
Translation Verification of the pattern matching
compiler

Francesco Mecca

Abstract

This dissertation presents an algorithm for the translation valida-
tion of the pattern matching compiler. Given the source representa-
tion of the target program and the target program compiled in un-
typed lambda form, the algoritmhm is capable of modelling the source
program in terms of symbolic constraints on it’s branches and apply
symbolic execution on the untyped lambda representation in order to
validate wheter the compilation produced a valid result. In this context
a valid result means that for every input in the domain of the source
program the untyped lambda translation produces the same output as
the source program. The input of the program is modelled in terms
of symbolic constraints closely related to the runtime representation
of objects and the output consists of OCaml code blackboxes that are
not evaluated in the context of the verification.

1 Background

1.1

Objective Caml () is a dialect of the ML (Meta-Language) family of pro-
gramming languages. shares many features with other dialects of ML, such
as SML and Caml Light, The main features of ML languages are the use of
the Hindley-Milner type system that provides many advantages with respect
to static type systems of traditional imperative and object oriented language
such as C, C++ and Java, such as:

• Polymorphism: in certain scenarios a function can accept more than
one type for the input parameters. For example a function that com-
putes the lenght of a list doesn’t need to inspect the type of the ele-
ments of the list and for this reason a List.length function can accept
lists of integers, lists of strings and in general lists of any type. Such

1

languages offer polymorphic functions through subtyping at runtime
only, while other languages such as C++ offer polymorphism through
compile time templates and function overloading. With the Hindley-
Milner type system each well typed function can have more than one
type but always has a unique best type, called the principal type. For
example the principal type of the List.length function is "For any a,
function from list of a to int" and a is called the type parameter.

• Strong typing: Languages such as C and C++ allow the programmer to
operate on data without considering its type, mainly through pointers.
Other languages such as C# and Go allow type erasure so at runtime
the type of the data can’t be queried. In the case of programming
languages using an Hindley-Milner type system the programmer is not
allowed to operate on data by ignoring or promoting its type.

• Type Inference: the principal type of a well formed term can be inferred
without any annotation or declaration.

• Algebraic data types: types that are modelled by the use of two al-
gebraic operations, sum and product. A sum type is a type that can
hold of many different types of objects, but only one at a time. For
example the sum type defined as A + B can hold at any moment a
value of type A or a value of type B. Sum types are also called tagged
union or variants. A product type is a type constructed as a direct
product of multiple types and contains at any moment one instance
for every type of its operands. Product types are also called tuples or
records. Algebraic data types can be recursive in their definition and
can be combined.

Moreover ML languages are functional, meaning that functions are treated as
first class citizens and variables are immutable, although mutable statements
and imperative constructs are permitted. In addition to that features an
object system, that provides inheritance, subtyping and dynamic binding,
and modules, that provide a way to encapsulate definitions. Modules are
checked statically and can be reificated through functors.

1.2 Lambda form compilation

provides compilation in form of a byecode executable with an optionally em-
beddable interpreter and a native executable that could be statically linked
to provide a single file executable.

2

After the typechecker has proven that the program is type safe, the com-
piler lower the code to Lambda, an s-expression based language that assumes
that its input has already been proved safe. On the Lambda representation
of the source program, the compiler performes a series of optimization passes
before translating the lambda form to assembly code.

1. datatypes

Most native data types in , such as integers, tuples, lists, records, can
be seen as instances of the following definition

type t = Nil | One of int | Cons of int * t

that is a type t with three constructors that define its complete signa-
ture. Every constructor has an arity. Nil, a constructor of arity 0, is
called a constant constructor.

