experiments, we considered three target ranks:
6, 12, and 24. These lead to 4 rank pairs (〈1, 6〉, 〈2, 3〉, 〈3, 2〉, 〈6, 1〉) to be considered
for the target rank 6, 6 pairs (〈1, 12〉, 〈2, 6〉, 〈3, 4〉, 〈4, 3〉, 〈6, 2〉, 〈12, 1〉) for the target
rank 12, and 8 pairs (〈1, 24〉, 〈2, 12〉, 〈3, 8〉, 〈4, 6〉, 〈6, 4〉, 〈8, 3〉, 〈12, 2〉, 〈24, 1〉) for
the target rank 24.

8.3 Setup: alternative tensor decomposition algorithms

We experimented with various alternative algorithms for CP and Tucker decomposi-
tions. Table 9 lists the various algorithms we use in our experiments. We used MAT-

123

30 M. Kim, K. S. Candan

LABVersion 7.11.0.584 (R2010b) 64-bit (glnxa64) andMATLABParallel Computing
Toolbox.

8.3.1 CP decomposition (single core)

The first decomposition algorithm we considered is the N-way PARAFAC algo-
rithm with nonnegativity constraint (we call this N-way PARAFAC in the rest of
the paper) which is available in the N-way Toolbox for MATLAB (Andersson and Bro
2000). We refer to DBN-CP and conventional non-negative CP (NNCP) implemented
using this N-way PARAFAC implementation as DBN-NWAY and NNCP-NWAY,
respectively.

Since MATLAB’s N-way PARAFAC implementation uses a dense tensor (multi-
dimensional array) representation, it is too costly to be practical for sparse tensors.
Therefore, we implemented a variant of the single grid NTF (Phan and Cichocki
2011) using CP-ALS as the base PARAFAC algorithm. We refer to DBN-CP and
NNCP based on CP-ALS as DBN-CP-ALS and NNCP-CP-ALS respectively.

8.3.2 CP decomposition (parallel, multi-core)

For the parallel version of the NNCP, we implemented the grid NTF algorithm (Phan
and Cichocki 2011) with different number of grid cells (2, 4, 6, and 8 grid cells
along the join mode) using N-way PARAFAC and CP-ALS as the base PARAFAC
algorithms. Each grid is run with the base PARAFAC algorithm separately in
parallel. We refer to the grid NTF algorithm for parallel NNCP implemented
using N-way PARAFAC as NNCP-NWAY-GRID* (* denotes the number of parti-
tions). Similarly, we refer to CP-ALS based implementations of parallel NNCP as
NNCP-CP-GRID*.

The parallel version of DBN-CP are implemented using pairwise parallel DBN-
NWAYandDBN-CP-ALS strategies where each pair is assigned to a separate process-
ing unit; these are referred to as pp-DBN-NWAY and pp-DBN-CP-ALS respectively.

8.3.3 Tucker decomposition (single core)

Conventional Tucker decomposition algorithms, such as Andersson and Bro (2000),
are ineffective on large dense data sets. Therefore, we focus on Tucker decompositions
of sparse data sets. We consider MET (Memory-Efficient Tucker) in Kolda and Sun
(2008). For MET, we considered different variants, denoted as MET* according to
the number of modes handled element-wise; MET* is also used as the base Tucker
algorithm for DBN-Tucker; this is referred to as DBN-MET*.

8.3.4 Tucker decomposition (parallel, multi-core)

SinceMET does not support parallelization, we only consider parallelization of DBN-
MET*, which is referred to as pp-DBN-MET*.

123

Decomposition-by-normalization (DBN) 31

Table 10 Different attribute sets, join attributes (X), supports of X (the lowest of all the supports of
X → ∗), and execution times for FDs discovery for D1-D18 where An is the nth attribute of each data set

Data set Attributes Join attr.
(X)

Support of
X (%)

Exec. time
for FDs

D1 {A11, A12, A3, A9, A10} A3 97 0.024s

D2 {A2, A3, A9, A8, A4} A3 80 0.022s

D3 {A1, A3, A12, A15, A10} A3 80 0.025s

D4 {A3, A7, A15, A8, A13} A3 75 0.023s

D5 {A3, A9, A15, A12, A1} A3 80 0.023s

D6 {A1, A4, A7, A11, A6} A1 96 0.004s

D7 {A4, A1, A10, A8, A9} A1 96 0.003s

D8 {A6, A5, A7, A8, A1} A1 96 0.002s

D9 {A11, A9, A6, A3, A1} A1 98 0.003s

D10 {A5, A4, A1, A10, A8} A1 96 0.003s

D11 {A8, A17, A19, A3, A2} A8 99 0.007s

D12 {A53, A2, A21, A3, A4} A53 98 0.006s

D13 {A13, A48, A17, A14, A2} A13 98 0.005s

D14 {A4, A9, A18, A17, A2} A2 88 0.004s

D15 {A34, A24, A33, A25, A11} A34 80 0.002s

D16 {A11, A12, A3, A9, A10} A3 98 0.024s

D17 4-mode {A11, A12, A3, A13} A3 96 0.024s

5-mode {A11, A12, A3, A13, A1}
6-mode {A11, A12, A3, A13, A1, A14}

D18 4-mode {A49, A50, A51, A54} A50 95 0.007s

5-mode {A8, A49, A50, A51, A54}
6-mode {A8, A49, A50, A51, A54, A58}

8.4 Setup: rank pruning

For the experiments where we assess the impact of the intraFD-based rank pruning
strategy described in Sect. 6, we considered 2, 3 and 4 pairs as limits; these are referred
to as DBN2, DBN3, andDBN4, respectively (e.g., DBN-CP-ALSwith 2 pairs selected
is referred to as DBN2-CP-ALS).

