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1. Introduction 

Recently, Fischer, Lynch and Paterson [3] 
proved that no completely asynchronous con- 
sensus protocol can tolerate even a single un- 
announced process death. We exhibit here a 
probabilistic solution for this problem, which 
guarantees that as long as a majority of the 
processes continues to operate, a decision will be 
made (Theorem 1). Our solution is completely 
asynchronous and is rather strong: As in [4], it 
is guaranteed to work with probability 1 even 
~gainst an adversary scheduler who knows all 
~bout the system. 

We apply the same ideas to the "Byzantine" 
~ype of failure. Here, if the number of faulty 
)rocesses, t, satisfies 5t < N, where N is the 
;oral number of the processes, then completely 
asynchronous agreement is possible (Theorem 2). 

Our protocols provide the first example of 
synchronization problem that has a probabil- 

stic solution which is always guaranteed to work, 
)ut cannot be solved at all by any determinis- 
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tic protocol. Previous examples required the 
processes to be symmetric. 

The protocols presented here are not neces- 
sarily efficient. However, if the number of faulty 
processes, t, is O(v/-N), then when running the 
processes synchronously, the expected time to 
reach agreement is constant (Theorem 3). This 
result shows another advantage of probabilistic 
protocols, since any deterministic solution to 
the "Byzantine Generals" problem cannot reach 
agreement in less than t ~ 1 rounds, (see [1,2]). 

2. The Consensus Problem 
A set of /V asynchronous processes wish to 

agree about a binary value. Each process P starts 
with a binary input zp, and they all must decide 
on a common value. The trivial solution, say, 
0 is always chosen, is ruled out by the following 
correctness criterion: 

(C1) If for all P,  z p  = v, then the decision must 
be v." 

A process "decides" by setting a "write-once" out- 
put register to be 0 or 1. Thus after deciding, a 
process may no longer change its decision. 

To reach agreement processes communicate by 
means of messages. A message is a pair (P,m), 
where P is the name of the destination of the 
message and m is its content. The message system 
maintains a message buffer M that contains all the 
messages send but not yet delivered. 

A process P can send the message m to process 
Q by performing send(Q, m). This operation adds 
the message (Q, m) to the message buffer. Process 
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P can a t t emp t  to receive a message by perform- 
ing receive(P). This  operation can delete some 

(P,  m) E M,  in which case we say that  (P,  m) was 
delivered, or re turns a special null message ¢ and 
leaves the  buffer M unchanged. 

Thus  the message space acts nondeterminis-  
tically, subject only to the condi t ion t ha t  if 
receive(P) is performed infinitely many  times, 
then  every message (P, m)  in the  message buffer 
is eventually delivered. 

A configuration of the system consists of 
the  internal state of each process together  with 
the  contents of t he  message buffer. An  initial 
configuration is one in which each process starts  
a t  an initial state and the  message buffer is empty.  

A step of a single process takes one 
configuration to another .  In this primitive step 
process P first performs receive(P). This  may be 
either a message rn from the message buffer tha t  
was addressed to P ,  or the  null message ¢. Then,  
depending on P ' s  internal state and on the value 
received, P performs some computa t ion  (including 
perhaps  some probabilistic choices) ending in a 
new internal state, and sends a finite number  of 
messages to other processes. 

The  processes are completely asynchronous,  
t h a t  is, we make  no assumptions about  their rela- 
t ive speed nor about  the delay t ime in delivering a 
message. Thus  a solution for this consensus prob- 
lem mus t  work correctly even against  an adversary 
schedule. We allow such schedule to choose the 
nex t  process P to make a step, and to control the 
message system. The  schedule choice may  depend 
on the current  configuration as well as on all the 

pas t  history of the  computat ion.  

Thus  start ing from an initial configuration, 
t he  schedule chooses the  first process to make  
a step. This step may end in many  different 
configurations. Once P made its step, some pos- 
sible configuration has been reached. Knowing 
this,  the  schedule now chooses the  next  process to 
step and what  his receive operation will return. 
This  process completes his step leaving the sys- 
t em in some configuration, and so on, producing 

an infinite run of the system. 

A schedule is t-correct if on any infinite run 
a t  most  t prodesses make  a finite number  of step,, 
and any message is eventually delivered if th 
receiving process makes an infinite number  c 
steps. Thus the only failure allowed is a proce~ 
death.  It is clear, however, t ha t  other process~ 
cannot  determine whether  a process has died or l 
jus t  operat ing very slowly. 

