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Preface by Editor-in-Chief

The 13th issue of LNCS Transactions on Petri Nets and Other Models of Concurrency
(ToPNoC) contains revised and extended versions of a selection of the best papers from
the workshops held at the 38th International Conference on Application and Theory of
Petri Nets and Concurrency (Petri Nets 2017, Zaragoza, Spain, June 25–30, 2017), and
the 17th International Conference on Application of Concurrency to System Design
(ACSD 2017, Zaragoza, Spain, June 25–30, 2017).

I would like to thank the two guest editors of this special issue: Lars Michael
Kristensen and Wojciech Penczek. Moreover, I would like to thank all authors,
reviewers, and organizers of the Petri Nets 2017 and ACSD 2017 satellite workshops,
without whom this issue of ToPNoC would not have been possible.

September 2018 Maciej Koutny



LNCS Transactions on Petri Nets and Other Models
of Concurrency: Aims and Scope

ToPNoC aims to publish papers from all areas of Petri nets and other models of
concurrency ranging from theoretical work to tool support and industrial applications.
The foundations of Petri nets were laid by the pioneering work of Carl Adam Petri and
his colleagues in the early 1960s. Since then, a huge volume of material has been
developed and published in journals and books as well as presented at workshops and
conferences.

The annual International Conference on Application and Theory of Petri Nets and
Concurrency started in 1980. For more information on the international Petri net
community, see: http://www.informatik.uni-hamburg.de/TGI/PetriNets/.

All issues of ToPNoC are LNCS volumes. Hence they appear in all main libraries
and are also accessible on SpringerLink (electronically). It is possible to subscribe to
ToPNoC without subscribing to the rest of LNCS.

ToPNoC contains:

– Revised versions of a selection of the best papers from workshops and tutorials
concerned with Petri nets and concurrency

– Special issues related to particular subareas (similar to those published in the
Advances in Petri Nets series)

– Other papers invited for publication in ToPNoC
– Papers submitted directly to ToPNoC by their authors

Like all other journals, ToPNoC has an Editorial Board, which is responsible for the
quality of the journal. The members of the board assist in the reviewing of papers
submitted or invited for publication in ToPNoC. Moreover, they may make recom-
mendations concerning collections of papers for special issues. The Editorial Board
consists of prominent researchers within the Petri net community and in related fields.

Topics

The topics covered include: system design and verification using nets; analysis and
synthesis; structure and behavior of nets; relationships between net theory and other
approaches; causality/partial order theory of concurrency; net-based semantical, logical
and algebraic calculi; symbolic net representation (graphical or textual); computer tools
for nets; experience with using nets, case studies; educational issues related to nets;
higher-level net models; timed and stochastic nets; and standardization of nets.

Also included are applications of nets to: biological systems; security systems;
e-commerce and trading; embedded systems; environmental systems; flexible manu-
facturing systems; hardware structures; health and medical systems; office automation;

http://www.informatik.uni-hamburg.de/TGI/PetriNets/


operations research; performance evaluation; programming languages; protocols and
networks; railway networks; real-time systems; supervisory control; telecommunica-
tions; cyber physical systems; and workflow.

For more information about ToPNoC see: http://www.springer.com/gp/computer-
science/lncs/lncs-transactions/petri-nets-and-other-models-of-concurrency-topnoc-/
731240.

Submission of Manuscripts

Manuscripts should follow LNCS formatting guidelines, and should be submitted as
PDF or zipped PostScript files to ToPNoC@ncl.ac.uk. All queries should be sent to the
same e-mail address.
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Preface by Guest Editors

This volume of ToPNoC contains revised versions of a selection of the best workshop
papers presented at satellite events of the 38th International Conference on Application
and Theory of Petri Nets and Other Models of Concurrency (Petri Nets 2017) and the
17th International Conference on Application of Concurrency to System Design
(ACSD 2017).

As guest editors, we are indebted to the Program Committees of the workshops and
in particular to their chairs. Without their enthusiastic support and assistance, this
volume would not have been possible. The papers considered for this special issue have
been selected in close cooperation with the workshop chairs. Members of the Program
Committees participated in reviewing the new versions of the papers eventually
submitted.

We received suggestions for papers for this special issue from:

– ATAED 2017: Workshop on Algorithms and Theories for the Analysis of Event
Data (Chairs: Wil van der Aalst, Robin Bergenthum, Josep Carmona)

– PNSE 2017: International Workshop on Petri Nets and Software Engineering
(Chairs: Lawrence Cabac, Daniel Moldt, Heiko Rölke).

The authors of the suggested papers were invited to improve and extend their results
where possible, based on the comments received before and during the workshops.
Each resulting revised submission was reviewed by at least two referees. We followed
the principle of asking for fresh reviews of the revised papers, also from referees not
involved initially in the reviewing of the original workshop contributions. All papers
went through the standard two-stage journal reviewing process, and eventually eight
were accepted after rigorous reviewing and revising. In addition, we invited the
organizers of the eighth edition of the model checking contest to coordinate a paper
reporting on the recent results and findings from the tool competition. The paper from
the model checking contest was also subject to a two-stage review process and was
selected for inclusion in this special volume.

The paper “Computing Alignments of Event Data and Process Models” by
Sebastiaan van Zelst, Alfredo Bolt, and Boudewijn van Dongen considers the
fundamental problem in process mining of checking conformance between a process
model and an event log recorded from a system. The paper reports on large-scale
experiments with process models aimed at investigating the impact that parameters of
conformance checking algorithms have on the efficiency of computing optimal
alignments. The paper concludes that the specific parameter configurations have a
significant effect on computation efficiency.

Local process models describe structured fragments of process behavior that occurs
in the context of business processes. The paper “Heuristic Mining Approaches for
High-Utility Local Process Models” by Benjamin Dalmas, Niek Tax, and Sylvie Norre
studies how a collection of process models that provide business insight can be



generated. The paper proposes heuristics to prune the search space in high-utility local
process model mining without significant loss of precision. The relation between event
log properties and the effect of using the proposed heuristics in terms of search space
and precision is also investigated.

The paper “On Stability of Regional Orthomodular Posets” by Luca Bernardinello,
Carlo Ferigato, Lucia Pomello, and Adrian Puerto Aubel presents a fundamental study
of so-called regional logics corresponding to the set of regions of a transition system
ordered by set inclusion. The paper presents initial results related to stability of regional
logics representing some first steps toward a full characterization of stability.

The variable ordering used in model checking based on binary decision diagrams is
known to have a significant impact on verification performance. The paper “Decision
Diagrams for Petri Nets: A Comparison of Variable Ordering Algorithms” by Elvio
Gilberto Amparore, Susanna Donatelli, Marco Beccuti, Giulio Garbi, and Andrew
Miner presents an extensive experimental comparison of static variable orderings in the
context of Petri nets. The paper has led to new insight into fundamental properties
exploited by existing variable orderings proposed in the literature.

Modeling complex systems requires a combination of techniques to facilitate
multiple perspectives and adequate modeling. The paper “Model Synchronization and
Concurrent Simulation of Multiple Formalisms Based on Reference Nets” by Pascale
Möller, Michael Haustermann, David Mosteller, and Dennis Schmitz shows how
multiple formalisms can be used together in their original representation without the
transformation to a single formalism. The authors present an approach to transform
modeling languages into Reference Nets, which can be executed with the simulation
environment Renew. A finite automata modeling and simulation tool is given to
showcase the application of the concept.

Web service composition represents a fundamental problem and its complexity
depends on the restrictions assumed. The paper “Complexity Aspects of Web Services
Composition” by Karima Ennaoui, Lhouari Nourine, and Farouk Toumani studies the
impact of several parameters on the complexity of this problem. The authors show that
the problem is EXPTIME-complete if there is a bound on either: the number of
instances of services that can be used in a composition, or the number of instances of
services that can be used in parallel, or the number of the hybrid states in the finite state
machines representing the business protocols of existing services.

The paper “GPU Computations and Memory Access Model Based on Petri net” by
Anna Gogolińska, Łukasz Mikulski, and Marcin Piątkowski presents a general and
uniform GPU computation and memory access model based on bounded inhibitor Petri
nets. The effectiveness of the model is demonstrated by comparing its throughput with
practical computational experiments performed on the Nvidia GPU with the CUDA
architecture. The accuracy of the model was tested with different kernels.

Testing of fault-tolerant distributed software systems is a challenging task. The
paper “Model-Based Testing of the Gorums Framework for Fault-Tolerant Distributed
Systems” by Rui Wang, Lars Michael Kristensen, Hein Meling, and Volker Stolz
shows how colored Petri net models can be used for model-based test case generation.
The authors concentrate on so-called quorum-based distributed systems, and exper-
imentally demonstrate that test cases automatically obtained from colored Petri net
models may lead to a high statement coverage.

XII Preface by Guest Editors



The Model Checking Contest (MCC) is an annual competition aimed at providing a
fair evaluation of software tools that verify concurrent systems using state-space
exploration techniques and model checking. The paper “MCC 2017 – The Seventh
Model Checking Contest” by Fabrice Kordon, Hubert Garavel, Lom Messan Hillah,
Emmanuel Paviot-Adet, Loïg Jezequel, Francis Hulin-Hubard, Elvio Amparore, Marco
Beccuti, Bernard Berthomieu, Hugues Evrard, Peter G. Jensen, Didier Le Botlan,
Torsten Liebke, Jeroen Meijer, Jiří Srba, Yann Thierry-Mieg, Jaco van de Pol, and
Karsten Wolf presents the principles and the results of the 2017 edition of the MCC,
which took place along with the Petri Net and ACSD joint conferences.

As guest editors, we would like to thank all authors and referees who contributed to
this issue. The quality of this volume is the result of the high scientific standard of their
work. Moreover, we would like to acknowledge the excellent cooperation throughout
the whole process that has made our work a pleasant task. We are also grateful to the
Springer/ToPNoC team for the final production of this issue.

September 2018 Lars Michael Kristensen
Wojciech Penczek
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Computing Alignments of Event Data
and Process Models

Sebastiaan J. van Zelst(B), Alfredo Bolt, and Boudewijn F. van Dongen

Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{s.j.v.zelst,a.bolt,b.f.v.dongen}@tue.nl

Abstract. The aim of conformance checking is to assess whether a pro-
cess model and event data, recorded in an event log, conform to each
other. In recent years, alignments have proven extremely useful for cal-
culating conformance statistics. Computing optimal alignments is equiv-
alent to solving a shortest path problem on the state space of the syn-
chronous product net of a process model and event data. State-of-the-art
alignment based conformance checking implementations exploit the A∗-
algorithm, a heuristic search method for shortest path problems, and
include a wide range of parameters that likely influence their perfor-
mance. In previous work, we presented a preliminary and exploratory
analysis of the effect of these parameters. This paper extends the afore-
mentioned work by means of large-scale statistically-sound experiments
that describe the effects and trends of these parameters for different
populations of process models. Our results show that, indeed, there exist
parameter configurations that have a significant positive impact on align-
ment computation efficiency.

Keywords: Process mining · Conformance checking · Alignments

1 Introduction

Most organizations, in a variety of fields such as banking, insurance and health-
care, execute several different (business) processes. Modern information systems
allow us to track, store and retrieve data related to the execution of such pro-
cesses, in the form of event logs. Often, an organization has a global idea, or even
a formal specification, of how the process is supposed to be executed. In other
cases, laws and legislations dictate explicitly in what way a process is ought to
be executed. Hence, it is in the company’s interest to assess to what degree the
execution of their processes is in line with the corresponding specification.

Conformance checking techniques, originating from the field of process min-
ing [3], aim at solving the aforementioned problem. Conformance checking tech-
niques allow us to quantify to what degree the actual execution of a process,
as recorded in an event log, conforms to a corresponding process specification.
c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
M. Koutny et al. (Eds.): ToPNoC XIII, LNCS 11090, pp. 1–26, 2018.
https://doi.org/10.1007/978-3-662-58381-4_1
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2 S. J. van Zelst et al.

Recently, alignments were introduced [4,6], which rapidly developed into the
de-facto standard in conformance checking. The major advantage of alignments
w.r.t. alternative conformance checking techniques, is the fact that deviations
and/or mismatches are quantified in an exact, unambiguous manner.

When computing alignments, we convert a given process model, together
with the behaviour recorded in an event log, into a synchronous product net and
subsequently solve a shortest path problem on its state space. Typically, the well
known A∗ algorithm [8] is used as an underlying solution to the shortest path
problem. However, several (in some cases alignment-specific) parametrization
options are defined and applied on top of the basic A∗ solution.

In previous work [19] we presented a preliminary and exploratory analysis of
the effect of several parameters on the conventional alignment algorithm. In this
paper, we extend the aforementioned work further, by assessing a significantly
larger population of process models. We specifically focus on those parametriza-
tions of the basic approach that, in our previous work, have shown to have a
positive impact on the algorithm’s overall performance. Moreover, we present a
concise algorithmic description of alignment calculation which explicitly includes
these parameters. Our experiments confirm that, indeed, the parameters studied
enable us to increase the overall efficiency of computing alignments.

The remainder of this paper is organized as follows. In Sect. 2, we present
preliminaries. In Sect. 3, we present the basic A∗-based alignment algorithm. In
Sect. 4, we evaluate the proposed parametrization. In Sect. 5, we discuss related
work. Section 6 concludes the paper.

2 Preliminaries

In this section, we present preliminary concepts needed for a basic understanding
of the paper. We assume the reader to be reasonably familiar with concepts such
as functions, sets, bags, sequences and Petri nets.

2.1 Sets, Tuples, Sequences and Matrices

We denote the set of all possible multisets over set X as B(X). We denote
the set of all possible sequences over set X as X∗. The empty sequence is
denoted 〈〉. Concatenation of sequences σ1 and σ2 is denoted as σ1 · σ2. Given
tuple x = (x1, x2, . . . , xn) of Cartesian product X1 × X2 × . . . × Xn, we define
πi(x) = xi for all i ∈ {1, 2, . . . , n}. In case we have a tuple t ∈ X × Y × Z, we
have π1(t) ∈ X, π2(t) ∈ Y and π3(t) ∈ Z. We overload notation and extend
projection to sequences, i.e. given sequence σ ∈ (X1 × X2 × . . . × Xn)∗ of
length k where σ = 〈(x1

1, x
1
2, . . . , x

1
n), (x2

1, x
2
2, . . . , x

2
n), . . . , (xk

1 , x
k
2 , . . . , x

k
n)〉, we

have πi(σ) = 〈x1
i , x

2
i , . . . , x

k
i 〉 ∈ X∗

i , for all i ∈ {1, 2, . . . , n}. Given a sequence
σ = 〈x1, x2, . . . , xk〉 ∈ X∗ and a function f : X → Y , we define πf : X∗ → Y ∗

with πf (σ) = 〈f(x1), f(x2), . . . , f(xk)〉. Given Y ⊆ X we define ↓Y : X∗ → Y ∗

recursively with ↓Y (〈〉) = 〈〉 and ↓Y (〈x〉 · σ) = 〈x〉· ↓Y (σ) if x ∈ Y and
↓Y (〈x〉 · σ) =↓Y (σ) if x /∈ Y . We write σ↓Y

for ↓Y (σ). Given an m × n matrix
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A, i.e. A has m rows and n columns, Ai,j represents the element on row i and
column j (1 ≤ i ≤ m, 1 ≤ j ≤ n). Aᵀ represents the transpose of A. �x ∈ R

n

denotes a column vector of length n, whereas �xT represents a row vector.