8.5 Setup: functional dependency discovery

As discussed in Sect. 3.2, we extended TANE (Huhtala et al. 1999) to find approximate
FDs. The supports of the approximate FDs for each attribute set of different relational
data sets are shown in Table 10. The table also shows the execution times needed to
discover the FDs for each data set. As the table shows, the modified TANE algorithm
is very efficient for the considered numbers of attributes, i.e., 4 to 6 attributes in these
experiments.1 Since the execution times for finding approximate FDs are negligible

1 Note that the cost increases linearly in the size of the input relation (Huhtala et al. 1999).

123

32 M. Kim, K. S. Candan

compared to the tensor decomposition time, in the rest of the paper, we focus only on
the decomposition times.

8.6 Setup: evaluation criteria

Each experiment is run at least 5 times and we report the average accuracy and exe-
cution time of these runs.

8.6.1 Accuracy

We use the following fit function to measure tensor decomposition accuracy:

fit(X, X̂) = 1 − ‖X − X̂‖
‖X‖ . (9)

Here, ‖X‖ is the Frobenius norm of a tensor X. The fit is a normalized measure of
how accurate a tensor decomposition of X, X̂ w.r.t. a tensor X.

8.6.2 Execution time

The execution times are measured byMATLABs tic and toc commands to start and
stop the clock at the beginning and the end of the decomposition process, respectively.

8.6.3 Memory

Especially for dense tensors and Tucker decomposition, memory usage can be a major
bottleneck. For Tucker decompositions, we report themaximum intermediate memory
use provided by the MET* algorithm. For single core DBN, we report the maximum
of the memory used by each rank-pair (evaluated one after the other). For paral-
lel DBN, we report the sum of the memory used by each rank-pair (evaluated in
parallel).

8.7 Execution time results for CP decompositions

We first present experimental results assessing the efficiency of the proposed DBN
scheme relative to the conventional implementation of the CP based tensor decom-
position in both stand-alone and parallelized versions. Note that, as discussed in
Sect. 7, for sparse tensors, CP decomposition cost depends largely on the number
of nonzero entries and this necessitates a way to leverage the join selectivity (of
the partitioning attribute) to predict whether DBN will outperform conventional CP
decomposition schemes. In Table 11, we report the join selectivity φ and selectiv-
ity cut-off, φ⊥, values (with and without rank pruning) for each of the data sets
we considered in our experiments: we predict that DBN will most easily outper-
form the conventional CP decomposition schemes (even for sparse data) in the cases

123

Decomposition-by-normalization (DBN) 33

Table 11 Join selectivity (φ) and thresholds with and without rank pruning (φ′⊥ and φ⊥)

Data set Mode Rank φ⊥ φ′⊥ with
rank pruning

φ

D1–D5 5-mode Rank-6 0.00012 0.00006 0.00005

Rank-12 0.00014 0.00007

D6–D10 5-mode Rank-6 0.00381 0.00190 0.00159

Rank-12 0.00444 0.00222

D11 5-mode Rank-6 0.00049 0.00025 0.00021

Rank-12 0.00058 0.00029

D12 5-mode Rank-6 0.00344 0.00172 0.00143

Rank-12 0.00401 0.00201

D13 5-mode Rank-6 0.08889 0.04444 0.03704

Rank-12 0.10370 0.05185

D14 5-mode Rank-6 0.10000 0.05000 0.04167

Rank-12 0.11667 0.05833

D15 5-mode Rank-6 0.04138 0.02069 0.01724

Rank-12 0.04828 0.02414

D16 5-mode Rank-6 0.00229 0.00117 0.001

Rank-12 0.00267 0.00137

D17 4-mode Rank-6 0.00011 0.00007 0.00005

Rank-12 0.00013 0.00008

5-mode Rank-6 0.00010 0.00006 0.00005

Rank-12 0.00012 0.00007

6-mode Rank-6 0.00010 0.00004 0.00005

Rank-12 0.00012 0.00007

D18 4-mode Rank-6 0.00179 0.00113 0.00091

Rank-12 0.00209 0.00136

5-mode Rank-6 0.00130 0.00087 0.00091

Rank-12 0.00152 0.00105

6-mode Rank-6 0.00137 0.00042 0.00091

Rank-12 0.00191 0.00122

The bold fonts are the cases where the join selectivity is greater than the threshold

where φ > φ⊥. As we see in this table, however, in many cases, φ is lower than
φ⊥. Therefore, we expect these situations to be challenging for DBN against conven-
tional schemes.We evaluate this prediction in the following subsections and also show
that DBN provides advantages even in these cases when parallel execution plans are
considered.

As described in Sect. 5, for CP decompositions, we need to consider two distinct
situations. In the first of these (D1-D15), the join attribute X determines all attributes of
the relationR; i.e., nnz(R1) = nnz(R2) = nnz(R), where nnz(X) denotes the number of
nonzero entries of X . In the second case, the join attribute X determines only a subset
of the attributes of the relation R; i.e., nnz(R1) ≤ nnz(R) and nnz(R2) = nnz(R).

