
Francesco Mecca

1 Correctness of the algorithm

Running a program tS or its translation JtSK against an input vS produces
as a result r in the following way:

(JtSKS(vS) = CS(vS)) → r
tS(vS) → r

Likewise

(JtT KT (vT) = CT (vT)) → r
tT (vT) → r

where result r ::= guard list * (Match blackbox | NoMatch | Absurd) and
guard ::= blackbox.

Having defined equivalence between two inputs of which one is expressed
in the source language and the other in the target language vS ' vT (TODO
define, this talks about the representation of source values in the target)

we can define the equivalence between a couple of programs or a couple
of decision trees

tS ' tT := ∀vS'vT , tS(vS) = tT (vT)
CS ' CT := ∀vS'vT , CS(vS) = CT (vT)

The proposed equivalence algorithm that works on a couple of decision
trees is returns either Yes or No(vS, vT) where vS and vT are a couple of
possible counter examples for which the constraint trees produce a different
result.

1

gasche
I find the formulation here not so clear. It looked sensible as a draft on the whiteboard, but less so in the result thesis.

One way to write it maybe more explicitly would be to say:

"
We write t_S(v_S) (or C_S(v_S)) for the result of running a source term (or a constraint tree) against an input v. Those results r belong to the following grammar:

 r ::= ...
"

gasche
If you can use the LaTeX macros from the workshop submission from the org version, I think it would be nice. Notice in particular that v_S is rendered differently here in the highlighted part and then on its second occurrence on the line.

1.1 Statements

Theorem. We say that a translation of a source program to a decision tree is
correct when for every possible input, the source program and its respective
decision tree produces the same result

∀vS , tS(vS) = JtSKS(vS)

Likewise, for the target language:

∀vT , tT (vT) = JtT KT (vT)

Definition: in the presence of guards we can say that two results are
equivalent modulo the guards queue, written r1 'gs r2, when:

(gs1, r1) 'gs (gs2, r2) ⇔ (gs1, r1) = (gs2 ++ gs, r2)

Definition: we say that CT covers the input space S, written /covers(CT ,
S) when every value vS∈S is a valid input to the decision tree CT . (TODO:
rephrase)

Theorem: Given an input space S and a couple of decision trees, where
the target decision tree CT covers the input space S, we say that the two
decision trees are equivalent when:

equiv(S, CS , CT , gs) = Yes ∧ covers(CT , S) → ∀vS'vT ∈ S, CS(vS) 'gs CT (vT)

Similarly we say that a couple of decision trees in the presence of an
input space S are not equivalent when:

equiv(S, CS , CT , gs) = No(vS ,vT) ∧ covers(CT , S) → vS'vT ∈ S ∧ CS(vS) 6=gs CT (vT)

Corollary: For a full input space S, that is the universe of the target
program we say:

equiv(S, JtSKS , JtT KT , ∅) = Yes ⇔ tS ' tT

2

gasche
"We say that ... when ..." is a definition rather than a theorem. You could formulate it more clearly as a theorem:

"
Theorem: the translation of a source program to a decision tree is correct, in the sense that for every possible input, ...
"

gasche
To phrase it precisely, you could say that:

"For any node (a, (dom_i -> C_i)^i, C_fb) of C_t, <covering condition>."

This is assuming that you have given a precise grammar for constraint trees before in the document.

gasche
The theorem is that the math formula below holds in all cases, not that "we say that ... when ...".

gasche
again, remove "we say" here

1. Proof of the correctness of the translation from source programs to
source decision trees

We define a source term tS as a collection of patterns pointing to
blackboxes

tS ::= (p → bb)i∈I

A pattern is defined as either a constructor pattern, an or pattern or
a constant pattern

p ::= K(pi)i, i ∈ I (p q) n ∈ N

A decision tree is defined as either a Leaf, a Failure terminal or an
intermediate node with different children sharing the same accessor a
and an optional fallback. Failure is emitted only when the patterns
don’t cover the whole set of possible input values S. The fallback is
not needed when the user doesn’t use a wildcard pattern. %%% Give
example of thing