2.2 Event Logs and Petri Nets

The execution of business processes within a company generates traces of event
data in its supporting information systems. We are able to extract such data
from these information systems, describing, for specific instances of the process,
e.g. an insurance claim, what sequence of activities has been performed over
time. We refer to a collection of such event data as an event log. A sequence
of executed process activities, related to a process instance, is referred to as a
trace. Consider Table 1, which depicts a simplified view of an event log.

The event log describes the execution of activities related to a phone repair
process. For example, consider all events related to case 1216, i.e. a new defect is
registered by Abdul, Maggy subsequently repairs the phone, Harry informs the
corresponding client, etc. When we consider all events executed for case 1216,
ordered by time-stamp, we observe that it generates the sequence of activities
〈a, b, d, e, g〉 (note that we use short-hand activity names for simplicity). Such
projection, i.e. merely focussing on the sequential ordering of activities, is also
referred to as the control-flow perspective. In the remainder of this paper we
assume this perspective, which we formalize in Definition 1.

Definition 1 (Event Log). Let A denote the universe of activities. An event
log L is a multiset of sequences over activities in A, i.e. L ∈ B(A∗).

Each sequence σ ∈ L describes a trace, which potentially occurs multiple times
in an event log.

Table 1. Example event log fragment.

Event-id Case-id Activity Resource Time-stamp

. . . . . . . . . . . .

12474 1215 test (e) John 2017-11-14 14:45

12475 1216 register defect (a) Abdul 2017-11-14 15:12

12476 1215 order replacement (h) Maggy 2017-11-14 15:14

12477 1216 repair (b) Maggy 2017-11-14 15:31

12478 1216 inform client (d) Harry 2017-11-14 15:40

12479 1216 test (e) Maggy 2017-11-14 14:49

12480 1216 return to client (g) Maggy 2017-11-14 16:01

12481 1217 register defect (a) John 2017-11-14 16:03

. . . . . . . . . . . . . . .
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p1 t1

a

register

defect

p2

p3 t4

d

inform client

t3

c

outsource repair

t2

b

repair

p5 t6

e

test

p4 t5

e

test

p6

t7

t8

g

return to client

t9

h

order replacement

p7

Fig. 1. Example labelled Petri net N1 = (P1, T1, F1, λ1) describing a (simplified) phone-
repair process.

Event logs describe the actual execution of business processes, i.e. as recorded
within a company’s information system. Process models on the other hand allow
us to describe the intended behaviour of a process. In this paper we use Petri
nets [15] as a process modelling notation. An example Petri net is depicted
in Fig. 1. The Petri net, like the event log, describes a process related to phone
repair. It dictates that first a register defect activity needs to be performed. After
this, a repair needs to be performed. Such repair is alternatively outsourced. In
parallel with the repair, the client is optionally informed about the status of the
repair. In any case, after the repair is completed, the repaired phone is tested.
If the test succeeds the phone is returned to the client. If the test fails, either a
new repair is performed, or, a replacement is ordered.

A Petri net is simply a bipartite graph with a set of vertices called places and
a set of vertices called transitions. Places, depicted as circles, represent the state
of the process. Transitions, depicted as boxes, represent executable actions, i.e.
activities. A place can be marked by one ore more tokens which are graphically
represented by black dots, depicted inside of the place, e.g. place p1 is marked
with one token in Fig. 1. If all places connected to a transition, by means of an
ingoing arc into the transition, contain a token, we are able to fire the transition,
i.e. equivalent with executing the activity represented by the transition. In such
case, the transition consumes a token for each incoming arc, and produces a
token for each of its outgoing arcs, e.g. transition t1 is enabled in Fig. 1. After
firing transition t1, the token in p1 is removed and both place p2 and place p3
contain a token. In this paper we assume that each transition has an associated
(possibly unobservable) label which represents the corresponding activity, e.g.
the label of transition t1 is register defect (or simply a in short-hand notation)
whereas transition t7 is unobservable.

Definition 2 (Labelled Petri net). Let P denote a set of places, let T denote
a set of transitions and let F ⊆ (P × T ) ∪ (T × P ) denote the flow relation. Let
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Σ denote the universe of labels, let τ /∈ Σ denote the unobservable label and let
λ : T → Σ ∪ {τ}. A labelled Petri net is a quadruple N = (P, T, F, λ).

Observe that N1 in Fig. 1, in terms of Definition 2, is described as N1 = (P1 =
{p1, . . . , p7}, T1 = {t1, t2, . . . , t9}, F1 = {(p1, t1), . . . , (t9, p7)}, λ1 = {λ1(t1) =
a, λ1(t2) = b, . . . , λ1(t9) = h}). Additionally observe that λ1(t7) = τ , which is
graphically visualized by the black solid fill of transition t7.

Given an element x ∈ P ∪ T , we define •x = {y ∈ P ∪ T | (y, x) ∈ F}
and x• = {y ∈ P ∪ T | (x, y) ∈ F}. A marking m of Petri net N = (P, T, F, λ)
is a multiset of P , i.e. m ∈ B(P ). Given such marking and a Petri net, we
write (N,m), which we refer to as a marked net. The initial marking of N is
denoted as mi, and thus, (N,mi) represents the initially marked net. When
a transition t is enabled in a marking m, i.e. ∀p ∈ •t(m(p) > 0), we write
(N,m)[t〉, e.g. (N1, [p1])[t1〉. Firing an enabled transition t in marking m, yielding
m′ = (m − •t) � t•, is written as (N,m) t−→ (N,m′). If firing a sequence of
transitions σ = 〈t1, t2, . . . , tn〉 ∈ T ∗, starts in marking m and yields marking
m′, i.e. (N,m) t1−→ (N,m1)

t2−→ . . . (N,mn−1)
tn−→ (N,m′), we write (N,m) σ−→

(N,m′). The set of all reachable markings from marking m is denoted R(N,m) =
{m′ ⊆ B(P ) | ∃σ ∈ T ∗((N,m) σ−→ (N,m′))}. Given a designated marking m

and target marking m′, we let L(N,m,m′) = {σ ∈ T ∗ | (N,m) σ−→ (N,m′)}.
For example, 〈t1, t2, t5, t8〉 ∈ L(N1, [p1], [p7]). In case we are interested in the
sequence of activities described by a firing sequence σ we apply (πλ(σ))↓Σ

, e.g.
(πλ1(〈t1, t2, t5, t7, t3, t4, t6, t8〉))↓Σ

= 〈a, b, e, c, d, e, g〉.
In the remainder, we let A denote the incidence matrix of a (labelled) Petri

net N = (P, T, F, λ). A is an |T | × |P | matrix where Ai,j = 1 if pj ∈ ti • \ • ti,
Ai,j = −1 if pj ∈ •ti \ ti• and Ai,j = 0 otherwise. Further more, given some
marking m ∈ B(P ), we write �m to denote a |P |-sized column vector with �m(i) =
m(pi) for 1 ≤ i ≤ |P |.

2.3 Alignments

The example event log and Petri net, presented in Table 1 and Fig. 1 respectively,
are both related to a simplified phone repair process. In case of our example trace
related to case 1216, i.e. 〈a, b, d, e, g〉, it is easy to see that there exists a σ ∈ T ∗

1

s.t. (πλ1(σ))↓Σ = 〈a, b, d, e, g〉, i.e. σ = 〈t1, t2, t4, t6, t8〉. In practice however, such
direct mapping between observed activities and transition firings in a Petri net is
often not possible. In some cases, activities are not executed whereas the model
specifies they are supposed to. Similarly, in some cases we observe activities that
according to the model are not possible, at least at that specific point within the
trace. Such mismatches are for example caused by employees deviating from the
process as specified, e.g. activities are executed twice or mandatory activities
are skipped. Moreover, in many cases the process specification is not exactly in
line with the actual execution of the process, i.e. some aspects of the process are
overlooked when designing the process specification.

Alignments allow us to compare the behaviour recorded in an event log with
the behaviour as described by a Petri net. Conceptually, an alignment represents
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γ1 :
a d d � e g
t1 t4 � t2 t6 t8

γ2 :
a � d d e g
t1 t3 � t4 t6 t8

γ3 :
a � d � � � d e g
t1 t2 t4 t6 t7 t3 t4 t6 t8

Fig. 2. Example alignments for 〈a, d, d, e, g〉 and N1.

a mapping between the activities observed in a trace σ ∈ L and the execution
of transitions in the Petri net. As an example, consider trace 〈a, d, d, e, g〉 and
reconsider Petri net N1 in Fig. 1. The trace does not fit the behaviour described
by N1. In Fig. 2 we present three different alignments of 〈a, d, d, e, g〉 and N1.
The first alignment, i.e. γ1, specifies that the execution of the second d-activity is
abundant, and, that an activity described by transition t2 is missing. Similarly,
the second alignment, i.e. γ2, specifies that an activity described by transition t3
is missing and that the first execution of the d-activity is abundant. Alignment
γ3 specifies that we are able to map each activity observed in the trace to a tran-
sition in the model, however, in such case, we at least miss activities described
by transitions t2, t3 and t6. Note that we do not miss an activity related to the
execution of transition t7, as this is an invisible transition.

When ignoring the -symbols, the top row of each alignment equals the
given trace, i.e. 〈a, d, d, e, g〉. The bottom row of each alignment, again when
ignoring the -symbols, represents a firing sequence in the language of N1, i.e.
σ ∈ L(N1, [p1], [p7]). Each individual column is referred to as a move. A move
of the form | a

� | is called a log move and represents behaviour observed in the
trace that is not mapped onto the model. A move of the form |�

t | is called a
model move and represents behaviour that according to the model should have
happened, yet was not observed at that position in the trace. A move of the
form |a

t | is called a synchronous move and represents an observed activity that
is also described by the model at that position in the trace.

Definition 3 (Alignment). Let σ ∈ A∗ be a trace. Let N = (P, T, F, λ) be a
labelled Petri net and let mi,mf ∈ B(P ) denote N ′s initial and final marking.
Let /∈ A ∪ T . A sequence γ ∈ ((A ∪ {}) × (T ∪ {}))∗ is an alignment if:

1. (π1(γ))↓A = σ; event part equals σ.

2. (N,mi)
(π2(γ))↓T−−−−−−→ (N,mf ); transition part is in the Petri net’s language.

3. ∀(a, t) ∈ γ(a �= ∨t �=); (,) is not valid in an alignment.

We let Γ (N,σ,mi,mf ) denote the set of all possible alignments of Petri net N
and trace σ given markings mi and mf .

As exemplified by the three alignments of 〈a, d, d, e, g〉 and N1, a multitude
of alignments exists for a given trace and model. Hence, we need a means to be
able to rank and compare alignments in such way that we are able to express
our preference of an alignment w.r.t. other alignments. For example, in Fig. 2,
we prefer γ1 and γ2 over γ3, as we need less -symbols to explain the observed
behaviour in terms of the model. Computing such preference is performed by
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means of minimizing a cost function defined over the possible moves of an align-
ment. We present a general definition of such cost function in Definition 4, after
which we provide a commonly used corresponding instantiation.

Definition 4 (Alignment Cost). Let σ ∈ A∗, let N = (P, T, F, λ) be a labelled
Petri net with mi,mf ∈ B(P ), let /∈ A ∪ T and let c : (A ∪ {}) × (T ∪
{}) → R≥0. Given alignment γ ∈ Γ (N,σ,mi,mf ), the costs κc of γ, given

move cost function c, is defined as κc(γ) =
|γ|∑

i=1

c(γ(i)). Finally, we let γ∗
c ∈

arg minγ∈Γ (N,σ,mi,mf )
κc(γ) denote the optimal alignment.

The cost of an alignment is defined as the sum of the cost of each move
within the alignment, as specified by cost function c. If it is clear from context
what cost function c is used, we omit it from the cost related notation, i.e. we
write κ, γ∗ etc. Note that γ∗ is an alignment that has minimum costs amongst
all alignments of a given model and trace, i.e. an optimal alignment. In general
one can opt to use an arbitrary instantiation of c, however, a cost function that
is used quite often is the following unit-cost function:

1. c(a, t) = 0 ⇔ a ∈ A, t ∈ T and λ(t) = a or a = and λ(t) = τ .1

2. c(a, t) = ∞ ⇔ a ∈ A, t ∈ T and λ(t) �= a
3. c(a, t) = 1 otherwise

Using the unit-cost function, γ1 and γ2 of Fig. 2 are both optimal for 〈a, d, d, e, g〉
and N1, i.e. both alignments have cost 2. This shows that optimality is not
guaranteed to be unique for alignments.

3 Computing Optimal Alignments

In this section we present the basic alignment computation algorithm. The algo-
rithm, in essence, is a modification of the A∗ algorithm [8], i.e. a general purpose
shortest path algorithm. We do however incorporate alignment-specific optimiza-
tions within the algorithm that have shown to be beneficial for the overall perfor-
mance of the approach, i.e. in terms of search efficiency and memory usage [19].
The algorithm applies a shortest path search on the state-space of the syn-
chronous product net of the given trace and Petri net. As such, we first present
how such synchronous product net is constructed, after which we present the
alignment algorithm.

3.1 Constructing the Synchronous Product Net

To find an optimal alignment, i.e. an alignment that minimizes the cost function
of choice, we solve a shortest path problem defined on the state space of the
synchronous product net of the given trace and model. Such synchronous product
1 In some cases, if the absence of token-generators is not guaranteed, we use c(a, t) = ε,

where ε is a positive real number smaller than 1 and close to 0.
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net encodes the trace as a sequential Petri net and integrates it with the original
model. As such, each transition in the synchronous product net represents a
move within the resulting alignment. Executing such transition corresponds to
putting the corresponding move in the alignment. Consider Fig. 3, which depicts
the synchronous product net of trace 〈a, d, d, e, g〉 and example Petri net N1.

The sequence of black transitions, depicted on the top of the synchronous
product net represents the input trace, i.e. 〈a, d, d, e, g〉. The labels of these
transitions represent log moves, e.g. transition (t1,) has label (a,). Observe
that, we are able to, from the initial marking [p1, p′

1], generate a firing sequence
〈(a,), (d,), . . . , (g,)〉 (projected onto labels) marking [p′

1, p6]. Such firing
sequence corresponds to a sequence of log moves which describe the given trace.
The lower part of the synchronous product net represents Petri net N1, how-
ever, the transition names represent model moves, e.g. transition (, t′1) directly
relates to a model move on t1 in N1. Observe that, using these transitions we
are able to generate firing sequences of model moves that correspond to fir-
ing sequences that are in N1’s language. Finally, the middle (grey) transitions
manipulate both the marking of the top part of the synchronous product net as
the bottom part. Each of these transitions represents a synchronous move, e.g.
consider transition (t1, t′1) representing a synchronous move of the first event of
〈a, d, d, e, g〉, i.e. representing activity a, and transition t′1 (i.e. identified as t1 in
Fig. 1).