123

34 M. Kim, K. S. Candan

(a) (b)

Fig. 9 Average running times of DBN2,3-NWAY (DBN2 and DBN3 for rank-6 and rank-12, respectively)
vs.NNCP-NWAYon a a single core and b 4 and 6 cores for rank-6 and rank-12, respectively (NNCP-NWAY-
GRID is avg of GRID2 and GRID4 and avg of GRID2 and GRID6 for rank-6 and rank-12, respectively).
On both a single core and multi cores, majority of data points are located under the diagonal (25 and 26
out of 41 for rank-6 and 12, respectively for a single core and 11 out of 15 for both rank-6 and 12 for multi
cores), which indicates that DBN-NWAY outperforms NNCP-NWAY, especially when running times are
bigger. Note that rank-24 results have been excluded from these charts because the conventional NWAY
based NNCP is not feasible for this target rank with the hardware setup used for the experiments

(a) (b)

Fig. 10 Average running times of DBN2,3,4-CP-ALS (DBN2, DBN3, and DBN4 for rank-6, rank-12, and
rank-24, respectively) vs. NNCP-CP-ALS on a a single core and b 4, 6, and 8 cores for rank-6, rank-12,
and rank-24, respectively (NNCP-CP-GRID is avg of GRID2 and GRID4, avg of GRID2 and GRID6, and
avg of GRID2 and GRID8 for rank-6, rank-12, and rank-24, respectively). On a single core, more than half
points are upper the diagonal (24, 15, and 10 out of 41 for rank-6, 12, and 24, respectively); i.e., DBN-CP
is beaten by NNCP. However, when DBN-CP and NNCP are parallelized, DBN-CP outperforms NNCP in
most cases (15, 14, and 15 out of 15 for rank-6, 12, and 24, respectively)

8.7.1 Case 1: X determines all attributes of R

Dense Tensors In Fig. 9, we first compare the execution times for (NWAY based) DBN
with NNCP for dense tensors. The figure includes results both for single-core and
multi-core setups. As we see in these results, in both setups, DBN outperforms NNCP
when the problems get more difficult to solve and tensor decomposition algorithms
require more time. As the problem difficulty increases DBN provides ∼ 1 order (for
single core) to ∼ 2 orders (for multi core) time gains over NNCP.

Sparse Tensors In Fig. 10, we compare the execution times for (CP-ALS based)
DBN with NNCP for sparse tensors. The figure includes results both for single-core
and multi-core setups. Remember that in this case, we predict that when φ of the input

123

Decomposition-by-normalization (DBN) 35

(a)

(b) (c)

Fig. 11 Running times of a DBN-CP vs. NWAY based algorithms on 5-mode Adult(subset) data set
(D16) and DBN-CP vs. CP-ALS based algorithms on b 5-mode Adult data set (D17) and c 5-mode
IPUMS data set (D18) with different target ranks in both single core and multi-core

relations are lower than φ⊥, we expect DBN to have difficulties. This is confirmed in
Fig. 10a, where we see that in single core scenarios, DBN-CP based schemes are not
as competitive as NNCP as predicted based on the φ and φ⊥ values in Table 11.

It is important to note, however, that DBN still provides significant advantages
even when φ < φ⊥ when parallel execution opportunities are leveraged. As we see in
Fig. 10b, on the same data,when usingmultiple cores,DBNbased scheme outperforms
NNCP in most cases.

8.7.2 Case 2: X does not determine all attributes of R

Figure 11a shows the results for the corresponding subset of the Adult data set
(D16) for which the conventional NWAY based decomposition schemes is feasible.
As expected, DBN-CP based schemes outperform conventional CP decomposition
schemes for different target ranks (rank-6 and rank-12) in both single-core and multi-
core settings.

In Fig. 11b, c, we compare DBN-CP against the CP-ALS based algorithms for
different target ranks (rank-6, rank-12, and rank-24) on Adult (D17) and IPUMS
(D18) data sets, respectively and in Fig. 12 a, b, we compare DBN-CP against the CP-
ALS based algorithms for different number of modes (4-mode, 5-mode, and 6-mode)
for rank-12 decomposition on Adult (D17) and IPUMS (D18) data sets, respectively.

123

36 M. Kim, K. S. Candan

(a) (b)

Fig. 12 Running times of DBN-CP vs. CP-ALS based algorithms for a Adult data set (D17) and b
IPUMS data set (D18) for 4-mode, 5-mode, and 6-mode input tensors for rank-12 decomposition in both
single-core and multi-core

As we see here, in almost all cases (especially when the data modality is high),
DBN-CP based schemes outperform CP-ALS based schemes and pp-DBN-CP-ALS
is the fastest in all cases. Note that these high modality cases are also the cases where
the join selectivity φ of the relations are higher than the lower bound φ′⊥ with rank
pruning (see Table 11) and the results confirm that DBN-CP is more advantageous in
these cases as discussed in Sect. 7.1.2. It is interesting to note that while GRID-based
parallel version of CP-ALS may in practice negatively impact performance (since
the underlying ALS-based combining approach involves significant communication
overheads), parallelized DBN-CP is effective in reducing execution times.

8.8 Execution time results for tucker decompositions

For the Tucker decomposition experiments, we focus on the data sets, D17 and D18,
where the sizes of the modes are large. For comparison against the DBN strategy, we
consider the MET (Memory-Efficient Tucker) Kolda and Sun (2008) implementation
ofTucker. Since there aremultiplemode-selection strategies forMET, unless otherwise
specified, we present the results for the strategy that leads to best running time and
memory consumption for MET. We also consider different implementations of MET,
denoted as MET1 and MET2. The difference between MET1 and MET2 is that in
the first one only one mode is handled element-wise, whereas in the second one two
modes are handled element-wise.