2. Lambda form types A lambda form target file produced by the com-
piler consists of a single s-expression. Every s-expression consist of
(, a sequence of elements separated by a whitespace and a closing).
Elements of s-expressions are:

• Atoms: sequences of ascii letters, digits or symbols
• Variables
• Strings: enclosed in double quotes and possibly escaped
• S-expressions: allowing arbitrary nesting

There are several numeric types:

• integers: that us either 31 or 63 bit two’s complement arithmetic
depending on system word size, and also wrapping on overflow

• 32 bit and 64 bit integers: that use 32-bit and 64-bit two’s com-
plement arithmetic with wrap on overflow

• big integers: offer integers with arbitrary precision
• floats: that use IEEE754 double-precision (64-bit) arithmetic with

the addition of the literals infinity, neg_infinity and nan.

The are varios numeric operations defined:

• Arithmetic operations: +, -, *, /, % (modulo), neg (unary nega-
tion)

3

• Bitwise operations: &, |, ˆ, «, » (zero-shifting), a» (sign extend-
ing)

• Numeric comparisons: <, >, <=, >=, ==

3. Functions

Functions are defined using the following syntax, and close over all
bindings in scope: (lambda (arg1 arg2 arg3) BODY) and are applied
using the following syntax: (apply FUNC ARG ARG ARG) Evaluation
is eager.

4. Bindings The atom let introduces a sequence of bindings: (let BIND-
ING BINDING BINDING . . . BODY)

5. Other atoms TODO: if, switch, stringswitch. . . TODO: magari esempi

1.3 Pattern matching

Pattern matching is a widely adopted mechanism to interact with ADT.
C family languages provide branching on predicates through the use of if
statements and switch statements. Pattern matching on the other hands ex-
press predicates through syntactic templates that also allow to bind on data
structures of arbitrary shapes. One common example of pattern matching
is the use of regular expressions on strings. provides pattern matching on
ADT and primitive data types. The result of a pattern matching operation
is always one of:

• this value does not match this pattern”

• this value matches this pattern, resulting the following bindings of
names to values and the jump to the expression pointed at the pattern.

type color = | Red | Blue | Green | Black | White

match color with
| Red -> print "red"
| Blue -> print "red"
| Green -> print "red"
| _ -> print "white or black"

provides tokens to express data destructoring. For example we can ex-
amine the content of a list with patten matching

4

begin match list with
| [] -> print "empty list"
| element1 :: [] -> print "one element"
| (element1 :: element2) :: [] -> print "two elements"
| head :: tail-> print "head followed by many elements"

Parenthesized patterns, such as the third one in the previous example,
matches the same value as the pattern without parenthesis.

The same could be done with tuples

begin match tuple with
| (Some _, Some _) -> print "Pair of optional types"
| (Some _, None) | (None, Some _) -> print "Pair of optional types, one of which is null"
| (None, None) -> print "Pair of optional types, both null"

The pattern pattern1 | pattern2 represents the logical "or" of the two
patterns pattern1 and pattern2. A value matches pattern1 | pattern2 if it
matches pattern1 or pattern2.

Pattern clauses can make the use of guards to test predicates and vari-
ables can captured (binded in scope).

begin match token_list with
| "switch"::var::"{"::rest -> ...
| "case"::":"::var::rest when is_int var -> ...
| "case"::":"::var::rest when is_string var -> ...
| "}"::[] -> ...
| "}"::rest -> error "syntax error: " rest

Moreover, the pattern matching compiler emits a warning when a pattern
is not exhaustive or some patterns are shadowed by precedent ones.

1.4 Symbolic execution

1.5 Translation validation

Translators, such as translators and code generators, are huge pieces of soft-
ware usually consisting of multiple subsystem and constructing an actual
specification of a translator implementation for formal validation is a very

5

long task. Moreover, different translators implement different algorithms,
so the correctness proof of a translator cannot be generalized and reused
to prove another translator. Translation validation is an alternative to the
verification of existing translators that consists of taking the source and the
target (compiled) program and proving a posteriori their semantic equiva-
lence.