We formally define a synchronous product net as the product of a Petri
net that represents the input trace (i.e., a trace net), together with the given

p1 (t1, �)

(a, �)

p2 (t2, �)

(d, �)

p3 (t3, �)

(d, �)

p4 (t4, �)

(e, �)

p5 (t5, �)

(g, �)

p6

(t1, t′
1) (a, a) (t2, t′

4) (d, d) (t3, t′
4) (d, d)

(t4, t′
5)

(e, e)

(t4, t′
6)

(e, e)

(t5, t′
8) (g, g)

(�, t′
2)

(�, b)

(�, t′
3)

(�, c)

p′
2

(�, t′
1)

(�, a)

p′
1

p′
3 (�, t′

4)

(�, d)

p′
4

p′
5

(�, t′
5)

(�, e)

(�, t′
6)

(�, e)

p′
6

(�, t′
7)

(�, τ)

(�, t′
8)

(�, g)

(�, t′
9)

(�, h)

p′
7

Fig. 3. Synchronous product net NS
1 of trace 〈a, d, d, e, g〉 and example Petri net N1.

Note that we have renamed elements of N1 using a ′-symbol, i.e. p′
1, t′

1 etc.
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process model. As such, we first define a trace net, after which we provide a
general definition of the product of two Petri nets.

Definition 5 (Trace net). Let σ ∈ A∗ be a trace. We define the trace net of
σ as a labelled Petri net N = (P, T, F, λ), where:

– P = {pi | 1 ≤ i ≤ |σ| + 1}.
– T = {ti | 1 ≤ i ≤ |σ|}.
– F = {(pi, ti) | 1 ≤ i ≤ |σ|∧pi ∈ P ∧ ti ∈ T} ∪ {(ti, pi+1) | 1 ≤ i ≤ |σ|∧pi+1 ∈

P ∧ ti ∈ T}.
– λ(ti) = σ(i), for 1 ≤ i ≤ |σ|.
Given a trace σ we write Nσ to refer to the trace net of σ. We subsequently
define the product of two arbitrary labelled Petri nets.

Definition 6 (Petri net Product). Let N = (P, T, F, λ) and N ′ =
(P ′, T ′, F ′, λ′) be two Petri nets (where P ∩ P ′ = ∅ and T ∩ T ′ = ∅). The
product of N and N ′, i.e. Petri net N ⊗ N ′ = (P⊗, T⊗, F⊗, λ⊗) where:

– P⊗ = P ∪ P ′.
– T⊗ = (T × {}) ∪ ({} × T ′) ∪ {(t, t′) ∈ T × T ′ | λ(t) = λ′(t′)}
– F⊗ = {(p, (t, t′)) ∈ P⊗ × T⊗ | (p, t) ∈ F ∨ (p, t′) ∈ F ′)} ∪ {((t, t′), p) ∈

T⊗ × P⊗ | (t, p) ∈ F ∨ (t′, p) ∈ F ′}.
– λ⊗ : T⊗ → (Σ ∪ {τ} ∪ {}) × (Σ ∪ {τ} ∪ {}) (assuming /∈ Σ ∪ {τ})

where:
λ⊗(t,) = (λ(t),) for t ∈ T
λ⊗(, t′) = (, λ′(t′)) for t′ ∈ T ′

λ⊗(t, t′) = (λ(t), λ′(t′)) for t ∈ T, t′ ∈ T ′.

A synchronous product net is defined as the product of a trace net Nσ and
an arbitrary Petri net N , i.e. Nσ ⊗ N . Assume we construct such synchronous
product net NS = (PS , TS , FS , λS) based on a trace net Nσ = (P σ, T σ, F σ, λσ)
of trace σ and Petri net N = (P, T, F, λ). Moreover, let pi ∈ P σ with •pi = ∅,
pf ∈ P σ with pf• = ∅, and, let mi, mf denote a designated initial and final
marking of N . Furthermore, let mS

i = mi � [pi] and mS
f = mf � [pf ]. Any

firing sequence σ′ ∈ (TS)∗, s.t. mS
i

σ′
−→ mS

f corresponds to an alignment of
σ and N [6]. To be able to compute an alignment based on a synchronous
product net, such firing sequence needs to exist. The problem of determining
whether such sequence exists is known as the reachability problem, which is
shown to be decidable [10,13]. However, within conformance checking, we assume
that a reference model of a process is designed by a human business process
analyst/designer. We therefore assume that a process model has a certain level
of quality, e.g. the Petri net is a sound workflow net [1, Definition 7]. In context
of alignment computation we therefore simply assume that a Petri net N , given
initial marking mi and final marking mf is easy sound, i.e. L(N,mi,mf ) �= ∅.
A synchronous product net of a trace net and an easy sound Petri net is, by
construction, easy sound, and thus guarantees reachability of its final marking.
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To derive the actual move related to each transition in some firing sequence
σ′ ∈ L(NS ,mS

i ,mS
f ), we utilize the label function of the synchronous product

net. In case we observe a transition of the form (, t), i.e. with t ∈ T σ, we
know it relates to a log move, which is obtained by applying λS((t,)), e.g.
λ((t1,)) = (a,) in Fig. 3. In case we observe a transition of the form (, t)
t ∈ T , we know it relates to a model move, which is reflected by the transition
name, i.e. we do not need to fetch the transition’s label, e.g. (, t′1) in Fig. 3.
A transition of the form (t, t′) ∈ TS , i.e. with t �= and t′ �= corresponds to
a synchronous move, which we translate into such move by applying (λσ(t), t′),
e.g. (λσ(t1), t′1) = (a, t′1) in Fig. 3. Since we are able to map each transition in the
synchronous product net onto a corresponding move, we are also able to deduce
the move costs corresponding to any such transition present in the synchronous
product net. Therefore, in the remainder, given a synchronous product net NS =
(PS , TS , FS , λS), we assume the existence of a corresponding transition-based
move cost function cS : TS → R≥0 that maps each transition in the synchronous
product net to the costs of the underlying move it represents.

3.2 Searching for Optimal Alignments

In this section, we present the state-of-the art algorithm for optimal alignment
computation. We first present an informal overview of the A∗-algorithm. Sub-
sequently we describe how to exploit the marking equation for the purpose of
heuristic estimation, after which we show how to limit the number of states
enqueued during the search. Finally, we present a concise corresponding algo-
rithmic description.

Applying A∗. Each transition in the synchronous product net corresponds to
a move in an alignment, and moreover, to an arc in the state space of the
synchronous product. Since each move/transition has an associated cost, we are
able to assign the weight of each arc in the net’s state space with the cost of the
associated move. For example, observe Fig. 4, in which we schematically depict a
(small) part of the state-space of NS

1 (Fig. 3). The initial state of the state space,
i.e. [p1, p′

1], is depicted on the top-left. We are able to fire (t1,), corresponding
to a log-move | a

� |, yielding marking [p2, p′
1]. Similarly, in [p1, p′

1], we are able
to fire (, t′1), corresponding to model move |�

t1
|, yielding marking [p1, p′

2, p
′
3].

The order of firing these two transitions is irrelevant, i.e. [p1, p′
1]

〈(t1,�),(�,t′
1)〉−−−−−−−−−−→

[p2, p′
2, p

′
3], and, [p1, p′

1]
〈(�,t′

1),(t1,�)〉−−−−−−−−−−→ [p2, p′
2, p

′
3].

2 Observe that we are also
able to mark [p2, p′

2, p
′
3] by firing (t1, t′1) in marking [p1, p′

1], corresponding to
synchronous move | a

t′
1
|. From [p2, p′

2, p
′
3] we are able to fire (t2,), (t2, t′4), (

, t′2), (, t′3), and (, t′4) (not all of these transitions are explicitly visualized for
the ease of readability/simplicity).

As indicated, each transition corresponds to a move, which, according to
the corresponding cost function cS has an associated cost. As such, the goal of
2 The label [p2, p

′
2, p

′
3] is not shown in Fig. 4, it corresponds to the state on the second

row and second column.
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[p1, p
′
1]

[p1, p
′
2, p

′
3]

(�, t′
1)

[p2, p
′
1](t1, �) (t2, �) (t3, �)

......

(�, t′
1)

(t1, �)

(t1, t′
1) (�, t′

1)

(t2, �)

(�, t′
1)

(t3, �)
......

(�, t′
4)

...

...

(�, t′
4)

(t1, �)

...

...

(�, t′
4)

(t2, �)

(t2, t′
4)

...

...

(�, t′
4)

(t3, �)
......

...

...

Fig. 4. Part of the state-space of the synchronous product net NS
1 shown in Fig. 3.

Observe that in some markings, more transitions are enabled than we explicitly show
here, e.g. in marking [p1, p

′
2, p

′
3], transitions (�, t′

2) and (�, t′
3)are additionally enabled.

finding an optimal alignment is equivalent to solving a shortest path problem
on the state space of the synchronous product net [6]. Within the given shortest
path problem, the initial marking of the given Petri net combined with the first
place of the trace net defines the initial state (i.e. mS

i ). Similarly the target state
is a combination of the given final marking of the model combined with the last
place of the trace net (i.e. mS

f ).
Many algorithms exist that solve a shortest path problem on a weighted

graph with a unique start vertex and a set of end vertices. In this paper we
predominantly focus on the A∗ algorithm [8]. The A∗ algorithm is an informed
search algorithm, i.e. it tries to incorporate specific knowledge of the graph within
the search. In particular, it uses a heuristic function that approximates, for
each vertex in the given graph, the expected remaining distance to the closest
end vertex. The A∗ algorithm is admissible, i.e. it guarantees to find a shortest
path, if the heuristic always underestimates the actual distance to the/any final
state. In case of computing optimal alignments based on the state space of the
synchronous product net, markings of the synchronous product net represent
vertices. Hence, we formally define a heuristic function on the basis of arbitrary
labelled Petri nets, after which we provide an instantiation tied to synchronous
product nets.
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Definition 7 (Petri net based heuristic function). Let N = (P, T, F, λ) be
a Petri net. A heuristic function hN is a function hN : B(P ) × B(P ) → R≥0.

Using the previously defined heuristic, we are able to, given an initial marking
mS

i and final marking mS
f , of a synchronous product net NS = (PS , TS , FS , λS),

apply the default A∗ approach, which roughly performs the following steps.

1. Inspect marking m that minimizes f(m) = g(m) + hNS

(m,mS
f ), where g(m)

is the actual distance from mS
i to m (note that g(mS

i ) = 0).
2. For each adjacent marking m′, i.e. ∃t ∈ TS(m t−→ m′), compute hNS

(m′,mS
f ).

Furthermore, ∀t ∈ TS(m t−→ m′), we apply g(m′) ← min(g(m′), g(m)+cS(t))
(initially g(m) = ∞,∀m ∈ R(N,mS

i ) \ mS
i ).

Initially, marking mS
i is the only known marking with a g-value unequal to ∞,

i.e. g(mS
i ) = 0. Thus, starting with mS

i , we repeat the two aforementioned steps
until either we end up at mS

f , or, no more markings are to be assessed. Due to the
easy-soundness assumption we are guaranteed to always arrive, at some point,
at mS

f . Moreover, admissibility implies that the first time we assess marking mS
f ,

g(mS
f ) represents the shortest path from mS

i to mS
f in terms of move costs, and

thus corresponding alignment costs. In general, it is possible to visit a marking
m multiple times in step 2, potentially leading to a lower g(m)-value. However,
if a heuristic function is consistent, i.e. for markings m,m′,m′′ and transition
t ∈ TS s.t. (NS ,m) t−→ (NS ,m′), we have hNS

(m,m′′) ≤ hNS

(m′,m′′) + cS(t),
we are guaranteed that once we reach a vertex during the A∗ search, we are not
able to reach it using an alternative path with lower costs than the current path.
Hence, in case the heuristic function used is consistent, we know that once we
inspect a marking m in step 1, g(m) is minimal. As a consequence, whenever we
reach it again in step 2, we are allowed to ignore it.

Exploiting the State Equation. In this paper we provide an instantiation
of the heuristic function, i.e. hNS

, that exploits the state equation of Petri nets,
i.e. an algebraic expression of marking changes in a Petri net. Let �x denote at
|T |-sized column vector of integers, let m and m′ denote two markings and let
σ ∈ T ∗ s.t. (N,m) σ−→ (N,m′) and let �m and �m′ denote the corresponding |P |-
sized marking column vectors. The state equation states that when we instantiate
�x as the Parikh vector of σ, i.e. if transition ti occurs k times in σ then �x(i) = k,
then �x is a solution to �m′ = �m +AT�x. The reverse does however not hold, i.e. if
we find a solution to �m′ = �m +AT�x, such solution �x is not necessarily a Parikh

representation of a σ′ ∈ T ∗ s.t. (N,m) σ′
−→ (N,m′).

Nonetheless, we utilize the state equation for the purpose of calculating a
Petri net based heuristic function. Given a marking m and target marking m′

within the synchronous product net, we try to find a solution to �m′ = �m+AT�x,
where A and �x are defined in terms of the synchronous product net. Moreover,
such solution needs to minimize the corresponding alignment cost, i.e. recall that
for 1 ≤ i ≤ |TS |, �x(i) refers to a transition ti ∈ TS which has an associated cost
as defined by the transition-based move cost function cS(ti).
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Definition 8 (State equation based heuristic). Let σ ∈ A∗ be a trace and
let N = (P, T, F, λ) be a Petri net. Let NS = Nσ ⊗ N = (PS , TS , FS , λS) be
the synchronous product net of σ and N . Let A denote the incidence matrix of
NS, let m,m′ ∈ B(PS), and let �m, �m′ be the corresponding |PS |-sized vectors.
Let cS : TS → R≥0 be the transition-based move cost function and let �c denote

a corresponding |TS |-sized vector with �c(i) = cS(ti) (for ti ∈ TS). Let �x ∈ R
|T S |
≥0

be a |TS |-sized vector. We instantiate hNS

(Definition 7) with hNS

(m,m′) = ∞
if no solution exists to �m′ = �m + AT�x, and otherwise:

min(�cᵀ�x | �m′ = �m + AT�x)

Observe that we define �x as a vector containing non-negative real valued numbers
(R≥0) rather than naturals (N). Note that this potentially leads to fractional
values in �x. However, since we aim at underestimating the true distance to the
final marking this is acceptable, i.e. the vector does not need to correspond
to an actual firing sequence. We are thus able to compute the state equation
based heuristic by formulating and subsequently solving it as either a Linear
Programming- (LP) or an Integer Linear Programming (ILP) problem [17].3

Observe that, in case no solution to the (I)LP exists, we simply assign a value
of ∞ to the heuristic. Since an (I)LP solution is always smaller or equal to the
true costs of reaching target marking m′ from marking m, the state equation
based heuristic is admissible. As shown in [6], the heuristic is also consistent.