8.8.1 Impact of partition balance

Before we compare the DBN strategy against conventional Tucker decompositions,
we investigate the impact of partition balance on the performance of DBN. As we
discussed in Sect. 5, for Tucker decompositions, we expect that partition strategies
that lead to balanced sub-relations will lead to better DBN performance. In Fig. 13,
we present execution time and memory consumption results for three different par-
titioning strategies for each of the D17 and D18 data sets in Table 12. We note
that(R1: 118×91×20,264, R2: 20,264×95×73) and (R1: 3,888×2,241×1,096,

123

Decomposition-by-normalization (DBN) 37

(a)

(b)

Fig. 13 Running time and bottleneck memory for different partitioning cases where the two relationsR1
and R2 have different sizes (see Table 12), which are run by DBN-MET1 and DBN-MET2 for 5-mode a
Adult data set (D17) b IPUMS data set (D18) for rank-(12,12,12,12,12) decomposition

Table 12 Different partitioning
cases for Adult (D17) and
IPUMS (D18) data sets

The partitions in bold are the
most balanced among all three

Data set Partition size

R1 R2

D17 118×20,264 91×20,264×95×73

91×20,264 118×20,264×95×73

118×91×20,264 20,264×95×73

D18 3,888×1,096 2241×1,096×191×209

2,241×1,096 3,888×1,096×191×209

3,888×2,241×1,096 1,096×191×209

R2: 1,096×191×209) partitioning alternatives are themost balanced among all three
for the D17 and D18 data sets, respectively.

The results confirm that, as expected, the most balanced partitioning case (in terms
of both size and number ofmodes) shows the best performance in terms of both running
time and memory consumption.

8.8.2 DBN-MET vs. conventional MET: impact of the number of modes

We next compare the DBN strategy against conventional MET with respect to the
impact of the number of modes of the tensor on the decomposition performance. Since

123

38 M. Kim, K. S. Candan

(a) (b)

Fig. 14 The running time and bottleneck memory consumption for Adult data set (D17) of DBN-MET
vs.MET: in a the optimization target is the running time, whereas in b the optimization target is thememory.
Here, we use rank 12 for each mode of the relation. When the tensor has 6 modes none of the conventional
MET algorithms fit the available memory and thus they are not included in the plots

(a) (b)

Fig. 15 The running time and bottleneck memory consumption for IPUM data set (D18) of DBN-MET vs.
MET: in a the optimization target is the running time, whereas in b the optimization target is the memory.
Here, we use rank 12 for each mode of the relation

there are multipleMET strategies with different run-times andmemory consumptions,
we present two sets of results, the first targeting better MET run-time and the second
better MET memory consumption.

Figure 14 presents results for theAdult data set (D17). Aswe see here, as the num-
ber of modes increases, the running times of all decomposition algorithms increase.
Experiment results confirm that the increase in the execution time is much slower for
the DBN based decompositions and, as expected, the parallelized version of DBN
(pp-DBN) is the fastest among all alternatives. The results with the IPUMS data set
(D18), reported in Fig. 15 re-confirm these results. Note that, the time results for this
IPUM data set are presented in log-scale due to the significant differences in execution
times between DBN-based and conventional decomposition strategies.

8.8.3 DBN-MET vs. conventional MET: impact of the rank

In Fig. 16, we compare the performance of DBN against conventional MET for dif-
ferent target ranks. Again, since there are different MET implementations, we present
results for the strategy that provides the best running time for MET.

123

Decomposition-by-normalization (DBN) 39

(a) (b)

Fig. 16 The running time and bottleneckmemory consumption ofDBN-METvs.MET for rank-(6,6,6,6,6),
rank-(12,12,12,12,12), vs. rank-(24,24,24,24,24) (here we simply denote rank: 6, rank: 12, and rank: 24
respectively) for 5-mode Adult data set (D17) and IPUM data set (D18). For the D17 data set, for target
rank 24, none of the conventional MET algorithms fit the available memory and thus they are not included
in the plot

Fig. 17 The running time of
pp-DBN-MET on multiple cores
for rank-(12,12,12,12,12) on
IPUM data set (D18)

As we see in the figure, as the target rank increases, the running time of the con-
ventional MET algorithm increases very quickly. In contrast, the running times of
DBN-based strategies increase much more slowly. Again, the parallelized version of
DBN (pp-DBN) is the fastest among all alternatives. Note that, as expected, the mem-
ory consumption of pp-DBN is higher than DBN-MET; however, it is still at least an
order lesser than MET.

8.9 DBN: scalability

In this section, we study how pp-DBN scales as the number of cores increases. We
use pp-DBN-MET (pp-DBN-CP works similarly), which parallels each rank pair, e.g,
rank-12 can parallel on up to 6 cores. As we see in Fig. 17, the running time of pp-
DBN-MET decreases as the number of cores increases and the time gets fastest when
6 cores are used since the entire rank pairs are parallel. The time drops down most
from 2 cores to 4 cores.

8.10 Accuracy results

So far, we have shown that DBN-based strategies are significantly more efficient
than their conventional counterparts. In this subsection, we experimentally assess the
accuracy of DBN-based strategies.