� Techniques for translation validation

� What does semantically equivalent mean

� What happens when there is no semantic equivalence

� Translation validation through symbolic execution

1.6 Translation validation of the Pattern Matching Compiler

1. Source program The algorithm takes as its input a source program and
translates it into an algebraic data structure called constraint_tree.

type constraint_tree =
| Unreachable
| Failure
| Leaf of source_expr
| Guard of source_blackbox * constraint_tree * constraint_tree
| Node of accessor * (constructor * constraint_tree) list * constraint_tree

Unreachable, Leaf of source_expr and Failure are the terminals of the
three. We distinguish

• Unreachable: statically it is known that no value can go there

• Failure: a value matching this part results in an error

• Leaf: a value matching this part results into the evaluation of a
source blackbox of code

The algorithm doesn’t support type-declaration-based analysis to know
the list of constructors at a given type. Let’s consider some trivial
examples:

function true -> 1

6

[] Converti a disegni

Is translated to

Node ([(true, Leaf 1)], Failure)

while

function
true -> 1
| false -> 2

will give

Node ([(true, Leaf 1); (false, Leaf 2)])

It is possible to produce Unreachable examples by using refutation
clauses (a "dot" in the right-hand-side)

function
true -> 1
| false -> 2
| _ -> .

that gets translated into Node ([(true, Leaf 1); (false, Leaf 2)], Un-
reachable)

We trust this annotation, which is reasonable as the type-checker ver-
ifies that it indeed holds.

Guard nodes of the tree are emitted whenever a guard is found. Guards
node contains a blackbox of code that is never evaluated and two
branches, one that is taken in case the guard evaluates to true and
the other one that contains the path taken when the guard evaluates
to true.

[] Finisci con Node [] Spiega del fallback [] rivedi compilazione per
tenere in considerazione il tuo albero invece che le lambda [] Specifica
che stesso algoritmo usato per compilare a lambda, piu‘ optimizations

The source code of a pattern matching function in has the following
form:

7

match variable with
| pattern1 -> expr1
| pattern2 when guard -> expr2
| pattern3 as var -> expr3
...
| pn -> exprn

and can include any expression that is legal for the compiler, such as
"when" conditions and assignments. Patterns could or could not be
exhaustive.

Pattern matching code could also be written using the more compact
form:

function
| pattern1 -> expr1
| pattern2 when guard -> expr2
| pattern3 as var -> expr3
...
| pn -> exprn

This BNF grammar describes formally the grammar of the source pro-
gram:

start ::= "match" id "with" patterns | "function" patterns
patterns ::= (pattern0|pattern1) pattern1+
;; pattern0 and pattern1 are needed to distinguish the first case in which
;; we can avoid writing the optional vertical line
pattern0 ::= clause
pattern1 ::= "|" clause
clause ::= lexpr "->" rexpr

lexpr ::= rule (ε|condition)
rexpr ::= _code ;; arbitrary code

rule ::= wildcard|variable|constructor_pattern|or_pattern ;;

;; rules
wildcard ::= "_"
variable ::= identifier

8

constructor_pattern ::= constructor (rule|ε) (assignment|ε)

constructor ::= int|float|char|string|bool
|unit|record|exn|objects|ref
|list|tuple|array
|variant|parameterized_variant ;; data types

or_pattern ::= wildcard|variable|constructor_pattern ("|" wildcard|variable|constructor_pattern)+

condition ::= "when" bexpr
assignment ::= "as" id
bexpr ::= _code ;; arbitrary code

Patterns are of the form

pattern type of pattern
_ wildcard
x variable
c(p1,p2,. . . ,pn) constructor pattern
(p1| p2) or-pattern

During compilation by the translators expressions are compiled into
lambda code and are referred as lambda code actions li.

The entire pattern matching code is represented as a clause matrix
that associates rows of patterns (pi,1, pi,2, . . . , pi,n) to lambda code
action li

(P → L) =

p1,1 p1,2 · · · p1,n → l1
p2,1 p2,2 · · · p2,n → l2
...

...
. . .