In step 2 of the A∗ approach, we compute the heuristic hNS

(m′,mS
f ) as

defined in Definition 8 by solving an (Integer) Linear Programming problem.
Observe that, as exemplified earlier, there are often multiple ways to arrive at a
certain marking within the state space of the synchronous product net. To avoid
solving the same (I)LP multiple times, once we have computed hNS

(m′,mS
f ) we

are able to store the solution value for m′ in a temporary cache, and, remove it
when we fetch m′ in step 1. However, specifically in case of solving an Integer
Linear Programming problem, computing the hNS

(m′,mS
f ) is potentially time

consuming. As it turns out, in some cases, the solution vector �x of the (I)LP
solved for marking m allows us to derive, for an adjacent marking m′, i.e. ∃t ∈
TNS

(m t−→ m′), an exact value for hNS

(m′,mS
f ).

Conceptually, given that we assess some marking m, this works as follows.
When we compute hNS

(m,mS
f ), given that it is not equal to ∞, we obtain an

associated solution vector �x. Such vector essentially describes the number of
times a transition is ought to be fired to reach mf from m, even though there
does not necessarily exists a corresponding firing sequence containing the exact
number of transition firings as described by �x. Assume that from m we are able
to traverse an edge related to firing a transition ti, for which �x(i) ≥ 1, yielding
marking m′. In such case, we are guaranteed, as we show in Proposition 1, that
the solution value for hNS

(m′,mS
f ) equals hNS

(m,mS
f ) − cS(ti), i.e. we are able

to subtract the cost of the move represented by ti from hNS

(m,mS
f ). Even in

3 In case we solve an ILP, we enforce �x ∈ N
|TS |.
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the case that �x(i) < 1, we are able to devise a lower bound for the value of
hNS

(m′,mS
f ), as we show in Proposition 2.

Proposition 1 (State based heuristic provides exact solution). Let A
denote the incidence matrix of a synchronous product net NS = (PS , TS , FS , λS)
and let m,mf ∈ B(PS). Let cS : TS → R≥0 be the transition-based move

cost function and let �c ∈ R
|T S |
≥0 with �c(i) = cS(ti) for ti ∈ TS. Let �x∗ ∈

arg min
�x∈R

|T S |
≥0

(�cᵀ�x | �mf = �m + AT�x). Let m′ ∈ B(PS) and let ti ∈ TS s.t.

(NS ,m) ti−→ (NS ,m′). If �x∗(i) ≥ 1, then �cT(�x∗ −�1ti
) = min

�x∈R
|T S |
≥0

(�cᵀ�x | �mf =

�m′ + AT�x).

Proof. Observe that, according to the state equation, �m′ = �m+AT�1ti
, and thus,

�m = �m′ −AT�1ti
. From this, we deduce �mf = �m+AT�x∗ = �m′ −AT�1ti

+AT�x∗ =
�m′ + AT(�x∗ −�1ti

), i.e. �x∗ −�1ti
is a solution to �mf = �m′ + AT�x.

Assume �cT(�x∗ − �1ti
) > min

�x∈R
|T S |
≥0

(�cᵀ�x | �mf = �m′ + AT�x), which implies

that there exists an alternative minimal solution for �mf = �m′ + AT�x, i.e. ∃�y ∈
arg min

�x∈R
|T S |
≥0

(�cᵀ�x | �mf = �m′ + AT�x) with �cT�y < �cT(�x∗ −�1ti
).

Again by using the fact that �m′ = �m + AT�1ti
, we observe that since �y is a

solution to �mf = �m′ +AT�x, also (�y +�1ti
) is a solution to �mf = �m +AT�x. This

however contradicts minimality of �x∗ since �cT�y < �cT(�x∗ −�1ti
) =⇒ �cT(�y+�1ti

) <
�cT�x∗. �

Proposition 1 shows that if we compute a heuristic value for hNS

(m,mS
f )

formed by underlying variable assignment �x∗, then in case there exists some
ti ∈ TS with �x∗(i) ≥ 1 and m

ti−→ m′, we are guaranteed that hNS

(m′,mS
f ) =

hNS

(m,mS
f ) − �c(i) = hNS

(m,mS
f ) − cS(ti). This effectively allows us to reduce

the number of (I)LP’s we need to solve. It is however also possible that there
is some tj ∈ TS with �x∗(j) < 1. In such case �x∗ − �1tj

is not a solution to
�mf = �m′ + AT�x, it does however provide a lower bound on the actual heuristic

value of m′.

Proposition 2 (State based heuristic provides an upper bound). Let A
denote the incidence matrix of a synchronous product net NS = (PS , TS , FS , λS)
and let m,mf ∈ B(PS). Let cS : TS → R≥0 be the transition-based move

cost function and let �c ∈ R
|T S |
≥0 with �c(i) = cS(ti) for ti ∈ TS. Let �x∗ ∈

arg min
�x∈R

|T S |
≥0

(�cᵀ�x | �mf = �m + AT�x). Let m′ ∈ B(PS) and let ti ∈ TS s.t.

(NS ,m) ti−→ (NS ,m′). If �x∗(i) < 1, then �cT(�x∗ −�1ti
) ≤ min

�x∈R
|T S |
≥0

(�cᵀ�x | �mf =

�m′ + AT�x).

Proof. Assume there is a minimal solution �y to �mf = �m′ + AT�x, i.e. ∃�y ∈
arg min

�x∈R
|T S |
≥0

(�cᵀ�x | �mf = �m′ + AT�x) s.t. �cT�y < �cT(�x∗ − �1ti
). Since (�y +
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�1ti
) is a solution to �mf = �m + AT�x (cf. Proposition 1), this contradicts �x∗ ∈

arg min
�x∈R

|T S |
≥0

(�cᵀ�x | �mf = �m + AT�x) since �cT(�y +�1ti
) < �cT�x∗. �

If Proposition 2 applies, we know that hNS

(m′,mS
f ) ≥ �cT(�x∗ − �1ti

). Thus,

�cT(�x∗ − �1ti
) underestimates the true value of hNS

(m′,mS
f ) and we write

ĥNS

(m′,mS
f ) = �cT(�x∗ −�1ti

). Whenever we derive ĥNS

(m′,mS
f ), we know g(m′),

i.e. we compute ĥNS

(m′,mS
f ) in step 2 of the basic A∗ approach. Thus, we

are also able to derive an underestimating f(m′) value, i.e. f̂(m′) = g(m′) +
ĥNS

(m′,mS
f ). In practice this implies that instead of solving an (I)LP when we

investigate a new marking, we just deduce the f -value, which is potentially an
underestimate. In case it is an underestimate, we keep track of this, and when-
ever we, in step 1, inspect an element with a minimal underestimated f -value,
we try to find an exact solution by solving an (I)LP. In such case it is possible
that f(m) > f̂(m), in which we need to select a new marking in step 1 that
minimizes the f -value.

Limiting Transition Ordering. Reconsider the synchronous product net
shown in Fig. 3 with initial marking [p1, p′

1]. Recall that there are three fir-
ing sequences in the net to achieve marking [p2, p′

2, p
′
3], i.e. 〈(, t′1), (t1,)〉,

〈(t1,), (, t′1)〉 and 〈(t1, t′1)〉. Under the unit-cost function, the cost associated
with 〈(t1, t′1)〉 is 0 whereas the cost for 〈(, t′1), (t1,)〉 and 〈(t1,), (, t′1)〉
is 2. We observe that both possible permutations of the sequence containing
(t1,) and (, t′1) have the same cost and are both part of an (sub-optimal)
alignment.

In general, assume we have an alignment γ · 〈x, y〉 · γ′ ∈ Γ (N,σ,mi,mf ) s.t.
x is a log move and y is a model move. Moreover, let tx denote the transition in
the underlying synchronous product related to x, and let ty denote the transition
related to move y. Since, by construction, •tx ∩ •ty = ∅, •tx ∩ ty• = ∅, tx• ∩ •ty =
∅ and tx • ∩ ty• = ∅, we trivially deduce that also γ · 〈y, x〉 ·γ′ ∈ Γ (N,σ,mi,mf ).
Additionally, we have κ(γ · 〈x, y〉 · γ′) = κ(γ · 〈x, y〉 · γ′), i.e. alignment costs are
order independent.

Hence, to find an optimal alignment we only need to traverse/inspect one spe-
cific permutation of such log/model move combinations, rather than all possible
permutations. In step 2 of the basic A∗ scheme, each enabled transition in mark-
ing m is investigated. However, we are able to limit this number of transitions
by exploiting the previously mentioned property, i.e.:

– Log move restriction; If the transition leading to the current marking relates
to a model move we only consider those transitions t that relate to a model
or synchronous move.

– Model move restriction; If the transition leading to the current marking
relates to a log move we only consider those transitions t that relate to a
log or synchronous move.
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In the first option we are not able to schedule a log move after a model move. The
other way around is however possible, i.e. we are allowed to schedule a model
move after a log move. The second option behaves exactly opposite, i.e. we are
not allowed to schedule a model move after a log move. Note that during the
search we either only apply log move restriction, or, model move restriction, i.e.
these techniques cannot be mixed.

Algorithmic Description. In Algorithm 1, we present the basic algorithm
for optimal alignment computation using A∗, which additionally incorporates
Propositions 1 and 2 together with model move restriction. The algorithm takes
a trace net and a sequence as an input, and for both nets, expects an initial- and
final marking. In line 1 and line 2 we construct the synchronous product net and
corresponding initial- and final marking. Subsequently, in lines 3–5, we initialize
the closed set C, open set X, and estimated heuristic set Y . Since the heuristic
is consistent, whenever we investigate a marking, we know that the f -value for
such marking no longer changes. Hence, the closed set C contains all markings
that we have already visited, i.e. for which we have a corresponding final f -value.
Within X we maintain all markings inspected at some point, i.e. their g-value
is known, and their h-value is either exact or estimated. In Y we keep track of
all markings with an underestimating heuristic. In line 6 we initialize pointer
function p, which allows us to reconstruct the actual alignment once we reach
mS

f . As long as X contains markings, we select one of the markings having a
minimal f -value (line 11). In case the new marking equals mS

f we construct,
using pointer-structure p(mS

f ), the alignment. If the marking is not equal to mS
f ,

we, in line 14, check if the corresponding f -value is exact or not. In case it is
not, and, the exact hNS

(m,mS
f ) value is exceeding the estimate, we recalculate

the marking’s f -value and go back to line 11. In any other case, we proceed by
storing marking m in the closed set C and by removing it from X. In lines 21–23
we apply model move restriction. Note that it is trivial to alter the code in these
lines in order to apply log move restriction. Finally, we fire each transition t ∈ T ′

s.t. (NS ,m) t−→ (NS ,m′). If the newly reached marking m′ is not in the closed
set C, we add it to X and check whether we found a shorter path to reach it.
If so we update its g-value and derive its h-value.4 If we actually compute an
underestimate, i.e. an ĥ-value, we register this by adding m′ to Y . Finally, we
update the pointer-structure p for m′.

It is important to note that set X of Algorithm 1, is typically implemented
as a queue. In its basic form, fetching the top element of the queue, i.e. as
represented by m ← arg minm∈Xf(m) in line 11, yields any marking that
minimizes the (potentially estimated) f -value. In general, a multitude of such
markings exists. As observed in [19], minimizing the individual hNS

-value (or
ĥNS

) as a second-order criterion, enhances alignment computation efficiency
significantly. We call such second-order criterion DFS, as it effectively reduces

4 In practice, we cache h-values, thus we only derive a new h-value if we did not
compute an exact h-value in an earlier stage.
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Algorithm 1. A∗ (Alignments)
input : Nσ = (P σ, T σ, F σ, λσ), mσ

i , mσ
f ∈ B(P σ), N = (P, T, F, λ), mi, mf ∈ B(P )

output: optimal alignment γ∗ ∈ Γ (N, σ, m′
i, m′

f )

begin

1 NS = (P S , T S , F S , λS) = Nσ ⊗ N ; // create synchronous product

2 mS
i ← mσ

i  mS
i ; mS

f ← mσ
f  m′

f ; // create initial/final marking

3 C ← ∅; // initialize closed set

4 X ← {mS
i }; // initialize open set

5 Y ← ∅; // initialize estimated heuristics

6 p(mS
i ) = (∅, ∅); // initialize predecessor function

7 ∀m ∈ R(NS , mS
i ) g(m) ← ∞; // initialize cost so far function g

8 g(mS
i ) ← 0; // initialize distance for initial marking

9 f(mS
i ) ← hNS

(mS
i , mS

f ); // compute estimate for initial marking

10 while |X| > 0 do
11 m ← arg minm∈Xf(m);

12 if m = mS
f then

13 return alignment derived from 〈t1, . . . , tn〉 where tn = π1(p(m
S
f )),

tn−1 = π1(p(π2(p(m
S
f )))), etc. until the initial marking is reached recursively;

14 if m ∈ Y then
15 Y ← Y \ {m} ; // remove estimated heuristic

16 if hNS
(m, mS

f ) > ĥNS
(m, mS

f ) then

17 f(m) ← g(m) + hNS
(m, mS

f );

18 continue while; // m is not necessarily minimizing f any more

19 C ← C ∪ {m}; // add m to the closed set
20 X ← X \ {m}; // remove m from the open set

21 T ′ ← T S ;
22 if π1(p(m)) = (t, �), where t ∈ T σ then
23 T ′ ← T ′ \ ({�} × T ); // model moves not allowed after log moves

24 forall the t ∈ T ′ s.t. (NS , m)
t−→ (NS , m′) do

25 if m′ �∈ C then

26 if g(m) + cS(t) < g(m′) then

27 g(m′) ← g(m) + cS(t); // update cost so far function

28 ĥNS
(m′, mS

f ) ← hNS
(m, mS

f ) − cS(t); // estimate heuristic

29 f(m′) ← g(m′) + ĥNS
(m′, mS

f );

30 if ĥNS
(m′, mS

f ) is not exact then

31 Y ← Y ∪ {m′}; // add m′ to the estimated heuristics set

32 X ← X ∪ {m′}; // add m′ to the open set

33 p(m′) ← (t, m); // update predecessor function

34 return failure;

the estimated distance to a final marking. Within this paper we assume DFS is
always applied as a second-order sorting criterion.

4 Evaluation

In this section, we evaluate the effect of different parameters in the search for
an optimal alignment for different populations of Petri nets, measured in terms
of search efficiency and memory usage. We measure the efficiency of the search
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using two metrics: the number of visited states and the number of traversed
arcs. We measure the memory usage of the search using a single metric: the
maximum number of queued states. Due to the scale of the experiments we
have used multiple machines which does not allow us to compare computation
time/memory usage directly in all cases. We do however provide such results
in case they are comparable. In the remainder of this section we describe the
experimental set-up and present a discussion of the obtained results.

4.1 Experimental Setup

The global workflow used in the experiment is illustrated in Fig. 5. For each
combination of parameters, the following analysis steps are executed:

1. Generate a sample of (block-structured) Petri nets from a given population
(defined in the “Petri net Population Parameters” object).