123

40 M. Kim, K. S. Candan

(a) (b)

Fig. 18 a InterFD-based fit vs. maximum fit and b intraFD-based fit vs. maximum fit of DBN-CP-ALS
and DBN-MET for D1-D15 (we omit D13 and D15 for Tucker decomposition as the sizes of the join mode
in the data sets are smaller than rank 24)

8.10.1 Impacts of the intraFD-based rank pruning and interFD-based partitioning
on accuracy

Before we compare DBN-based strategies against conventional decompositions, we
first study the impacts of the interFD-based partitioning (Sect. 5) and intraFD-based
rank pruning (Sect. 6) strategies on accuracy. These results are presented in Fig. 18a
and b, respectively, where we compare the fit values obtained when using the proposed
strategies against the maximum potential fit values one can obtain using a DBN-based
strategy. In these plots, the closer to the 45 degree line the results are, themore effective
are the FD based rank pruning and data partitioning strategies.

In Fig. 18a, we study the impact of the interFD-based partition selection approach
on the decomposition accuracy. The results show that, for both CP and Tucker decom-
positions, the interFD-based partitioning strategy results in accuracies that are very
close to the maximum possible accuracy, using an optimal partitioning strategy for all
rank configuration.

In Fig. 18b, we investigate the impact of intraFD-based rank pruning (with only the
best 50% of the rank pairs considered by the JBD module among the potential rank
pairs). Since the intraFD strategy ignores pairwise FDs involving the join attribute,
we consider only the situations where each sub-tensor has more than 2 attributes (the
join attribute and a determined attribute). As we see in Fig. 18b, the intraFD-based
rank pruning strategy is very effective: except in a very few cases, the intraFD-based
rank pruning does not eliminate the rank pair that will lead to the maximum possible
fit with a DBN strategy.

8.10.2 DBN vs. conventional decompositions

We next evaluate the accuracy of DBN based decompositions against conventional
decomposition algorithms, NNCP-CP-ALS for CP decomposition (since results for
DBN-NWAY and NNCP-NWAY are similar we only present NNCP-CP-ALS) and
MET for Tucker decomposition. We report accuracy results for data sets D1-D15
since reconstructing the decomposed tensor needed for computing the fit value on
larger data sets is not feasible with the available resources. Figures 19 and 20 present
the accuracy results ofDBNvs.NNCPandMET forCP andTucker decompositions for
different data sets, respectively. We also present the correlations between accuracies
of DBN and conventional decomposition strategies in Table 13.

123

Decomposition-by-normalization (DBN) 41

(a) (b) (c) (d)

Fig. 19 Accuracies ofDBNvs.NNCP for original andoutlier-eliminated (85%cumulative value preserved)
CP decompositions for all partitioning cases of D1-D15

(a) (b) (c) (d)

Fig. 20 Accuracies of DBN vs. MET in original and outlier-eliminated (85% cumulative value preserved)
Tucker decomposition for all partitioning cases of D1-D15 (we omit D13 and D15 as the sizes of the join
mode in the data sets are smaller than rank 24)

Table 13 Correlation between
fits of DBN vs. NNCP and MET
in original and outlier-
eliminated (85% cumulative
value preserved) CP and Tucker
decomposition for all
partitioning cases of D1-D15

Correlation

Original 85%

DBN-CP-ALS vs.
NNCP-CP-ALS

Rank-6 0.94 0.97

Rank-24 0.93 0.96

DBN-MET vs.
MET

Join mode rank: 6 0.99 0.99

Join mode rank: 24 0.99 0.99

Figure 19a, b and Table 13 shows that the accuracy of DBN is highly corre-
lated with the accuracy of NNCP. There are, however, cases in which DBN has
lower accuracies than NNCP. In order to understand whether this is a fundamen-
tal limitation of the DBN strategy or whether it is due to simple outliers in the
data, we next consider whether the problem also occurs in the cases where the
decomposition results are sparcified by ignoring the outliers: for this purpose we
leverage a commonly used decomposition sparcification strategy (Allen 2012): treat-
ing each core element as a cluster and each factor entry as a cluster member-
ship probability, we eliminate those elements that have very small likelihood of
being a member of a given cluster. In particular, we remove sufficient outlier ele-
ments to eliminate the lowest 15% of the membership probabilities. Figure 19c, d
and Table 13 show that once the outliers are removed from consideration, DBN-
based strategies perform as good as the conventional CP decomposition strategies.

123

42 M. Kim, K. S. Candan

(a)
(b)

Fig. 21 Avg. Rand Index of k-means clustering (k= 10, 30, 50 and 100) on tensor decompositions of
DBN-MET and MET on the join attribute of a Adult, Breast Cancer, and IPUMS data sets and b paper,
author, and keyword modes of DBLP data set

In fact, once the outliers are ignored in the decomposition, in a significant por-
tion of the cases, the DBN strategy results in higher accuracies than the conven-
tional DBN (indicated by an increase in the number of results above the 45 degree
line).

For Tucker decomposition, the correlations between the fits of DBN and MET are
very high (almost 1.0) for both original and outlier-eliminated tensors (see Fig. 20 and
Table 13). These results confirm that the proposed DBN scheme is especially effective
for Tucker decompositions.

