
Another Advantage of Free Choice:
Completely Asynchronous Agreement Protocols

(Extended Abstract)

Michael Ben-Or t

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

1. Introduction

Recently, Fischer, Lynch and Paterson [3]
proved that no completely asynchronous con-
sensus protocol can tolerate even a single un-
announced process death. We exhibit here a
probabilistic solution for this problem, which
guarantees that as long as a majority of the
processes continues to operate, a decision will be
made (Theorem 1). Our solution is completely
asynchronous and is rather strong: As in [4], it
is guaranteed to work with probability 1 even
~gainst an adversary scheduler who knows all
~bout the system.

We apply the same ideas to the "Byzantine"
~ype of failure. Here, if the number of faulty
)rocesses, t, satisfies 5t < N, where N is the
;oral number of the processes, then completely
asynchronous agreement is possible (Theorem 2).

Our protocols provide the first example of
synchronization problem that has a probabil-

stic solution which is always guaranteed to work,
)ut cannot be solved at all by any determinis-

R e s e a r c h s u p p o r t e d b y a W e i l m a n n P o s t d o c t o r a l fe l low-
h i p a n d b y N S F g r a n t M C S - 8 0 0 6 9 3 8 .

¢rmission to copy without fee all or part of this material is granted
rovided that the copies are not made or distributed for direct
3mmercial advantage, the ACM copyright notice and the title of the
ublication and its date appear, and notice is given that copying is by
ermission of the Association for Computing Machinery. To copy
therwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-110-5/83/008/0027 $00.75

tic protocol. Previous examples required the
processes to be symmetric.

The protocols presented here are not neces-
sarily efficient. However, if the number of faulty
processes, t, is O(v/-N), then when running the
processes synchronously, the expected time to
reach agreement is constant (Theorem 3). This
result shows another advantage of probabilistic
protocols, since any deterministic solution to
the "Byzantine Generals" problem cannot reach
agreement in less than t ~ 1 rounds, (see [1,2]).

2. The Consensus Problem
A set of /V asynchronous processes wish to

agree about a binary value. Each process P starts
with a binary input zp, and they all must decide
on a common value. The trivial solution, say,
0 is always chosen, is ruled out by the following
correctness criterion:

(C1) If for all P, z p = v, then the decision must
be v."

A process "decides" by setting a "write-once" out-
put register to be 0 or 1. Thus after deciding, a
process may no longer change its decision.

To reach agreement processes communicate by
means of messages. A message is a pair (P,m),
where P is the name of the destination of the
message and m is its content. The message system
maintains a message buffer M that contains all the
messages send but not yet delivered.

A process P can send the message m to process
Q by performing send(Q, m). This operation adds
the message (Q, m) to the message buffer. Process

27

P can a t t emp t to receive a message by perform-
ing receive(P). This operation can delete some

(P, m) E M, in which case we say that (P, m) was
delivered, or re turns a special null message ¢ and
leaves the buffer M unchanged.

Thus the message space acts nondeterminis-
tically, subject only to the condi t ion t ha t if
receive(P) is performed infinitely many times,
then every message (P, m) in the message buffer
is eventually delivered.

A configuration of the system consists of
the internal state of each process together with
the contents of t he message buffer. An initial
configuration is one in which each process starts
a t an initial state and the message buffer is empty.

A step of a single process takes one
configuration to another . In this primitive step
process P first performs receive(P). This may be
either a message rn from the message buffer tha t
was addressed to P , or the null message ¢. Then,
depending on P ' s internal state and on the value
received, P performs some computa t ion (including
perhaps some probabilistic choices) ending in a
new internal state, and sends a finite number of
messages to other processes.

The processes are completely asynchronous,
t h a t is, we make no assumptions about their rela-
t ive speed nor about the delay t ime in delivering a
message. Thus a solution for this consensus prob-
lem mus t work correctly even against an adversary
schedule. We allow such schedule to choose the
nex t process P to make a step, and to control the
message system. The schedule choice may depend
on the current configuration as well as on all the

pas t history of the computat ion.

Thus start ing from an initial configuration,
t he schedule chooses the first process to make
a step. This step may end in many different
configurations. Once P made its step, some pos-
sible configuration has been reached. Knowing
this, the schedule now chooses the next process to
step and what his receive operation will return.
This process completes his step leaving the sys-
t em in some configuration, and so on, producing

an infinite run of the system.

A schedule is t-correct if on any infinite run
a t most t prodesses make a finite number of step,,
and any message is eventually delivered if th
receiving process makes an infinite number c
steps. Thus the only failure allowed is a proce~
death. It is clear, however, t ha t other process~
cannot determine whether a process has died or l
jus t operat ing very slowly.