2. For each Petri net, generate a sample of traces that fit it (defined in the “Log
Parameters” object).

3. For each generated trace, add an amount of noise (defined in the “Noise
Parameters” object).

4. For each trace with added noise, check the conformance of the trace with
respect to the Petri net (using the parameters defined in the “Conformance
Checking Parameters” object) and store the results.

Note that the blocks, i.e. analysis steps, included in this high-level workflow are
not necessarily bound to a concrete implementation. For example, one can use the
approach presented in [9] to generate process trees that are translated into block-
structured Petri nets, and also to generate event logs from them. Alternatively,
any other approach that can generate Petri nets from defined populations can
be used instead.

Fig. 5. Schematic overview of the experiment design.

For the experiment, this high-level workflow was implemented as a scien-
tific process mining workflow [7] in RapidMiner using building-blocks from the
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Table 2. Alignment parameters used in the experiment.

Parameter Type Values

Heuristic (h) Categorical LP without lower-bound estimation

LP with lower-bound estimation

Second-order Queueing Criterion Categorical DFS (sort on minimized h-value)

DFS with certainty priority (sort on minimized h-value)

Transition Restriction Categorical MODEL

LOG

process mining extension RapidProM [5]. The workflow enables many types of
analysis that allow us to answer a wide variety of research questions related
to the efficiency and memory usage of alignments. The experiment performed
in this paper focuses on alignment parameters through the following research
questions:

Q1. What is the global effect of approximation of the heuristic on the search
efficiency and memory usage of alignments?

Q2. What is the effect of incorporating exact derived heuristics within the
second-order queuing criterion on the search efficiency and memory usage
of alignments?

Q3. What is the effect of transition restriction on the search efficiency and
memory usage of alignments?

In order to be able to generalize the results, these effects are studied for dif-
ferent types of Petri nets with different levels of noise added to traces. Within
the experiment, we considered 768 value combinations of seven parameters. The
alignment related parameters and their values are described in Table 2, whereas
the model related parameters are described in Table 3. For each parameter value
combination, a collection of 64 Petri nets is generated, and 10 traces are gen-
erated from each Petri net. Then, after adding noise, each trace is aligned with
the Petri net. In total, this resulted in computing roughly 500, 000 alignments
within the experiment.

It is important to note that the different parameter combinations (e.g., heuris-
tics, second-order queueing criterion) were not tested using the same set of Petri
nets and traces. To the contrary, they were tested using independent samples
of Petri nets and traces randomly obtained from the same populations of pro-
cesses. In this way we avoid selection bias. Therefore, we consider the absolute
differences and trends described in Sect. 4.2 as mere indications. For a proper
analysis, in Sect. 4.3 we evaluated the differences in terms of statistical tests and
not in terms of absolute differences.

4.2 Results

The results of the experiment are scoped in order to provide a straight-forward
answer to the research questions proposed earlier. Figure 6 shows the results that



20 S. J. van Zelst et al.

Table 3. Petri net (Pn) and log generation parameters used in the experiment.

Parameter Type Values

Number of activities (Pn) Numerical 25

50

75

Control-flow Charactersitic (Pn) Categorical Parallelism

Loops

C-f Characteristic Level (Pn) Numerical 0%

10%

20%

30%

Added Noise (Log) Numerical 0%

20%

40%

60%

relate to Q1 (i.e., the effect of the Heuristic parameter). Figure 6a shows the aver-
age number of traversed arcs (related to search efficiency) over increasing levels of
loops for two different values of the Heuristic parameter: LP with lower-bound
estimation and LP without lower-bound estimation. Here, using LP with
lower-bound estimation refers to always deriving (a potentially approximate)
heuristic based on a previously computed heuristic, i.e. applying both Proposi-
tions 1 and 2. Using LP without estimation refers to only deriving a heuristic
when we are guaranteed that it is exact, i.e. only when Proposition 1 holds. When
no exact heuristic can be derived an LP is solved immediately. We observe that
for increasing levels of loops, the number of traversed arcs is relatively equal. This
is as expected as the lower-bound does not affect the search efficiency directly,
i.e. it merely allows us to potentially postpone or even prohibit needless solve
calls to the underlying LP-solver. Figure 6b shows the average number of queued
states (related to memory usage) over increasing levels of parallelism for the same
two values of the Heuristic parameter: LP with lower-bound estimation and
LP without lower-bound estimation. Again we observe that there is no clear
setting that outperforms the other. Also in this case this is expected as using
lower-bound estimation does not affect the number of states put in the queue. In
Fig. 6c we present computation time.5 For these results, we expect using lower-
bound estimation is beneficial in terms of computation time, i.e. we potentially
solve less LP’s. We do however not observe this. This is most likely explained
by the fact that within the search, markings with an estimated heuristic end
up in the top of the queue, and, LP’s have to be solved anyway. Moreover, in
such case, a marking is potentially reinserted on a lower position in the priority

5 Both experiments ran on the same machine in this instance.
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Fig. 6. The effects of the Heuristic parameter

queue. Hence, we do not observe a clear impact on the global efficiency of the
search by applying heuristic estimation.

The previous results seem to indicate that the effect of heuristic approxima-
tion is negligible. Observe however, that apart from using a DFS-based second
order criterion, we arbitrarily select any marking on top of queue X. Figure 7
shows the results that relate to Q2 (i.e., the effect of heuristic approximation
on the Second-order Queueing Criterion parameter). In particular, we com-
pare arbitrary top-of-queue selection versus prioritizing markings with an exact
heuristic w.r.t. estimated heuristics. Thus, if two markings m and m′ have the
same f and h value, yet the h value for m is exact whereas that of m′ is not, we
prioritize m over m′.

Figure 7a shows the average number of visited states (related to search effi-
ciency) over increasing levels of added noise for two different values of the Second-



22 S. J. van Zelst et al.

Fig. 7. The effects of the Second-order Queueing Criterion parameter

order Queueing Criterion parameter: DFS and DFS with certainty priority.
We observe that DFS with certainty priority outperforms default DFS. This
is most likely explained by the fact that in case a solution to the state equation,
at some point, actually corresponds to a firing sequence, the search progresses
extremely efficiently. In contrast, in such case, using default DFS leads to unnec-
essary exploration of markings that do not lead to a final state. Figure 6b shows
the average number of queued states (related to memory usage) over increas-
ing levels of parallelism for the same two values of the Second-order Queueing
Criterion parameter: DFS and DFS with certainty priority. As expected we
observe similar results to Fig. 7a.

Finally, Fig. 8 shows the results that relate to Q3 (i.e., the effect of transi-
tion restriction on the search efficiency). In Fig. 8a we present the effect of the
different types of transition restriction w.r.t. the traversed arcs, for increasing
levels of parallelism. Similarly, in Fig. 8b we present the effects on the number of
queued states, for increasing levels of noise. Interestingly, except for noise level
of 0.6, using model move restriction outperforms log move restriction. This is
as expected since the model part of the synchronous product entails the most
variety in terms of behaviour. Hence, limiting model move scheduling is expected
to have a positive impact on the search performance.
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Fig. 8. The effects of the Transition Restriction parameter

4.3 Statistical Analysis

In this section we analyse the statistical significance of the differences in terms
of search efficiency and memory usage of several values of the three alignment
parameters. We do not assume normal distributions of values, hence, the Kruskal-
Wallis non-parametric test [11] is used. This a one-way significance rank-based
test for multiple samples, designed to determine whether samples originate from
the same population by observing their average ranks. This test does not assume
that the samples are normally distributed.

Regarding research question 1 (Q1) we performed a Kruskal-Wallis test to
assess the significance of the effect of the Heuristic parameter in the num-
ber of traversed arcs, visited states and queued states with an alpha of 0.05.
The test indicated that the effect of the Heuristic parameter is not statisti-
cally significant in any of the search efficiency or memory usage measurements
(p-values ≈ 0.5). The same applies for computation time. Regarding research
question 2 (Q2) we performed a Kruskal-Wallis test to assess the significance
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of the effect of the Second-order Queueing Criterion parameter on the num-
ber of traversed arcs, visited states and queued states with an alpha of 0.05.
The test indicated that the effect of the parameter on the tree measurements is
statistically significant (p-value < 0.001). Regarding research question 3 (Q3)
we performed a Kruskal-Wallis test to assess the significance of the effect of the
Transition Restriction parameter in the number of traversed arcs, visited
states and queued states with an alpha of 0.05. The test indicated that the effect
of the parameter on the number of traversed arcs and queued states is statisti-
cally significant (p-value < 0.001 and p-value = 0.008 respectively) but the effect
on the number of visited states is not statistically significant (p-value = 0.1139).

5 Related Work

A complete overview of process mining is outside the scope of this paper, hence
we refer to [3]. Here, we primarily focus on related work in conformance checking.

Early work in conformance checking uses token-based replay [16]. The tech-
niques try to replay a given trace in a model and add missing tokens if a transition
is not able to fire. After replaying the full trace, remaining tokens are counted
and a conformance statistic is computed based on missing and remaining tokens.

Alignments are introduced in [6]. The work proposes to transform a given
Petri net and a trace from an event log into a synchronous product net, and,
subsequently solve the shortest path problem on the corresponding state space.
Its implementation in ProM may be regarded as the state-of-the-art technique
in alignment computation and serves as a basis for this paper.

In [2,14] decomposition techniques are proposed together with computing
alignments. The input model is split into smaller, transition-bordered, sub-
models for which local alignments are computed. Using decomposition techniques
greatly enhances computation time. The downside of the techniques is the fact
that they are capable to decide whether a trace fits the model or not, rather
than quantifying to what degree a trace fits.

Recently, approximation schemes for alignments, i.e. computation of near-
optimal alignments, have been proposed in [18]. The techniques use a recursive
partitioning scheme, based on the input traces, and solve multiple Integer Lin-
ear Programming problems. The techniques identify deviations between sets of
transitions, rather than deviations between singletons (which is the case in [6]).
Finally, alignments have also been defined as a planning problem [12] and have
been recently studied in online settings [20].

6 Conclusion

In this paper we have presented and formalized an adapted version of the A∗

search algorithm used in alignment computation. Within the algorithm we have
integrated a number of parameters that, in previous work [19], have shown to
be most promising in terms of algorithm efficiency. Based on large-scale exper-
iments, we have assessed the impact of these parameters w.r.t. the algorithm’s
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efficiency. Our results show that restricting the scheduling of model-move based
transitions of the synchronous product net most prominently affects search effi-
ciency. Moreover, the explicit prioritization of exactly derived heuristics seems
to have a positive, yet less prominent, effect as well.

Future Work. Within this work we have assessed, using large-scale experi-
ments, the impact of several parameters on the efficiency of computing optimal
alignments. However, several approximation schemes exist for A∗, e.g. using
a scaling function within the heuristic. We plan to assess the impact of these
approximation schemes on alignment computation as well. We also plan to exam-
ine the use of alternative informed search methods, e.g. Iterative Deepening A∗.
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Abstract. Local Process Models (LPMs) describe structured fragments
of process behavior that occur in the context of business processes. Tra-
ditional support-based LPM discovery aims to generate a collection of
process models that describe highly frequent behavior, in contrast, in
High-Utility Local Process Model (HU-LPM) mining the aim is to gen-
erate a collection of process models that provide useful business insights
according to a specified utility function. Mining LPMs is computationally
expensive as the search space depends combinatorially on the number of
activities in the business process. In support-based LPM mining, the
search space is constrained by leveraging the anti-monotonic property of
support (i.e., the apriori principle). We show that there is no property
of monotonicity or anti-monotonicity in HU-LPM mining that allows for
lossless pruning of the search space. We propose four heuristic methods
to explore the search space only partially. We show on a collection of
57 event logs that these heuristics techniques can reduce the size of the
search space of HU-LPM mining without much loss in the mined set of
HU-LPMs. Furthermore, we analyze the effect of several properties of
the event log on the performance of the heuristics through statistical
analysis. Additionally, we use predictive modeling with regression trees
to explore the relation between combinations of log properties and the
effect of the heuristics on the size of the search space and on the quality
of the HU-LPMs, where the statistical analysis focuses on the effect of
log properties in isolation.

Keywords: Process discovery · Pattern mining
Approximate methods

1 Introduction

Process Mining [1] has emerged as a new discipline that aims at supporting
business process improvement through the analysis of event data recorded by
information systems. An event log contains recorded events related to a pro-
cess execution. Events consist of a case identifier (grouping together events that
c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
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belong to the same process instance), and information on what was performed,
when, by whom, etc. Process discovery techniques aim to discover an inter-
pretable model that accurately describes the process from such an event log.
The process models obtained with process discovery give insight into what is
happening in the process and can be used as a starting point for different types
of further analysis, e.g., bottleneck analysis [23], and comparison of the same pro-
cess between organizations [6]. Many algorithms have been proposed for process
discovery, e.g., [3,4,19,21,22].

A recent technique is Local Process Model (LPM) discovery [27,30], which
aims at the discovery of a ranking of process models (i.e., LPMs), where each
LPM describes only a subset of the process activities. LPMs aim to describe
frequent local pieces of behavior, therefore, LPM mining can be seen as a special
form of frequent pattern mining [13], where each pattern is a process model. How-
ever, in contrast to other pattern mining approaches that operate on sequence
data, such as episode mining [18] and sequential pattern mining [26], LPMs are
not limited to subsequences or partial orders and can additionally consist of
more complex structures, such as loops and choices.

A recent trend in the frequent pattern mining field is to focus on the min-
ing of useful patterns as opposed to frequent patterns, i.e., patterns that address
business concerns such as high financial costs. In previous work, we introduced
high-utility local process models (HU-LPMs) [29] to bridge the concept of util-
ity based discovery into the process mining field and adapted it to the logging
concepts typically seen in process mining event logs, such as event attributes,
trace attributes, etc. In the pattern mining field, utility often follows a narrower
definition that is solely based on the set of activities that is described by a
pattern.

To deal with the computational complexity of searching patterns with such
a rich set of constructs that are supported by LPMs (i.e., sequential orderings,
parallel blocks, loops, choices), a support-based pruning strategy [30] as well as a
set of heuristic approaches [27] have been introduced for the discovery of LPMs.
However, support-based pruning and the existing set of heuristic approaches for
LPM discovery cannot be used for the discovery of high-utility LPMs, as LPMs
with high utility can be infrequent. Furthermore, the utility of an LPM is not
necessarily monotonic, i.e., an LPM that does not meet a utility threshold can
still be expanded into an LPM that does meet this threshold.

This paper extends the work started in [8] to propose four different heuristic
approaches to prune the search space of the HU-LPM discovery task. We per-
form experiments on three real-life logs and 54 synthetic logs and show that the
heuristics reduce size of the HU-LPM mining search space while still being able
to discover useful HU-LPMs. Furthermore, we analyze the relation between the
performance of the heuristic HU-LPM techniques and properties of the event
log. The techniques described in this paper have been implemented in the ProM
process mining framework [10] as part of the LocalProcessModelDiscovery1 pack-
age.