8.10.3 Clustering results

To contextualize the fit results, we have also run additional experiments where we
have considered a “clustering” task as the ground truth. Here, we present clustering
results performed on the tensor decompositions obtained by DBN. In particular, we
applied the k-means clustering algorithm on each factor matrix by treating each row
as a high-dimensional point. We then used Rand Index (Rand 1971) to measure how
similar the clustering results of DBN to those of MET.

We first evaluated the clustering on the three data sets (Adult, Breast Cancer, and
IPUMS data sets). We performed DBN-MET and MET with the target rank 10 for
each mode and then ran k-means (k=10, 30, 50 and 100) on the factor matrices of the
join mode of each data set. As shown in Fig. 21a, overall clustering results obtained
by DBN agree with those of MET (∼80%).

We also considered a 4-mode DBLP data set (Tang et al. 2008) (paper,
author, venue, keyword) of size 11,941×300×6×300 containing 11,941
papers including 300 most frequent keywords in their abstracts written by 300 most
prolific authors from 6 database and data mining-related venues.

We measured the average Rand Index of the k-means clustering results (k= 10, 30,
50 and 100) on tensor decompositions obtained by DBN-MET vs. MET on each mode
of the DBLP data set (except the venue mode whose size is too small). As shown in
Fig. 21, the two clustering results are similar (∼80 to ∼85%). Table 14 shows several
sample clustering results from DBN-MET vs. MET.

123

Decomposition-by-normalization (DBN) 43

Table 14 Sample keyword clustering results on DBLP data set

DBN-MET MET

‘learn’ ‘feature’ ‘train’ ‘test’ ‘knowledge’ ‘practice’ ‘engine’‘train’

‘object’ ‘structure’ ‘concept’ ‘define’ ‘semantic’
‘rule’ ‘represent’ ‘orient’ ‘view’

‘object’ ‘support’ ‘type’ ‘access’ ‘security’
‘semantic’ ‘orient’‘formal’

‘data’ ‘database’ ‘query’ ‘data’‘database’

‘communication’ ‘parallel’ ‘memory’
‘processor’ ‘schedule’

‘communication’ ‘architecture’ ‘fault’

8.10.4 DBN on multi-attribute dependencies

In Sect. 7.3.2, we discussed how DBN handles data sets where there is no single key
that sufficiently determines other attributes and formulated a version of the process in
cases where we need to use multiple attributes as a join key and, thus, need to have a
compound key represented as a single attribute.

We evaluated this approach usingMovieLens 10Mdata set (Movielens 2013)whose
attributes are (user, movie, rating, time) of size 5,000×5,000×10 ×
11,431 (we capturedmost frequent 5,000 users andmovies). It is easy to see that in this
data set user and movie attributes together would determine rating and time
attributes. For example, the supports of FD are 100 vs. 33% for (user, movie →
rating) vs. (user → rating), respectively. We use CP decomposition with the
target rank 10 for this experiment (The tensor size is too big to run Tucker decompo-
sition).

We first measured the fit provided by DBN-CP-ALS using the user attribute as the
join key. Since the user attribute does not determine all the other attributes by itself,
we expect that the partitioning the data on the user attribute will generate errors. In
fact, we obtained a negative fit (−0.0052) in this case.

Next we compared the clustering results fromDBN-CP-ALSwith one join attribute
(user) vs. two join attributes (user, movie) using average Rand Index on k-
means (k=10, 30, 50, and 100) performed on each factor matrix. As the ground truth
clusters, we use clustering results obtained by NNCP-CP-ALS.

As we see in Fig. 22, as expected, the clustering results on rating and time
attributes determined when using both user and movie attributes as join key are
significantly better than the case where when we only use the user attribute as the
join key. Of course, when we use user and movie together as a compound join key,
the clustering result for the user factor is less precise than when we use user as the
join key, but this is expected. In fact, the overall fit for the whole tensor, when using
the compound key (user, movie) is 0.0025 as opposed to −0.0052 for (user)
alone, indicating that the use of the compound key indeed helps improve the overall
accuracy.2

2 Note that the fit is low in this experiment due to the extremely tight target rank (10) used for the decom-
position for a very high dimensional tensor. The fit obtained by the conventional tensor decomposition
technique, NNCP-CP-ALS, on the same tensor with the same rank is also similarly low, 0.0028.

123

44 M. Kim, K. S. Candan

Fig. 22 Avg. Rand Index of
k-means clustering (k=10, 30,
50 and 100) on each factor
matrix of MovieLens 10M data
set by DBN-CP-ALS and
NNCP-CP-ALS of (user) vs.
(user, movie) attributes as
the join key

9 Conclusions

The lifecycles of most data sets include a diverse set of operations, from capture, inte-
gration, projection, to data analysis. In general, analysis operations, including tensor
decompositions, are among the costliest of these. To tackle the often prohibitively high
cost of tensor decomposition tasks, in this paper we proposed a highly efficient, effec-
tive, and parallelizable decomposition-by-normalization (DBN) strategy for obtaining
decompositions by a large and high-modal data set into the smaller tensors and com-
bining the (CP or Tucker) decompositions of these smaller tensors to obtain the final
decomposition. We also proposed interFD-based partitioning and intraFD-based rank
pruning strategies for DBN to improve accuracy and to reduce execution time, respec-
tively. Experiment results confirmed the efficiency and effectiveness of the proposed
DBN scheme and its optimization strategies.

Acknowledgments This work is partially funded by NSF Grants #116394 “RanKloud: Data Partitioning
and Resource Allocation Strategies for Scalable Multimedia and Social Media Analysis”.