3. A Consensus Protocol

In this section we present a simple probabilist!

consensus protocol. In this protocol the processc

perform "rounds" of exchange of information. 0

each round, if some process decides v, then by t[

next round all the other operating processes wi

decide the same value v. If no process decides the

with some bounded positive probability all tl

operating processes will reach agreement on tl

next round. The round number r is attached I

the messages of round r, so the processes can di

tinguish between messages from different round

A - - Consensus Protocol

Process P: Initial value zp .

step 0: set r :-- 1.

step 1: Send the message (1, r, zp) to all t]
processes.

step 2: Wait till N - - t messages of type (1, r,
are received. If more than N / 2 messages have t]
same value v, then send the message (2, r, v, D)
all processes. Else send the message (2, r, ?) to~

processes.

step 3: Wait till N - - t messages of type (2, r,
arrive.

(a) If there is one D-message (2, r, v, D) then E
Xp :--- D.

(b) If there are more than t D-messages, th,
decide v.

(c) Else set xp -~- 1 or 0 each wi th probabili ty

step 4: Set r :~- r -t- 1 and go to step 1.

28

Theorem 1. Let N ~ 2t. For any t-correct
schedule and any initial values of the processes, the
above protocol guarantees, with probability 1, that:
(i) all the processes will eventually decide on the
same value v;

(ii) if all processes start with the value v, then
within one round they will all decide v; and
(iii) if for some round r, some process decides v
in step 3(b), then all other processes will decide v
within the next round.

Remark: If N ~ 2t then consensus is certainly
impossible, since the schedule can then simulate a
network partition.

4. Byzantine Agreement
Here faulty processes might go completely

haywire, perhaps even sending messages accord-
ing to some malevolent plan. The following com-
pletely distributed protocol can reach agreement
even in the presence of such faults. We assume
that a process can determine the originator of a
message he has received. This is necessary since
otherwise no solution is possible.

In this setting the schedule takes care for the
message system, determines when each process
will make a step, and determines what the faulty
processes do. A schedule is t-correct if it allows
at most t faulty process and eventually delivers all
the messages to any correct process that makes an
infinite number of steps.

B - - Byzantine Protocol

Process P: Initial value xp.

step 0: set r :-- 1.

step 1: Send the message (1, r, zp) to all the
processes.

step 2: Wait till messages of type (1, r ,*) are
received from N - - t processes. If more than (N q -
t) /2 messages have the same value v, then send
the message (2, r, v, D) to all processes. Else send
the message (2, r, ?) to all processes.

step 3: Wait till messages of type (2, r, *) arrive
from N - - t processes.

(a)]f there are at least t-}-i D-messages (2, r, v, D),

then set xp : ~ v.
(b) If there are more than (N + t)/2 D-messages

then decide v.
(c) Else set xp 1 or 0 each with probability 1 - ' - - 5 "

step 4: Set r :-- r ~ 1 and go to step 1.

Theorem 2. Let N ~ 5t. For any t-correct
schedule and any initial values of the processes, the
above protocol guarantees, with probability 1, that:
(i) all the correct processes will eventually decide
on the same value v;
(ii) if all correct processes start with the value v,
then within one round they will all decide v; and
(iii) if for some round r, some correct process
decides v in step 3(b), then all other correct
processes will decide v within the next round.

Remark: We do not know whether N ~> 5t
is the best possible bound to reach distributed
Byzantine agreement.

5. Efficiency
The protocols above are not very efficient, and

in particular the expected number of rounds to
reach agreement may be exponential. However
if the number of faulty processes is O(v/N) then
the following theorem shows that the expected
number of rounds to reach agreement is constant.

Theorem 3. I f t - - O(v/-N) then the expected
number of rounds to reach agreement in protocols
A and B is constant, (i.e. does not depend on IV).

This last result is especially interesting since
for deterministic protocols it is known that Byzan-
tine agreement is impossible in less than t -~-1
rounds of exchange of information [1,2].

Acknowledgment
The author would like to thank Nancy Lynch

for many helpful discussions.

References

[1] Dolev, D. and Strong, R. Polynomial Algo-
rithms for Byzantine Agreement. Proc. 14th

29

ACM Symp. on Theory of Computing (1982),
401-407.

[2] Fischer, M. and Lynch, N. A Lower Bound
for the Time to Assure Interactive Consis-
tency. Information Processing Letters 14, 4
(1982), 182-186.

[3] Fischer, M., Lynch, N. and Paterson, M.
Impossibility of Distributed Consensus With
One Faulty Process. MIT]LCS]TR-282.

[4] Lehman, D. and Rabin, M. On the Ad-
vantages of Free Choice: A Symmetric and
Fully Distributed Solution to the Dining
Philosophers Problem. to appear.

30