1 https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscovery/.

https://svn.win.tue.nl/repos/prom/Packages/LocalProcessModelDiscovery/
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This paper is organized as follows. Section 2 describes related work. Section 3
introduces the basic concepts used in this paper. In Sect. 4, we introduce the four
heuristic approaches for HU-LPM mining. In Sect. 5 we evaluate the heuristics
on a collection of even logs and present two experiments to analyze the relation
between characteristics of the event log and the performance of the heuristics:
a statistical analysis into the effect of properties of the log in isolation, and a
regression tree analysis to explore joint effects of combinations of log properties.
Finally, we conclude and discuss future areas of research in Sect. 6.

2 Related Work

In the pattern mining discipline, the limitations of support-based mining have
become apparent in recent years, and as a result, the interest has grown in high-
utility patterns; i.e., patterns providing useful business insight. This has led to an
increasing number of methods and techniques that address the high-utility min-
ing (HUM) problem [9,32–34]. USpan uses a lexicographic quantitative sequence
tree (LSQ-tree) to extract the complete set of high utility sequences [32]. An
LQS-tree is a tree structure where each node stores a sequence of activities and
its utility. The sequence stored by a node being a super-sequence of the sequence
stored by the node’s parent, this type of structure allows for fast access and
updates when mining high-utility patterns. A similar tree structure, the HUSP-
Tree is used by the HUSP-Stream algorithm to enable fast updates when mining
high-utility patterns from sequential data streams [34]. The problem of mining
incremental sequential datasets is also addressed in [9], using an efficient index-
ing strategy. In [33], the HUSRM algorithm efficiently mines sequential rules
using a utility table, a novel data structure to support recursive rule expansions.

The utility in sequential patterns is regarded to be the sum of the utility of the
activities that fit the sequential pattern. The majority of pruning strategies that
are used in HUM algorithms are based on Transaction-Weighted Utility (TWU).
The TWU of a pattern X is the sum of utilities of the sequences containing X,
resulting in an upper bound for the utility of pattern X that can be computed
efficiently. In case the TWU of a pattern X does not meet a predefined minimum
threshold, X can be safely pruned since its actual utility can only be lower than
or equal to TWU. In traditional HUM algorithms, the utility function is defined
on the activity level; i.e., each activity in the dataset is given a utility, and the
utility of a pattern is the sum of all activity utilities. Therefore, TWU and other
activity-based pruning strategies can be used for efficient pruning for HU-LPM
mining when the utility is defined on the activity level. However, utility functions
of HU-LPMs are defined in a more general way, allowing utility additionally
to depend on event and/or trace attributes instead of solely on the activity.
Therefore, TWU cannot be used to prune the search space of HU-LPMs. With
sequence-based pruning strategies being inapplicable in HU-LPM mining, we
investigate in this paper utility-based heuristics.
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3 Preliminaries

In this section, we introduce notations related to event logs, Local Process Mod-
els (LPMs) and High-Utility Local Process Models (HU-LPMs) which are used
in later sections of this paper.

3.1 Events, Traces, and Event Logs

X∗ denotes the set of all sequences over a set X and σ = 〈a1, a2, . . . , an〉 a
sequence of length n, with σ(i) = ai and |σ| = n. 〈〉 is the empty sequence
and σ1σ2 is the concatenation of sequences σ1 and σ2. We denote with σ�X

the projection of sequence σ on set X, e.g., for σ = 〈a, b, c〉, and X = {a, c},
σ�X = 〈a, c〉.

In the context of process logs, we assume the set of all process activities Σ
to be given. An event e in an event log is the occurrence of an activity e∈Σ.
We call a sequence of events σ∈Σ∗ a trace. An event log L∈N

Σ∗
is a finite

multiset of traces. For example, the event log L = [〈a, b, c〉2, 〈b, a, c〉3] consists
of 2 occurrences of trace 〈a, b, c〉 and three occurrences of trace 〈b, a, c〉. We lift
projection of sequences to multisets of sequences, e.g., L�{a,c} = [〈a, c〉5].

3.2 Local Process Models

LPMs [30] are process models that describe frequent but partial behavior; i.e.,
they model a subset of the activities of the process, seen in the event log. An
iterative expansion procedure is used in [30] to generate a ranked collection of
LPMs. LPMs are limited to 5 activities as the expansion procedure is a combina-
torial problem of which the size depends on the number of activities in the event
log as well as the maximum number of activities in the LPMs that are mined.
Though LPMs can be represented in any process modeling notation, such as
BPMN [24], UML [14], or EPC [16], here we use process trees [5] to represent
LPMs.

A process tree is a tree structure where leaf nodes represent activities. The
non-leaf nodes represent operators, which specify the allowed behavior over
the activity nodes. Allowed operator nodes are the sequence operator (→)
that indicates that the first child is executed before the second, the exclu-
sive choice operator (×) that indicates that exactly one of the children can
be executed, the concurrency operator (∧) that indicates that every child
will be executed but allows for any ordering, and the loop operator (�),
which has one child node and allows for repeated execution of this node.
L(LPM ) represents the language of process tree LPM , i.e., the set of sequences
allowed by the model. Figure 1d shows an example process tree M4, with
L(M4 )={〈A,B,C〉, 〈A,C,B〉, 〈D,B,C〉, 〈D,C,B〉}. Informally, it indicates that
either activity A or D is executed first, followed by the execution of activities B
and C in any order. M4 can also be written shorthand as → (×(A,D),∧(B,C)).
Note that our definition of � deviates from its traditional definition [5] where it
is defined as having three children: a do, redo, and exit child, where execution
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of the redo subtree enables another execution of the do subtree, and finally the
exit subtree is executed. It is easy to see that this traditional definition leads to
redundancy in the search space for the case of LPM mining: the exit child can
be mimicked by combining the → and unary � operator nodes. Furthermore, an
activity node a as do-child and b as redo-child is identical to the following model
with a unary loop: → (a,� (→ (b, a))).

A technique to generate a ranked collection of LPMs through iterative expan-
sion of candidate process trees is proposed in [30]. The expansion procedure con-
sists in the replacement of one of the leaf activity node a of the process tree by
either operator node →,×, or ∧, where one of the child nodes is the replaced
activity node a and the other is a new activity node b. Alternatively, a leaf node
of an LPM can be expanded by replacing it with operator node � with the
replaced node as single child. M is the LPM universe; i.e., the set of all possible
LPMs. An LPM M∈M can be expanded in many ways, as it can be extended
by replacing any one of its activity nodes, expanding it with any of the oper-
ator nodes, and with a new activity node that represents any of the activities
present in the event log. Exp(M) denotes the set of expanded LPMs that can
be created by expanding M , and exp max the maximum number of expansions
allowed from an initial LPM ; i.e., an LPM containing only one activity.

Fig. 1. (a) An initial LPM M1, (b-d) M2, M3, and M4, three consecutive expansions
of M1, and (e) M5, an alternative expansion of M3.

Figure 1 illustrates the expansion procedure, starting from the initial LPM
M1 of Fig. 1a. The LPM of Fig. 1a is first expanded into a larger LPM by replac-
ing A by operator node →, with activity A as its left child node and B its right
child node, resulting in the LPM of Fig. 1b. Note that M1 can also be expanded
in other ways, and LPM discovery recursively explores all possible process trees
that meet a support threshold by iterative expansion. In a second expansion
step, activity node B of the LPM of Fig. 1b is replaced by operator node ∧, with
activity B as its left child and C its right child, resulting in Fig. 1c. The activity
node A of the LPM of Fig. 1c is replaced by operator node × with as left child
activity A and as right child activity D, forming the LPM of Fig. 1d. Another
expansion of the Fig. 1c LPM is shown in Fig. 1e, replacing activity node A by
the loop operator (�) with activity A as child.

To evaluate a given LPM on a given event log L, its traces σ∈L are first pro-
jected on the set of activities X in the LPM, i.e., σ′ = σ�X . The projected trace
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Fig. 2. (a) A trace σ of an event log L. (b) The segmentation of σ on M3.

σ′ is then segmented into γ-segments that fit the behavior of the LPM and λ-
segments that do not fit the behavior of the LPM, i.e., σ′=λ1γ1λ2γ2 · · · λnγnλn+1

such that γi∈L(LPM ) and λi �∈L(LPM ). We define Γσ,LPM to be a function that
projects trace σ on the LPM activities and obtains its subsequences that fit the
LPM, i.e., Γσ,LPM = γ1γ2 . . . γn.

Let our LPM M3 under evaluation be the process tree of Fig. 1c and let
σ be the example trace shown in Fig. 2a. Function Act(LPM ) obtains the
set of process activities in the LPM, e.g. Act(M3) = {A,B,C}. Projection
on the activities of the LPM gives σ�Act(M3) = 〈A,B,C,C,A,C,B,A,B,A〉.
Figure 2b shows the segmentation of the projected trace on the LPM, leading to
Γσ,LPM = 〈A,B,C,A,C,B〉. The segmentation starts with an empty non-fitting
segment λ1, followed by a fitting segment γ1=〈A,B,C〉, which completes one run
through the process tree. The second event C in σ cannot be replayed on LPM ,
since it only allows for one C and γ1 already contains a C. This results in a
non-fitting segment λ2=〈C〉. γ2=〈A,C,B〉 again represents a run through pro-
cess tree, the segmentation ends with non-fitting segment λ3=〈A,B,A〉. We lift
segmentation function Γ to event logs, ΓL,LPM={Γσ,LPM |σ∈L}. An alignment-
based [2] implementation of Γ, as well as a method to rank and select LPMs
based on their support, i.e., the number of events in ΓL,LPM , is described in [30].
Note that there can exist multiple optimal alignments for a trace on a model.
The default ProM implementation of alignments therefore returns a arbitrary
optimal alignment from the set of optimal alignments. However, other imple-
mentations exist that obtain all optimal alignments instead of a single arbitrary
one. Since searching all optimal alignments and LPM mining are both compu-
tationally complex tasks, in practice the support of an LPM is calculated by
obtaining an arbitrary optimal alignment.

The expansion procedure in traditional LPM discovery stops when the num-
ber of instances (called support) of the behavior that is described by it does
not exceed some given threshold. This support is defined as the number of γ-
segments in ΓL,LPM . Several metrics are taken into account to assess the quality
of an LPM, but all of them are support-based. We refer to [30] for more detailed
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and formal definitions of LPMs, extensions of LPMs, and evaluating LPMs on
logs.

Note the definition of Exp provided in [30] allows for the generation of iden-
tical LPMs by expanding different LPMs, i.e., there can exist LPMs M , M ′, and
M ′′ such that M∈Exp(M ′) and M∈Exp(M ′′) but M ′ �=M ′′. The ProM imple-
mentation of LPM mining uses a hashset to check in constant time for each LPM
M that is created by expanding another LPM M ′ whether M was already cre-
ated by expanding some other LPM M ′′ and only calculates ΓL,M and expands
M further when this is not the case. Note that, as an effect, the pruning depends
on the order in which LPMs are expanded, and therefore we assume the ordering
in which LPMs are expanded to be arbitrary but consistent. Note that this does
not have any effect for the correctness of the pruning: if ΓL,M yields a support
below the threshold, then some expansion leading to M ′ that is guaranteed to
reduce support can be safely pruned away, even if M ′ might also be reachable
by extending some other LPM M ′′ that does meet the support threshold. Worst
case, this might lead to suboptimal pruning, in the case M ′′ is scheduled to be
expanded to M ′ before M is expanded to M ′.

Definition 1 Local Process Model Mining Problem: Given an event log
L, the LPM mining problem is defined as the task of discovering a set of fre-
quent LPMs, where the total number of replayable fragments exceeds a defined
threshold.

3.3 High-Utility Local Process Models

A High-Utility Local Process Model (HU-LPM) is an LPM where (i) its impor-
tance is related to the utility of the fragments it can replay instead of the number
of fragments it can replay and (ii) where this utility is above a predefined thresh-
old. Note that HU-LPMs are a generalization of LPMs, as we have shown in [29]
that the quality measures that are used in support-based LPM mining can be
expressed as utility functions for HU-LPM mining. Several scopes on which util-
ity functions can be defined are described in [29]:

Trace the most general class of utility functions. The trace-level utility func-
tions allow the utility of fitting trace fragments to depend on the events in these
specific fragments, their attributes, and properties of the case itself. An example
of a trace-level utility function is mining for LPMs that explain a high share of
the total running time of a case.

Event this class of utility functions can be used when the interest is focused
on some event properties, but it does not concern the trace-context of those
events. An example of an event-level utility function is the search for LPMs
describing process fragments with high financial cost.

Activity defines the utility of an LPM based on the frequency of occurrences
of each activity. It can be used when the analyst is more interested in some
activities with high impact (e.g., lawsuits, security breaches, etc.). This scope is
the one to which traditional pattern mining algorithms are mostly limited, which
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allows algorithms from this field to define upper bounds to efficiently prune the
search space without loss.

Model this class of utility functions is not log-dependent, but it allows the
analyst to specify preferences for specific structural properties of the LPM.

Functions on the different scopes can be combined to form composite func-
tions, consisting of component functions on one of the scopes above. The utility
of an LPM M over an event log L is denoted u(L,M), and we define as HU-list a
collection of HU-LPMs sorted in descending order according to their utility, with
|S| the number of HU-LPMs in HU-list S. For a more thorough introduction of
HU-LPMs and related concepts, we refer the reader to [29].

4 Pruning Strategies

In contrast to regular Local Process Model (LPM) mining, High Utility LPM
(HU-LPM) mining cannot be performed with techniques that prune the search
space based on frequency, leading to a large search space. Therefore, there is a
need for an alternative pruning strategy for HU-LPM mining that makes mining
possible on larger logs, however, the utility metric as defined in [29] is not nec-
essarily anti-monotonic, preventing any lossless reduction of the search space.
When setting a stopping criterion c on LPMs such that we expand an LPM M
only when c holds for M , we say that c is anti-monotonic when M violating c
implies that all M ′ ∈ Exp(M) violate c.

Property 1. ∃M∈M(∃M ′∈Exp(M)u(L,M ′)<u(L,M) ∧ ∃M ′∈Exp(M)u(L,M ′)≥
u(L,M)).

We show that anti-monotonicity does through the following counter-example.
Let M1, M2, M3, M4 shown in Figs. 1a-d, with M2∈Exp(M1), M3∈Exp(M2),
M4∈Exp(M3). Let event log L consist of the single trace shown in Fig. 2a, and
let the utility be the sum of the cost attributes of the events that belong to
replayable fragments. This results in utilities u(L,M1) = 1350, u(L,M2) = 2800,
u(L,M3) = 1300, u(L,M4) = 1400. It is easy to see that utility is not anti-
monotonic, as u(L,M3) < u(L,M2), but u(L,M4) > u(L,M3). This leads to
non-optimal HU-LPMs when we prune using a minimum utility threshold, e.g.,
stopping criterion c : u(L,M)≥1350 leads to M3 not being expanded because its
utility is below the threshold, while the utility of M4 would have again been above
the threshold. This is mainly explained by the fact that the utility added by the
new activity does not compensate for the utility lost because of the fragments
that do not fit the new LPM but that did fit the previous LPM. Note that anti-
monotonicity property does in fact hold in the special case of a utility function
that is defined on the set of γ-segments that fit the LPM and is independent of
the events or activities in those γ-segments. This special class of utility functions
is close to traditional LPM mining, where each γ-segment is assumed to have
equal utility.
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Definition 2 High-Utility Local Process Model Mining Problem: Given
an event log L, the HU-LPM mining problem is defined as the task of dis-
covering a set of LPMs with utility above a predefined threshold umin , i.e.,
u(L,LPM )≥ umin .