CS ::= Leaf bb Node(a, (Ki → Ci)i∈S , C?)
a ::= Here n.a
vS ::= K(vi)i∈I n ∈ N

We define the decomposition matrix mS as

SMatrix mS := (aj)j∈J, ((pij)j∈J → bbi)i∈I

We define the decision tree of source programs JtSK in terms of the de-
cision tree of pattern matrices JmSK by the following: J((pi → bbi)i∈IK
:= J(Root), (pi → bbi)i∈I K

decision tree computed from pattern matrices respect the following
invariant:

∀v (vi)i∈I = v(ai)i∈I → JmK(v) = m(vi)i∈I for m = ((ai)i∈I, (ri)i∈I)

3

gasche
This should come much earlier in the document, around the first time you start using the notation t_S.

gasche
Rendering bug? the bars are missing here (and in other BNF grammars.)

gasche
Isn't it rather a.n ?

Root.1.2

where

v(Here) = v
K(vi)i(k.a) = vk(a) if k ∈ [0;n[

We proceed to show the correctness of the invariant by a case analysys.

Base cases:

(a) [| ∅, (∅ → bbi)i |] := Leaf bbi where i := min(I), that is a deci-
sion tree [|ms|] defined by an empty accessor and empty patterns
pointing to blackboxes bbi. This respects the invariant because a
decomposition matrix in the case of empty rows returns the first
expression and we known that (Leaf bb)(v) := Match bb

(b) [| (aj)j , ∅ |] := Failure

Regarding non base cases: Let’s first define

let Idx(k) := [0; arity(k)[
let First(∅) := ⊥
let First((aj)j) := amin(j∈J6=∅)

m := ((ai)
i((pij)

i → ej)
ij)

(kk)
k := headconstructor(pi0)

i

Groups(m) := (kk → ((a)0.l)
l∈Idx(kk)+++(ai)

i∈I\{0}), (ifp0jisk(ql)then(ql)
l∈Idx(kk)+++(pij)

i∈I\{0} → ejifp0jis_then(_)l∈Idx(kk)+++(pij)
i∈I\{0} → ejelse⊥)j), ((ai)

i∈I\{0}, ((pij)
i∈I\{0} → ejifp0jis_else⊥)j∈J)

(1)

Groups(m) is an auxiliary function that decomposes a matrix m into
submatrices, according to the head constructor of their first pattern.
Groups(m) returns one submatrix m_r for each head constructor k
that occurs on the first row of m, plus one "wildcard submatrix" mwild

that matches on all values that do not start with one of those head
constructors.

Intuitively, m is equivalent to its decompositionin the following sense:
if the first pattern of an input vector (v_i)ˆi starts with one of the head

4

gasche
I have the impression that the document defines the constraint tree construction [|m|] at the same time that it is doing the correctness proof about this operation. The definition should come first (and be explained informally), and then the invariant/theorem/property should be stated and proven as separate steps.

gasche
should be in math mode

gasche

gasche
should be in math mode

constructors k, then running (v_i)ˆi against m is the same as running
it against the submatrix m_k; otherwise (its head constructor is none
of the k) it is equivalent to running it against the wildcard submatrix.

We formalize this intuition as follows: Lemma (Groups): Let

m

be a matrix with

Groups(m) = (kr → mr)
k,mwild

. For any value vector
(vi)

l

such that
v0 = k(v′l)

l

for some constructor k, we have:

ifk = kkforsomekthenm(vi)
i = mk((v

′
l)
l+++(vi)

i∈I\{0})elsem(vi)
i = mwild(vi)

i∈I\{0}

2. Proof: Let
m

be a matrix with

Group(m) = (kr → mr)
k,mwild

. Let
(vi)

i

be an input matrix with
v0 = k(v′l)

l

for some k. We proceed by case analysis:

• either k is one of the kk for some k

• or k is none of the (kk)k

5

gasche

gasche

gasche

gasche

Both m(vi)i and mk(vk)k are defined as the first matching result of a
family over each row rj of a matrix

We know, from the definition of Groups(m), that mk is

((a)0.l)l∈Idx(kk)+++(ai)
i∈I\{0}), (ifp0jisk(ql)then(ql)

l+++(pij)
i∈I\{0} → ejifp0jisthen(

l
)+++(pij)

i∈I\{0} → ejelse⊥)j

By definition, m(vi)i is m(vi)i = First(rj(vi)i)j for m = ((ai)i, (rj)j)
(pi)i (vi)i = { if p0 = k(ql)l, v0 = k’(v’k)k, k=Idx(k’) and l=Idx(k) if
k 6= k’ then ⊥ if k = k’ then ((ql)l + (pi)i∈I\ \0\) ((v’k)k + (vi)i∈I\ \0\) if
p0 = (q1|q2) then First((q1pii∈I \ \0\) vii∈I \ \0\, (q2pii∈I \ \0\) vii∈I \ \0\

) }

For this reason, if we can prove that

∀j, rj(vi)i = r’j((v’k)k ++ (vi)i)

it follows that

m(vi)i = mk((v’k)k ++ (vi)i)

from the above definition.

We can also show that ai = a0.l
l + ai∈I\ \0\ because v(a0) = K(v(a){0.l})l)

1.2 Proof of equivalence checking

1.2.1 The trimming lemma

The trimming lemma allows to reduce the size of a decision tree given an
accessor → π relation (TODO: expand)

∀vT ∈ (a→π), CT (vT) = Ct/a→π(ki)(vT)

We prove this by induction on CT : a. CT = Leafbb: when the decision tree
is a leaf terminal, we know that

Leafbb/a→π(v) = Leafbb(v)

6

gasche
Not sure what this k_i means here, I would simply remove it.

There is a rendering issue, C_T on one side and C_t on the other. The /a->pi notation is also not that clear, maybe you could go back to just
 Trim(C, a->pi)
?

gasche
If you haven't defined the trimming function yet, it should have been done before you try to prove the property.

That means that the result of trimming on a Leaf is the Leaf itself b. The
same applies to Failure terminal

Failure/a→π(v) = Failure(v)

c. When CT = Node(b, (π→Ci)i)/a→π then we look at the accessor a of the
subtree Ci and we define πi’ = πi if a6=b else πi∩π Trimming a switch node
yields the following result:

Node(b, (π→Ci)i)/a→π := Node(b, (π’i→Ci/a→π)i)

For the trimming lemma we have to prove that running the value vT
against the decistion tree CT is the same as running vT against the tree
Ctrim that is the result of the trimming operation on CT

CT (vT) = Ctrim(vT) = Node(b, (πi’→Ci/a→π)i)(vT)

We can reason by first noting that when vT /∈(b→πi)i the node must be a
Failure node. In the case where ∃k| vT∈(b→πk) then we can prove that

Ck/a→π(vT) = Node(b, (πi’→Ci/a→π)i)(vT)

because when a 6= b then πk’= πk and this means that vT∈πk’ while when
a = b then πk’=(πk∩π) and vt∈πk’ because:

• by the hypothesis, vT∈π

• we are in the case where vT∈πk

So vT ∈ πk’ and by induction

Ck(vT) = Ck/a→π(vT)

We also know that ∀vT∈(b→πk) → CT (vT) = Ck(vT) By putting together
the last two steps, we have proven the trimming lemma.