... →
...

pm,1 pm,2 · · · pm,n → lm

The pattern p matches a value v, written as p 4 v, when one of the
following rules apply

_ 4 v ∀v
x 4 v ∀v
(p1 |\ p2) 4 v iff p1 4 v or p2 4 v
c(p1, p2, . . . , pa) 4 c(v1, v2, . . . , va) iff (p1, p2, . . . , pa) 4 (v1, v2, . . . , va)
(p1, p2, . . . , pa) 4 (v1, v2, . . . , va) iff pi 4 vi ∀i ∈ [1..a]

9

When a value v matches pattern p we say that v is an instance of p.
Considering the pattern matrix P we say that the value vector ~v = (v1,
v2, . . . , vi) matches the line number i in P if and only if the following
two conditions are satisfied:

• pi,1, pi,2, · · · , pi,n 4 (v1, v2, . . . , vi)
• ∀j < i pj,1, pj,2, · · · , pj,n � (v1, v2, . . . , vi)

We can define the following three relations with respect to patterns:

• Patter p is less precise than pattern q, written p 4 q, when all
instances of q are instances of p

• Pattern p and q are equivalent, written p ≡ q, when their in-
stances are the same

• Patterns p and q are compatible when they share a common in-
stance

(a) Initial state of the compilation
Given a source of the following form:

match variable with
| pattern1 -> e1
| pattern2 -> e2
...
| pm -> em

the initial input of the algorithm C consists of a vector of variables
~x = (x1, x2, . . . , xn) of size n where n is the arity of the type of
x and a clause matrix P → L of width n and height m. That is:

C((~x = (x1, x2, ..., xn),

p1,1 p1,2 · · · p1,n → l1
p2,1 p2,2 · · · p2,n → l2
...

...
. . .

...→
...

pm,1 pm,2 · · · pm,n → lm)

The base case C0 of the algorithm is the case in which the ~x is
empty, that is ~x = (), then the result of the compilation C0 is l1

C0((),

→ l1
→ l2

→
...

→ lm

)) = l1

10

When ~x 6= () then the compilation advances using one of the
following four rules:

i. Variable rule: if all patterns of the first column of P are
wildcard patterns or bind the value to a variable, then

C(~x, P → L) = C((x2, x3, ..., xn), P
′ → L′)

where
p1,2 · · · p1,n → (let y1 x1) l1
p2,2 · · · p2,n → (let y2 x1) l2
...

. . .
... →

...
...

...
...

pm,2 · · · pm,n → (let ym x1) lm

That means in every lambda action li there is a binding of x1
to the variable that appears on the pattern $pi,1. Bindings
are omitted for wildcard patterns and the lambda action li
remains unchanged.

ii. Constructor rule: if all patterns in the first column of P are
constructors patterns of the form k(q1, q2, . . . , qn) we define
a new matrix, the specialized clause matrix S, by applying
the following transformation on every row p:

for every c ∈ Set of constructors
for i ← 1 .. m

let ki ← constructor_of(pi,1)
if ki = c then

p ← qi,1, qi,2, ..., qi,n′ , pi,2, pi,3, ..., pi,n

Patterns of the form qi,j matches on the values of the con-
structor and we define new fresh variables y1, y2, . . . , ya so
that the lambda action li becomes

(let (y1 (field 0 x1))
(y2 (field 1 x1))
...
(ya (field (a−1) x1))
li)

and the result of the compilation for the set of constructors {c1,
c2, . . . , ck} is:

11

switch x1 with
case c1: l1
case c2: l2
...
case ck: lk
default: exit

i. Orpat rule: there are various strategies for dealing with or-
patterns. The most naive one is to split the or-patterns. For
example a row p containing an or-pattern:

(pi,1|qi,1|ri,1), pi,2, ..., pi,m → li

results in three rows added to the clause matrix

pi,1, pi,2, ..., pi,m → li

qi,1, pi,2, ..., pi,m → li

ri,1, pi,2, ..., pi,m → li

ii. Mixture rule: When none of the previous rules apply the
clause matrix P → L is splitted into two clause matrices, the
first P1 → L1 that is the largest prefix matrix for which one
of the three previous rules apply, and P2 → L2 containing the
remaining rows. The algorithm is applied to both matrices.

12