In High-Utility Local Process Model (HU-LPM) discovery, the size of the
search space grows combinatorially with the number of activities. Reducing the
search space is an inevitable step to ensure efficiency or even to enable the
algorithm to run in acceptable time. We have shown that the utility metric
is not anti-monotonic and that we, therefore, cannot reduce the search space
without loss. However, heuristics can be used to reduce execution time, without
formal guarantee of finding an optimal solution; i.e., the discovered set of LPMs
fulfilling the utility threshold might be incomplete.

The remainder of this section is as follows. We define new concepts related
to HU-LPMs in Sect. 4.1, we introduce two memoryless heuristics in Sect. 4.2,
and introduce two memory-based heuristics in Sect. 4.3.

4.1 Basic Concepts

Let M∈M be a HU-LPM, then Par(M) denotes the parent of m; Par(M) =
M ′∈M such that M∈Exp(M ′). For example, for the process trees of Fig. 1,
Par(M3) = M2. We generalize the concept of parent in Eq. 1, and define
Par i(M) as the ith parent of M , with Par0(M) = M , Par1(M) = Par(M),
Par2(M) = Par(Par(M)) and so forth; In general, we define Par i(M) as:

Par i(M) =

{
Par i−1(Par(M)) if i > 1,

M if i = 0.
(1)

For example, for the process trees of Fig. 1, Par3(M4) = M1. Note that M /∈
dom(Par) for LPMs M ∈ M that are initial LPMs, as initial LPMs have no
parent LPM defined. Note that when a LPM can be reached by expansion of more
than one LPM, Par yields the one from which the LPM actually was extended
in practice. Furthermore, we define it nb(M) as the number of expansions to
reach HU-LPM M from an initial HU-LPM; e.g., it nb(M3) = 2. Formally:

it nb(M) =

{
0, if M /∈dom(Par),
it nb(Par(M)) + 1, if M∈dom(Par).

(2)

Using Par and it nb we define Anc(M) as the set of ancestors of the LPM M ;
Anc(M) =

⋃it nb(M)
i=1 Par i(M), e.g., for Fig. 1, Anc(M4) = {M1,M2,M3}.

Based on these definitions, we now introduce four heuristics to reduce the
execution time of HU-LPM mining.

4.2 Memoryless Heuristics

This first type of heuristics focuses on local comparisons, i.e., an LPM is only
compared with its parent, the previous expansions are not considered. The
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heuristics work as follows: for a defined number of successive extensions (noted
k, such that 0 < k < exp max), the new LPM is allowed to have a utility lower
than or equal to the utility of its parent.

For each heuristic, we define a continuation criterium function, ctn(L, k,M),
which results to 1 if the k most recent expansion steps leading to LPM M
meet the requirements of the heuristic, indicating that M should be expanded
further. Otherwise, function ctn results to 0 and M will not be expanded further,
therefore reducing the size of the search space. Let β(bexp) be the function
that returns 1 if boolean expression bexp is True and returns 0 otherwise. We
introduce heuristic h1, which formalizes the function ctn(L, k,M) as defined
above:

Heuristic 1 (h1): The expansion of LPM M ∈ M is stopped if all LPMs from
the k−1th parent of M to M itself have a utility lower or equal to the utility of
its parent.

ctn(L, k, M)=

⎧
⎪⎪⎨

⎪⎪⎩

1−
min(it nb(M),k)−1∏

i=0

β(u(L,Par i(M))≤u(L,Par i+1(M))), if it nb(M)≥1

1, otherwise.

(3)

As we want initials LPMs always to be expanded independently of any heuris-
tic, ctn(L, k,M) = 1 when it nb(M) = 0, and the function defined by each
heuristic otherwise. We additionally propose heuristic h2, a relaxed version of
h1, where the expanded LPM is always allowed to have the same utility as its
parent:

Heuristic 2 (h2): The expansion of LPM m ∈ M is stopped if all LPMs from
the k−1th parent of M to M itself have a utility strictly lower than the utility
of their parents.

ctn(L, k, M)=

⎧
⎪⎪⎨

⎪⎪⎩

1−
min(it nb(M),k)−1∏

i=0

β(u(L,Par i(M)) < u(L,Par i+1(M))), if it nb(M)≥1

1, otherwise.

(4)

4.3 Memory-Based Heuristics

The second type of heuristics keeps in memory the set of LPMs produced by
the successive expansions. Instead of comparing two successive expansions, it
compares an extension with its best ancestor. For an LPM M , we define B(L,M)
as the highest utility among the ancestors of M in event log L; B(L,M) =
u(L,M ′) of LPM M ′∈Anc(M) such that �M ′′∈Anc(M) : u(L,M ′′)>u(L,M ′).
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The heuristics work as follows: for a defined number of successive expansions
(noted k, such that 0 < k < exp max), the expanded LPM is allowed to have
a utility lower than or equal to the utility of its best ancestor. We introduce
heuristic h3, which formalizes the function ctn(L, k,M) as defined above:

Heuristic 3 (h3): The expansion of LPM M ∈ M is stopped if all LPMs from
the k − 1th parent of M to M itself have a utility lower or equal to the highest
utility among their ancestors.

ctn(L, k, M) =

⎧
⎪⎪⎨

⎪⎪⎩

1−
min(it nb(M),k)−1∏

i=0

β(u(L,Par i(M))≤B(L,Par i(M))), if it nb(M)≥1

1, otherwise.

(5)

We also propose heuristic h4, a relaxed version of h3, where the expanded
LPM is always allowed to have the same utility as its best ancestor:

Heuristic 4 (h4): The expansion of LPM M ∈ M is stopped if all LPMs from
the k−1th parent of M to M itself have a utility strictly lower than the highest
utility among their ancestors.

ctn(L, k, M)=

⎧
⎪⎪⎨

⎪⎪⎩

1 −
min(it nb(M),k)−1∏

i=0

β(u(L,Par i(M)) < B(L,Par i(M))), if it nb(M)≥1

1, otherwise.

(6)

To illustrate these four heuristics, let the plot in Fig. 3a be our running
example. Let sqi represent a sequence of expansions from an initial LPM, and
sqi,j be the jth LPM of that sequence of expansions sqi. For each heuristic and
k = 2, Fig. 3b presents the sequences that would be expanded until the fourth
step (marked with �) and those that would be stopped before (marked with ✗).

Here, sq1 and sq5 are two extremes. While sq1 contains two successive utility
decreases (sq1,2 and sq1,3), sq5 contains only LPMs having a higher utility at each
expansion. In consequence, every heuristic would have stopped sq1 after sq1,3;
removing further expansions from the search space, and would have expanded
sq5 until sq5,4. Sq2 is only expanded until the fourth step by h2 because this
relaxed version allows for the utility to stagnate during two steps after a first
decrease. On the contrary, the expansion of sq4 is only stopped by h3 because the
utility obtained in the first step remains higher than the ones obtained at each
further step. Finally, sq3 is expanded until the fourth step by the memoryless
heuristics but stopped by the memory-based heuristics because the increase at
sq3,3 is enough for the utility of the expansion to be higher than the utility of
its parent, but not enough to be at least equal to the utility of its best ancestor.

Heuristic h2 is the most permissive as an LPM is only compared with its
parent and can have the same utility. On the contrary, Heuristic h3 is the most
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Fig. 3. (a) Four successive expansions on five initial LPMs, (b) the pruning scope of
the different heuristics.

restrictive as an LPM is compared with its best ancestor and must have a higher
utility. As heuristics are approximate methods, some LPMs will be wrongly
pruned. In the example in Fig. 3, the expansion line sq4 would have been pruned
by heuristic h3 after sq4,3. However, we notice that the LPM produced in the
next expansion has a utility higher than the best ancestor. This is an example
of expansion line that shouldn’t have been stopped. Therefore, a good strategy
will be a compromise between the number of good HU-LPMs we allow to lose
and how small the search space has become thanks to the pruning methods.

5 Experiments

In this section, we present experiments to evaluate the HU-LPM mining
approaches presented in this paper. First, we explore whether the different
heuristic configurations achieve the goal of reducing the search space size, and
assess the quality of the obtained HU-LPMs. Here, a heuristic configuration is
considered to be the combination of a heuristic and the value of k. Then, we
explore the relation between (1) the performance of the heuristic configurations
in terms of search space reduction and the quality of the mined HU-LPMs, and
(2) properties of the event log. We detail the experimental setup in Sect. 5.1, dis-
cuss the results in Sect. 5.2. We then continue by exploring how the performance
of the heuristics are impacted by characteristics of the event logs. In Sect. 5.3 we
analyze the effect of log properties in isolation on the performance of the heuris-
tics using statistical testing. In Sect. 5.4 we investigate more complex effects on
the performance of the heuristics that involve multiple log properties together.

5.1 Methodology

To evaluate the performance of the different heuristic configurations we apply the
mining configurations to a collection of event logs consisting of 3 existing event
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logs and a collection of artificially-generated event logs. The existing logs are the
BPI’13 closed problems log, consisting of 1487 traces and 6660 events, the BPI’13
open problems log, consisting of 819 traces and 2351 events and an artificial log
used in the Process Mining book [1] (Chap. 2), consisting of 6 traces and 42
events. Furthermore, considering our aim of exploring the relationship between
properties of event logs and the performance of the heuristic configurations, we
generate a collection of artificial logs where we aim to generate logs with diverse
log properties. To generate the event logs we use the PTandLogGenerator tool
[15], which allows for the generation of random process trees, requiring the user
to set as parameters the percentage of operator nodes in the tree that are of
each operator node type (i.e., sequence, choice, parallel, loop). We generate 27
unique process trees by setting the operator node probabilities according to the
configuration shown in Table 1. Since the computation time of LPM mining is
highly dependent on the number of activities in the log, it is important to also
make the set of artificial logs diverse in their number of activities. Therefore, we
randomly chose the number of activities to be used in each process trees from a
triangular probability distribution with a minimum of 10 activities, a maximum
of 30 activities, and a mode of 20 activities. We simulate 100 traces from each
of the 27 process trees to generate 27 artificial event logs, providing us with a
collection of event logs that is diverse in control-flow characteristics.

Table 1. The process tree properties of the artificially generated event logs.

Log Act Sequence Loop Parallel Choice Log Act Sequence Loop Parallel Choice

1 21 0.4 0.0 0.0 0.6 15 15 0.5 0.1 0.2 0.2

2 15 0.4 0.0 0.1 0.5 16 18 0.5 0.2 0.0 0.3

3 12 0.4 0.0 0.2 0.4 17 23 0.5 0.2 0.1 0.2

4 18 0.4 0.1 0.0 0.5 18 13 0.5 0.2 0.2 0.1

5 20 0.4 0.1 0.1 0.4 19 17 0.5 0.0 0.0 0.5

6 22 0.4 0.1 0.2 0.3 20 14 0.5 0.0 0.1 0.4

7 13 0.4 0.2 0.0 0.4 21 17 0.5 0.0 0.2 0.3

8 19 0.4 0.2 0.1 0.3 22 13 0.6 0.1 0.0 0.3

9 14 0.4 0.2 0.2 0.2 23 14 0.6 0.1 0.1 0.2

10 21 0.5 0.0 0.0 0.5 24 17 0.6 0.1 0.2 0.1

11 16 0.5 0.0 0.1 0.4 25 14 0.6 0.2 0.0 0.2

12 14 0.5 0.0 0.2 0.3 26 13 0.6 0.2 0.1 0.1

13 22 0.5 0.1 0.0 0.4 27 18 0.6 0.2 0.2 0

14 15 0.5 0.1 0.1 0.3

These 27 artificially generated event logs do not have a cost attribute that
can be used for high-utility LPM mining. Therefore, we artificially add a cost
attribute to each event in the log in two different ways. First, we add cost to
the log in a way that the costs of events in the log are relatively homogeneous,
i.e., the differences between how much utility the events can contribute to an
LPM are fairly small. To add this type of costs to the log, we sample the cost
of each event from a Normal distribution with a mean of 10 and a standard
deviation of 1. Secondly, we explore the effect of a heavily skewed distribution
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of cost over the events, i.e., only a small number of events take up a large share
of the total cost of the log. To generate this highly skewed costs, we sample the
cost of each event from a Pareto distribution with a scale parameter of 1 and a
shape parameter of 1. For each of the 27 event logs, we generate both a version
with normally distributed costs and with Pareto distributed costs, leading to a
total of 54 artificial logs.

For each event log, we first apply the HU-LPM discovery algorithm without
any pruning, generating the desired list of HU-LPMs in terms of quality and
providing us with the size of the full search space when all LPMs are explored.
As a next step, we discover HU-LPMs with each of the four different heuristic
strategies, and {1, 2, 3} the values of parameter k. We limit the LPM expansion
procedure to four successive expansions, i.e., exp max = 4, to be able to perform
the experiments within a reasonable time. We compare the number of explored
LPMs obtained with each of the heuristics with the number of LPMs explored
when no pruning was applied.

As shown in Sect. 4, the heuristics might prevent the discovery of HU-LPMs
with high utility, leading to HU-lists of lower quality. Let Sa = 〈M1,M2, . . . ,Mn〉
be the HU-list obtained using heuristic a. We define Sid as the ideal HU-list; i.e.,
the HU-list extracted without any pruning. To assess the efficiency of the four
heuristics, we compare the HU-list extracted with the heuristics with the ideal
HU-list obtained with the existing HU-LPM mining technique [29] which does
not use any pruning. The quality of the extracted HU-list depends on the utility
of the HU-LPMs in the HU-list compared to the utility of the HU-LPMs in the
ideal HU-list. We compare the HU-list and the ideal HU-list using the normal-
ized Discounted Cumulative Gain (nDCG) [7], which is an evaluation metric
for rankings that is one of the most commonly used metrics in the Information
Retrieval field [28]. Discounted Cumulative Gain (DCG) measures the quality of
a ranking based on the relevance of the elements in the ranking in such a way
that it gives higher importance to the top positions in the ranking. We denote
the relevance of the element of the ranking at position i with rel i. For the eval-
uation of a HU-list we regard rel i to be the utility of the LPM at position i.
Equation 7 formally defines DCG over the first p elements of a ranking.

DCGp =
p∑

i=1

2reli − 1
log2(i + 1)

(7)

IDCG is defined as the DCG obtain the optimal ranking, which is the ideal HU-
list in our example. Equation 8 defines nDCG based on the DCG of a ranking
and the IDCG of the respective ideal ranking.

nDCGp =
DCGp

IDCGp
(8)

We limit the nDCG calculation to the p first HU-LPMs in the ranking, with
0 < p ≤ |Sa | for Sa being the HU-list obtained with pruning.