7

gasche

gasche

gasche

1.2.2 Equivalence checking

The equivalence checking algorithm takes as parameters an input space S, a
source decision tree CS and a target decision tree CT :

equiv(S, CS , CT) → Yes No(vS , vT)

When the algorithm returns Yes and the input space is covered by CS
we can say that the couple of decision trees are the same for every couple of
source value vS and target value vT that are equivalent.

equiv(S, CS , CT) = Yes and cover(CT , S) → ∀ vS ' vT∈S ∧ CS(vS) = CT (vT)

In the case where the algorithm returns No we have at least a couple of
counter example values vS and vT for which the two decision trees outputs
a different result.

equiv(S, CS , CT) = No(vS ,vT) and cover(CT , S) → ∀ vS ' vT∈S ∧ CS(vS) 6= CT (vT)

We define the following

Forall(Yes) = Yes
Forall(Yes::l) = Forall(l)
Forall(No(vS ,vT)::_) = No(vS ,vT)

There exists and are injective:

int(k) ∈ N (arity(k) = 0)
tag(k) ∈ N (arity(k) > 0)
π(k) = {n| int(k) = n} x {n| tag(k) = n}

where k is a constructor.
We proceed by case analysis:

1. in case of unreachable:

CS(vS) = Absurd(Unreachable) 6= CT (vT) ∀vS ,vT

8

gasche
bar missing

gasche
Again, it is not clear that the formula below is a claim that you are making.

1. In the case of an empty input space

equiv(∅, CS , CT) := Yes

and that is trivial to prove because there is no pair of values (vS , vT)
that could be tested against the decision trees. In the other subcases
S is always non-empty.

2. When there are Failure nodes at both sides the result is Yes:

equiv(S, Failure, Failure) := Yes

Given that ∀v, Failure(v) = Failure, the statement holds.

3. When we have a Leaf or a Failure at the left side:

equiv(S, Failure as CS , Node(a, (πi → CT i)i)) := Forall(equiv(S∩a→π(ki)), CS , CT i)i)
equiv(S, Leaf bbS as CS , Node(a, (πi → CT i)i)) := Forall(equiv(S∩a→π(ki)), CS , CT i)i)

The algorithm either returns Yes for every sub-input space Si := S∩(a→π(ki))
and subtree CT i

equiv(Si, CS , CT i) = Yes ∀i

or we have a counter example vS , vT for which

vS'vT∈Sk ∧ cS(vS) 6= CT k(vT)

then because

vT∈(a→πk) → CT (vT) = CT k(vT) ,
vS'vT∈S ∧ CS(vS)6=CT (vT)

we can say that

equiv(Si, CS , CT i) = No(vS , vT) for some minimal k∈I

9

4. When we have a Node on the right we define πn as the domain of values
not covered but the union of the constructors ki

πn = ¬(
⋃
π(ki)i)

The algorithm proceeds by trimming

equiv(S, Node(a, (ki → CSi)i, Csf), CT) :=
Forall(equiv(S∩(a→π(ki)i), CSi, Ct/a→π(ki))

i + equiv(S∩(a→π(ki)), CS , Ca→πn))

The statement still holds and we show this by first analyzing the Yes
case:

Forall(equiv(S∩(a→π(ki)i), CSi, Ct/a→π(ki))
i = Yes

The constructor k is either included in the set of constructors ki:

k | k∈(ki)i ∧ CS(vS) = CSi(vS)

We also know that

(1) CSi(vS) = Ct/a→πi
(vT)

(2) CT/a→πi
(vT) = CT (vT)

(1) is true by induction and (2) is a consequence of the trimming
lemma. Putting everything together:

CS(vS) = CSi(vS) = CT/a→πi
(vT) = CT (vT)

When the k/∈(ki)i [TODO]

The auxiliary Forall function returns No(vS, vT) when, for a minimum
k,

equiv(Sk, CSk, CT/a→πk
= No(vS , vT)

10

Then we can say that

CSk(vS) 6= Ct/a→πk
(vT)

that is enough for proving that

CSk(vS) 6= (Ct/a→πk
(vT) = CT (vT))

11

	Correctness of the algorithm
	Statements
	Proof of equivalence checking
	The trimming lemma
	Equivalence checking