References

AllenGI (2012) Sparse higher-order principal components analysis. In: Proceedings of the 15th international
conference on artificial intelligence and statistics (AISTATS)

Andersson CA, Bro R (2000) The n-way toolbox for matlab. Chemom Intell Lab Syst 52(1):1–4. http://
www.models.life.ku.dk/source/nwaytoolbox/

Antikainen J, Havel J, Josth JR, Herout A, Zemcik P, Hauta-Kasari M (2011) Nonnegative tensor factor-
ization accelerated using gpgpu. IEEE Trans Parallel Distrib Syst 22(7):1135–1141

Bader BW, Kolda TG (2006) Efficient matlab computations with sparse and factored tensors. Technical
Report SAND2006-7592, Sandia National Laboratories

Bader BW, Kolda TG (2007) Matlab tensor toolbox version 2.2. http://csmr.ca.sandia.gov/tgkolda/
TensorToolbox/

Carroll J, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an n-way
generalization of eckart-young decomposition. Psychometrika 35:283–319

ChuW,GhahramaniZ (2009) Probabilisticmodels for incompletemulti-dimensional arrays. In: Proceedings
of the 12th international conference on artificial intelligence and statistics

Elmasri R,Navathe SB (1994) Fundamentals of database systems, 2nd edn. Benjamin-Cummings, Redwood
City

Frank A, Asuncion A (2010) UCI machine learning repository. http://archive.ics.uci.edu/ml
Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W.

H. Freeman, New York
Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an “explanatory”

multi-modal factor analysis. UCLA Working Papers in Phonetics 16(1):84

123

http://www.models.life.ku.dk/source/nwaytoolbox/
http://www.models.life.ku.dk/source/nwaytoolbox/
http://csmr.ca.sandia.gov/tgkolda/TensorToolbox/
http://csmr.ca.sandia.gov/tgkolda/TensorToolbox/
http://archive.ics.uci.edu/ml

Decomposition-by-normalization (DBN) 45

Hoff PD (2011) Hierarchical multilinear models for multiway data. Comput Stat Data Anal 55(1):530–543.
doi:10.1016/j.csda.2010.05.020

HuhtalaY,Kärkkäinen J, PorkkaP, ToivonenH (1999)Tane: an efficient algorithm for discovering functional
and approximate dependencies. Comput J 42(2):100–111

Ilyas IF, Markl V, Haas PJ, Brown P, Aboulnaga (2004) A Cords: automatic discovery of correlations and
soft functional dependencies. In: SIGMOD conference, pp. 647–658

Karmarker N, Karp RM (1983) The differencing method of set partitioning. Technical report, Berkeley
Kim M, Candan KS (2011) Approximate tensor decomposition within a tensor-relational algebraic frame-

work. In: Proceedings of the 20th ACM international conference on information and knowledge
management, pp. 1737–1742 doi:10.1145/2063576.2063827

Kolda T, Sun J (2008) Scalable tensor decompositions for multi-aspect data mining. In: Proceedings of the
8th IEEE international conference on data mining, pp. 363–372. doi:10.1109/ICDM.2008.89

Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500. doi:10.
1137/07070111X

Kolda TG, Bader BW, Kenny JP (2005) Higher-order web link analysis using multilinear algebra. In:
Proceedings of the 5th IEEE international conference on data mining, pp. 242–249. doi:10.1109/
ICDM.2005.77

Kruskal JB (1977) Three-way arrays: rank and uniqueness of trilinear decompositions, with application to
arithmetic complexity and statistics. Linear Algebr Appl 18(2):95–138

Lopes S, Petit JM, Lakhal L (2000) Efficient discovery of functional dependencies and armstrong relations.
In: Proceedings of the 7th international conference on extending database technology: advances in
database technology, EDBT ’00. Springer, London, pp. 350–364

MahoneyMW,MaggioniM,DrineasP (2006)Tensor-cur decompositions for tensor-based data. In: Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 327–336. doi:10.1145/1150402.1150440

Mangasarian OL, Wolberg WH (1990) Cancer diagnosis via linear programming. SIAM News 23(5):1–18
Mannila H, Räihä KJ (1992) On the complexity of inferring functional dependencies. Discret Appl Math

40(2):237–243. doi:10.1016/0166-218X(92)90031-5
Movielens dataset from grouplens research group (2013). http://www.grouplens.org
Phan AH, Cichocki A (2011) Parafac algorithms for large-scale problems. Neurocomputing 74(11):1970–

1984. doi:10.1016/j.neucom.2010.06.030
RandWM (1971) Objective criteria for the evaluation of clustering methods. J Am Stat Assoc 66(336):846–

850
Ruggles S, Sobek M (1997) Integrated public use microdata series: Version 2.0 minneapolis: historical

census projects http://www.ipums.umn.edu/
Sanchez E, Kowalski BR (1986) Generalized rank annihilation factor analysis. Anal Chem 58(2):496–499.

doi:10.1021/ac00293a054
Sanchez E, Kowalski BR (1990) Tensorial resolution: a direct trilinear decomposition. J Chemom 4(1):29–