3. A Consensus Protocol 

In this section we present a simple probabilist! 

consensus protocol. In this protocol the processc 

perform "rounds" of exchange of information. 0 

each round, if some process decides v, then by t[ 

next round all the other operating processes wi 

decide the same value v. If no process decides the 

with some bounded positive probability all tl 

operating processes will reach agreement on tl 

next round. The round number r is attached I 

the messages of round r, so the processes can di 

tinguish between messages from different round 

A - -  Consensus Protocol 

Process P: Initial value zp .  

step 0: set r :-- 1. 

step 1: Send the  message (1, r,  zp)  to all t] 
processes. 

step 2: Wait till N - -  t messages of type  (1, r, 
are received. If more than  N / 2  messages have t] 
same value v, then  send the message (2, r, v, D) 
all processes. Else send the  message (2, r, ?) to~ 

processes. 

step 3: Wait till N - -  t messages of type (2, r, 
arrive. 

(a) If there is one D-message (2, r, v, D) then  E 
Xp :--- D. 

(b) If there are more than  t D-messages, th, 
decide v. 

(c) Else set xp  -~- 1 or 0 each wi th  probabili ty 

step 4: Set r :~- r -t- 1 and go to step 1. 
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Theorem 1. Let N ~ 2t. For any t-correct 
schedule and any initial values of the processes, the 
above protocol guarantees, with probability 1, that: 
(i) all the processes will eventually decide on the 
same value v; 

(ii) if all processes start with the value v, then 
within one round they will all decide v; and 
(iii) if for some round r, some process decides v 
in step 3(b), then all other processes will decide v 
within the next round. 

Remark: If N ~ 2t then consensus is certainly 
impossible, since the schedule can then simulate a 
network partition. 

4. Byzantine Agreement 
Here faulty processes might go completely 

haywire, perhaps even sending messages accord- 
ing to some malevolent plan. The following com- 
pletely distributed protocol can reach agreement 
even in the presence of such faults. We assume 
that  a process can determine the originator of a 
message he has received. This is necessary since 
otherwise no solution is possible. 

In this setting the schedule takes care for the 
message system, determines when each process 
will make a step, and determines what  the faulty 
processes do. A schedule is t-correct if it allows 
at  most t faulty process and eventually delivers all 
the  messages to any correct process that  makes an 
infinite number of steps. 

B - -  Byzantine Protocol 

Process P: Initial value xp.  

step 0: set r :-- 1. 

step 1: Send the message (1, r, zp)  to all the 
processes. 

step 2: Wait till messages of type (1, r ,*) are 
received from N - - t  processes. If more than ( N q -  
t) /2 messages have the same value v, then send 
the message (2, r, v, D) to all processes. Else send 
the  message (2, r, ?) to all processes. 

step 3: Wait till messages of type (2, r, *) arrive 
from N - - t  processes. 

(a) ]f there are at least t-}-i D-messages (2, r, v, D), 

then set xp : ~  v. 
(b) If there are more than ( N  + t)/2 D-messages 

then decide v. 
(c) Else set xp  1 or 0 each with probability 1 - ' - -  5 "  

step 4: Set r :--  r ~ 1 and go to step 1. 

Theorem 2. Let N ~ 5t. For any t-correct 
schedule and any initial values of the processes, the 
above protocol guarantees, with probability 1, that: 
(i) all the correct processes will eventually decide 
on the same value v; 
(ii) if all correct processes start with the value v, 
then within one round they will all decide v; and 
(iii) if for some round r, some correct process 
decides v in step 3(b), then all other correct 
processes will decide v within the next round. 

Remark: We do not know whether N ~> 5t 
is the best possible bound to reach distributed 
Byzantine agreement. 

5. Efficiency 
The protocols above are not very efficient, and 

in particular the expected number of rounds to 
reach agreement may be exponential. However 
if the number of faulty processes is O(v/N) then 
the following theorem shows that  the expected 
number of rounds to reach agreement is constant. 

Theorem 3. I f  t - -  O( v/-N) then the expected 
number of rounds to reach agreement in protocols 
A and B is constant, (i.e. does not depend on IV). 

This last result is especially interesting since 
for deterministic protocols it is known that  Byzan- 
tine agreement is impossible in less than t -~-1  
rounds of exchange of information [1,2]. 
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