45. doi:10.1002/cem.1180040105
StoerM,Wagner F (1997)A simplemin-cut algorithm. JACM44(4):585–591. doi:10.1145/263867.263872
Sun J, Papadimitriou S, Lin CY, Cao N, Liu S, Qian W (2009) Multivis: content-based social network

exploration through multi-way visual analysis. In: Proceedings SDM, vol 9. SIAM, pp. 1063–1074
Sun J, Tao D, Papadimitriou S, Yu PS, Faloutsos C (2008) Incremental tensor analysis: theory and applica-

tions. ACM Trans Knowl Discov Data 2(3):11:1–11:37. doi:10.1145/1409620.1409621
Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: extraction and mining of academic

social networks. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, pp. 990–998

Tsourakakis CE (2010) Mach: fast randomized tensor decompositions. In: Proceedings of the 10th SIAM
International Conference on Data Mining, pp. 689–700

Tucker L (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31(3):279–311.
doi:10.1007/BF02289464

Wyss C, Giannella C, Robertson EL (2001) Fastfds: a heuristic-driven, depth-first algorithm for mining
functional dependencies from relation instances: extended abstract. In: Proceedings of the Third Inter-
national Conference on DataWarehousing and Knowledge Discovery, DaWaK ’01. Springer, London,
pp 101–110

Xu Z, Yan F, Qi A (2012) Infinite tucker decomposition: nonparametric bayesian models for multiway data
analysis. In: ICML. icml.cc/Omnipress

123

http://dx.doi.org/10.1016/j.csda.2010.05.020
http://dx.doi.org/10.1145/2063576.2063827
http://dx.doi.org/10.1109/ICDM.2008.89
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1109/ICDM.2005.77
http://dx.doi.org/10.1109/ICDM.2005.77
http://dx.doi.org/10.1145/1150402.1150440
http://dx.doi.org/10.1016/0166-218X(92)90031-5
http://www.grouplens.org
http://dx.doi.org/10.1016/j.neucom.2010.06.030
http://www.ipums.umn.edu/
http://dx.doi.org/10.1021/ac00293a054
http://dx.doi.org/10.1002/cem.1180040105
http://dx.doi.org/10.1145/263867.263872
http://dx.doi.org/10.1145/1409620.1409621
http://dx.doi.org/10.1007/BF02289464

46 M. Kim, K. S. Candan

Zhang Q, Berry M, Lamb B, Samuel T, Allen G, Nabrzyski J, Seidel E, van Albada G, Dongarra J, Sloot P
(2009) A parallel nonnegative tensor factorization algorithm for mining global climate data, vol 5545.
Springer, Berlin/Heidelberg, pp. 405–415

Zhou G, He Z, Zhang Y, Zhao Q, Cichocki A (2009) Canonical polyadic decomposition: from 3-way
to n-way. In: Eighth international conference on computational intelligence and security (CIS), pp
391–395. doi:10.1109/CIS.2012.94

123

http://dx.doi.org/10.1109/CIS.2012.94

	Decomposition-by-normalization (DBN): leveraging approximate functional dependencies for efficient CP and tucker decompositions
	Abstract
	1 Introduction
	1.1 Contributions of this paper: decomposition-by-normalization (DBN)

	2 Background and related work
	2.1 Tensors and tensor decomposition

	3 Decomposition-by-normalization (DBN)
	3.1 Key concepts
	3.1.1 Tensor representation of relational data
	3.1.2 Tensor join
	3.1.3 Functional dependencies

	3.2 Overview of the decomposition-by-normalization (DBN) process

	4 Join-by-decomposition
	4.1 JBD for CP decomposition (JBD-CP)
	4.2 JBD for tucker decomposition (JBD-Tucker)

	5 Vertical data partitioning
	5.1 Overview of the partitioning strategies
	5.2 InterFD criterion and vertical partitioning algorithms
	5.2.1 Minimizing the likelihood of decomposition errors
	5.2.2 Balanced partitioning

	6 Further optimizations: rank pruning based on intra-partition dependencies
	7 Cost analysis
	7.1 Cost of DBN-CP
	7.1.1 CP decomposition of dense tensors
	7.1.2 CP decomposition of sparse tensors

	7.2 Cost of DBN-tucker
	7.3 Additional discussions
	7.3.1 DBN with tight memory constraints
	7.3.2 DBN on multi-attribute dependencies
	7.3.3 Uniqueness

	8 Experimental evaluations
	8.1 Setup: data sets
	8.2 Setup: target ranks
	8.3 Setup: alternative tensor decomposition algorithms
	8.3.1 CP decomposition (single core)
	8.3.2 CP decomposition (parallel, multi-core)
	8.3.3 Tucker decomposition (single core)
	8.3.4 Tucker decomposition (parallel, multi-core)

	8.4 Setup: rank pruning
	8.5 Setup: functional dependency discovery
	8.6 Setup: evaluation criteria
	8.6.1 Accuracy
	8.6.2 Execution time
	8.6.3 Memory

	8.7 Execution time results for CP decompositions
	8.7.1 Case 1: X determines all attributes of calR
	8.7.2 Case 2: X does not determine all attributes of calR

	8.8 Execution time results for tucker decompositions
	8.8.1 Impact of partition balance
	8.8.2 DBN-MET vs. conventional MET: impact of the number of modes
	8.8.3 DBN-MET vs. conventional MET: impact of the rank

	8.9 DBN: scalability
	8.10 Accuracy results
	8.10.1 Impacts of the intraFD-based rank pruning and interFD-based partitioning on accuracy
	8.10.2 DBN vs. conventional decompositions
	8.10.3 Clustering results
	8.10.4 DBN on multi-attribute dependencies

	9 Conclusions
	Acknowledgments
	References