Heuristic Mining Approaches for High-Utility Local Process Models 41

5.2 Aggregate Results

Figure 4a shows the nDCGp results for different values of p, for each of the four
heuristics and the three values of k. The x-axis represents the value of p used
to compute nDCGp, while the nDCGp is shown on the y-axis. Each line in this
plot represents one of the 54 artificially generated event logs or one of the three
existing event logs. The figure shows that all four heuristics achieve nDCG scores
close to 1 on most event logs. Heuristic h1 and h3 result in the lowest nDCG
values, especially when used with k = 1. Figure 4b shows the median ratio of the
search space (i.e., compared to exploring the full search space without heuristic)
of the four heuristics and the values of k, over all 57 event logs. It shows that
heuristics h1 and h3 lead to the largest reduction of the search space, where at
median only 16% of the full search space without using any pruning is explored.
When using k = 3, heuristics h1, h2 and h3 result in doing a full exploration
of the search space, resulting in an nDCG value of 1.0 on all event logs and a
median search space ratio of 1.0. With h4, there is one single event log for which
k = 3 does not result in a full exploration of the search space, as indicated by
the single line with an nDCG lower than 1.0. The general trend of the nDCG
values on the majority of logs is that the nDCGp decreases for higher numbers of
p. This indicates that the majority of the LPMs that were missed in the mining
procedure as a result of using a heuristic were positioned at lower positions of
the ranking in the ground truth ranking, indicating that the most of the top
LPMs still get found when mining with heuristics. Figure 4b also shows the
median absolute deviation of the search space ratio over the 57 event logs. The
low median absolute deviation values show that the search space reduction is
consistent over all event logs. In total, h1 and h3 with k = 1 enable substantial
pruning of the search space with some loss in nDCG, while with k = 2 the search
space is still reduced, with almost no loss in nDCG. We highlight that all of the
low nDCG value (<0.6) results, over all configurations, originate from the same
log: log #1 with a Pareto distribution of the cost, and log #3 with both the
normal and the Pareto distribution of the cost.

Note that we do not show the speedup of HU-LPM mining in terms of CPU
time, but instead focus on the reduction of the search space. The reason that
we do not present CPU time is that exploration of the full search space without
using any pruning on a few of the logs results a memory usage of the miner
that require the usage of virtual memory in the form of swap files on hard disk.
In these circumstances, the CPU time is influenced heavily by characteristics
of memory management by the operating system, while we are interested in
measuring the effect of pruning on the efficiency of HU-LPM mining. However,
the full mining on the different logs takes at median less that 3 min (177 s). An
exception is log #23, where exploration of the full search space takes 1.5 h due
to memory management by the operating system.
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Fig. 4. (a) The nDCG values for each configuration on the different logs and (b) the
reduction in the number of LPMs that have to be explored as part of the mining
procedure for each configuration on the different logs.

5.3 The Influence of Log Properties on Heuristic Performance

We now list the event logs properties that we use to our analysis:

Number of events & activities. The number of events and activities in the
log. The number of activities is expected to negatively impact the size of the
search space, as the number of expansion operations of an LPM depends on
the number of activities.

Number of trace variants. The number of unique traces in the log. This
property is expected to influence the size of the search space as this deter-
mines the number of times per LPM that the alignment algorithm [2] needs
to be executed.

Average number of event & activities per trace. The average trace
length, and the average number of activities per trace.

Maximum trace length. The length of the longest trace in the log. This prop-
erty is expected to influence the size of the search space, as the computation
time of the alignment algorithm [2] is dependent on the trace length.
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Furthermore, to capture the control-flow properties of the event log, we
extract several properties from the directly-follows graph (dfg) that we extract
from the event logs. A dfg of an event log L is a weighted directed graph over the
alphabet of activities Σ where two activities a, b ∈ Σ are connected by an edge
if a is directly followed by b somewhere in a trace of L. The weight of the edge
is proportional to the frequency of how often this happens. The network science
research field [20] is concerned with the analysis of graphs and the extraction
of descriptive properties from a graph. We extract the following properties from
the dfg, using well-known techniques from the network science field:

Graph diameter. let the geodesic distance between two vertices a, b of a graph
G be the number of edges in the shortest path from a to b, where the shortest
path is based on the frequency of the edges in the dfg. The eccentricity of a
vertex a of a graph is defined as the maximum geodesic distance of a with
any other vertex b of G. The Graph diameter is the highest eccentricity of
all vertices in a graph. Graph diameter can be seen as a proxy variable to
measure the degree of connectedness of the activities in the log.

Graph betweenness centrality. [11] If X is the set of vertices of a graph, the
betweenness centrality of a vertex x1 ∈ X is the ratio of shortest paths between
any two vertices x2, x3 ∈ X that go through x1. We lift betweenness centrality
from vertices to the graph level by averaging the betweenness centrality of
the vertices. A short distance between two nodes a and b on the dfg means
that both are quite unrelated (they have weak links in terms of succession
frequency), a vertex that has a high betweenness centrality is in fact quite
on the outskirts of the graph (not strongly linked with many vertices). The
betweenness centrality of a dfg can be regarded as a measure of sequentialness
of an event log: the betweenness centrality will be high if the event log is
sequential in nature to a high degree, while it will be low if the process is
highly parallel or random.

Graph density. The number of edges in the graph divided by the number of
possible edges in the graph, i.e., |Σ|2 for a dfg.

PageRank-based graph properties. PageRank [25] is one of the most well-
known algorithms to measure the relative importance of vertices in a graph.
PageRank is an iterative algorithm that at each iteration updates the impor-
tance of a vertex taking into account the importance of the vertices that link to
it, eventually ended in a steady-state. Xing et al. [31] later extended PageRank
to graphs with weighted edges. We apply the weighted PageRank extension to
the dfg, which results in frequent activities that are also frequently followed and
preceded by other frequent activities getting high PageRank scores, while infre-
quent activities, or activities that are mainly followed and preceded by activi-
ties getting low PageRank scores. Many high-PageRank nodes in the graph can
be seen as an indication that there are many frequent LPMs in the log. From the
vertex PageRank scores, we extract the maximum value and the variance
as event log properties. Logs with a high PageRank variance would indicate
they have both very strong and very weak activities. Therefore, we expect to
be few LPMs, thus resulting in a lot of pruning and good nDCG scores.
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Fig. 5. Example of utility directly-follows graph for the log of Fig. 2a.

The dfg based features capture different elements of the control-flow of the
event log. In this work, however, we are especially interested in the utility of
the events in the process model, which is not captured in the dfg. The rationale
behind this is that for logs where the costs are equally divided over the events,
there will be a larger set of strong HU-LPM in the log, therefore leading to
a larger search space size. We calculate the Gini index [12], one of the most
commonly used inequality measures, to measure the degree of inequality between
the cost values of the events in the log. Additionally, we define a special version
of the dfg that defines that arc weights between nodes based on utility, which
we call the utility dfg, and we extract each graph-based event log property for
the utility dfg that we have above defined for the dfg.

Figure 5 shows an example of a utility dfg that is based on the log shown in
Fig. 2a. Each activity is represented by a node, and the edges between two nodes
a and b are weighted by the total sum of the cost attribute of events of activity b
that follow an event of activity a. In the example, the edge linking from activity
B to D has weight 200 because the log contains a single D event that directly
follows a B, and this event has a cost of 200.

We analyze the relation between the listed event log properties and the search
space ratio as well as the relation between those properties and the quality of the
obtained results in terms of nDCG@100. For each heuristic and for each value of k
we calculate the Kendall τ rank correlation [17] between value of the log property
and the search space ratio, testing whether there is a relation between the value of
the property and the search space ratio using as sample the collection of logs. We
repeat the same analysis for nDCG@100. The correlation analysis yields a value
in [−1, 1] interval, where −1 indicates a strong negative correlation, 0 indicates
no correlation, and 1 indicates a strong positive correlation. Kendall’s τ rank
correlation test is a non-parametric test, i.e., it does not make any assumptions
on how the data is distributed, in contrast to for example a t-test. In addition
to reporting the correlation value we test whether the relation is statistically
significant, using a τ test with significance level α of 0.05.
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Table 2 shows the correlation values between the event log properties and
the search space ratio, indicating the statistically significant relations in bold.
Looking at the number of statistically significant correlations, it seems that the
number of events, the number of trace variants, the number of activities per trace,
the Gini index of the total utility of the traces, and the maximum pagerank of
the dfg are most strongly related to the search space ratio, aggregated over all
heuristics.

Table 2. Kendall τ correlation coefficients between log properties and search space
ratio. Statistically significant (α = 0.05) effects are indicated in bold.

Property h1 h2 h3 h4

k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2

Num events 0.51 −0.04 0.04 −0.16 0.51 −0.31 0.05 −0.32

Num activities −0.21 −0.19 −0.17 −0.15 −0.21 0.02 −0.18 0.01

Num trace variants 0.44 −0.07 −0.01 −0.17 0.44 −0.33 0.00 −0.33

Avg num events per trace 0.52 −0.06 0.13 −0.18 0.52 −0.20 0.14 −0.20

Avg num activities per trace 0.46 −0.10 0.13 −0.18 0.46 −0.17 0.14 −0.17

Max trace length 0.56 0.06 0.15 −0.08 0.56 −0.17 0.14 −0.17

Gini index event utility 0.09 −0.07 −0.09 −0.12 0.10 −0.19 −0.09 −0.19

Gini index trace utility −0.07 −0.16 −0.21 −0.16 −0.06 −0.21 −0.21 −0.22

Dfg graph diameter 0.24 −0.04 0.10 −0.10 0.25 −0.08 0.11 −0.10

Dfg betweenness centrality 0.00 0.02 0.10 −0.10 0.25 −0.08 0.11 −0.10

Dfg graph density 0.11 −0.05 −0.08 −0.06 0.12 −0.15 −0.07 −0.14

Dfg pagerank max 0.23 −-0.06 −0.11 −0.13 0.23 −0.24 −0.10 −0.24

Dfg pagerank variance 0.26 0.11 0.09 0.07 0.25 −0.06 0.10 −0.06

Udfg graph diameter 0.27 0.02 0.17 −0.05 0.28 −0.03 0.18 −0.03

Udfg betweenness centrality −0.05 −0.12 −0.05 −0.11 −0.05 0.00 −0.06 −0.02

Udfg pagerank max 0.18 −0.07 −0.08 −0.12 0.19 −0.22 −0.07 −0.22

Udfg pagerank variance 0.26 0.11 0.09 0.07 0.25 −0.06 0.10 −0.06

Table 3 shows the obtained correlation values between the event log properties
and the nDCG@100, indicating the statistically significant relations in bold. The
results show that the maximum pagerank of the dfg graph as well as of the utility
dfg graph that are extracted from the log are significantly correlated with the
nDCG@100 of the obtained LPMs, for almost all of the heuristics and values of
k. Note that this is a negative correlated, indicating that all heuristics lead to
suboptimal results when these graphs are dominated by one strong central node.
Furthermore, it is noteworthy that the length of the longest trace has a negative
influence on the quality of the results.
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Table 3. Kendall τ correlation coefficients between log properties and nDCG@100.
Statistically significant (α = 0.05) effects are indicated in bold.

Property h1 h2 h3 h4

k=1 k=2 k=1 k=2 k=1 k=2 k=1 k=2

Num events 0.12 −0.27 −0.19 −0.17 0.12 −0.24 −0.18 −0.29

Num activities 0.03 0.12 0.19 0.14 0.03 0.19 0.21 0.14

Num trace variants 0.11 −0.24 −0.19 −0.07 0.10 −0.20 −0.19 −0.25

Avg num events per trace 0.21 −0.19 −0.12 −0.18 0.20 −0.13 −0.11 −0.12

Avg num activities per trace 0.27 −0.12 −0.03 −0.14 0.26 −0.02 −0.03 −0.01

Max trace length 0.13 −0.21 −0.22 −0.12 0.12 −0.25 −0.20 −0.26

Gini index event utility −0.02 0.01 −0.08 −0.02 −0.02 −0.05 −0.09 −0.06

Gini index trace utility −0.07 0.01 −0.07 0.03 −0.07 −0.01 −0.07 −0.05

Dfg graph diameter 0.20 −0.20 0.02 −0.22 0.20 −0.07 0.04 −0.11

Dfg betweenness centrality 0.11 −0.04 0.17 −0.06 0.11 0.04 0.19 −0.01

Dfg graph density −0.05 0.00 −0.18 0.10 −0.05 −0.07 −0.20 −0.04

Dfg pagerank max −0.22 −0.28 −0.47 −0.18 −0.24 −0.36 −0.49 −0.32

Dfg pagerank variance −0.03 −0.08 −0.21 0.01 −0.03 −0.17 0.23 −0.12

Udfg graph diameter 0.22 −0.16 0.01 −0.18 0.21 −0.11 0.02 −0.08

Udfg betweenness centrality 0.14 0.04 0.19 0.02 0.13 0.13 0.20 0.09

Udfg pagerank max −0.19 −0.26 −0.43 −0.14 −0.20 −0.34 −0.44 −0.30

Udfg pagerank variance −0.03 −0.08 −0.21 0.01 −0.03 −0.17 −0.23 −0.12

5.4 The Influence of Combinations of Multiple Log Properties
on Heuristic Performance

We leverage regression techniques to analyze interplay between properties of the
event logs on the one hand and computation time, search space size, and quality
of the LPMs in terms of nDCG on the other hand. We chose the regression
trees and linear regression regression techniques, since both techniques produce
interpretable models.

The goal is to predict a defined response variable, i.e., the search space size
or the nDCG result. To estimate the accuracy of the models we use the leave-
one-group-out cross-validation model evaluation setup, where we train the model
on the observations from all but one event log in the learning phase and then
predict and evaluate the prediction performance on the one event log left out.
This process is then repeated 57 times (for every log) to predict and evaluate for
every event log. The accuracy of the model is the average accuracy over all logs.
We evaluate the predicted value with respect to the ground truth value using
MAPE (Mean Absolute Percentage Error), which is defined as:

MAPE =
100
n

n∑
i=1

|Ai − Pi

Ai
| (9)

with n the number of predicted values, Ai the actual ground truth values and Pi

the predicted value by the model. This measure indicates, in percentage, how far
the prediction is from the actual value, without making the distinction between
a prediction above or below the actual value.
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Figure 6 shows the discovered regression tree for the relation between search
space ratio and event log properties. Each node of the tree represents a binary
split on one of the properties. Furthermore, each node in the tree is annotated
with the number of observations (samples) in the training set taking this path
in the tree, and the predicted target value for that node in terms of search space
ratio. We left out k = 3 values from the analysis, since the heuristics have shown
to result in a search space ratio of 1.0 for all logs in Sect. 5.2. The first split splits
the tree into a k = 1 and k = 2 path, where it is noticeable that the predicted
search space ratios are much higher for k = 2. However, for the k = 1 path
we still see that the search space ratio depends on some properties of the log:
especially the variance of the PageRank of the dfg turns out to be of influence:
both the lowest and the highest PageRank variance values correspond to higher
search space ratio, while the search space ratio turns out to be lower for middle-
range values. For the k = 2 path we see h1 and h2 result in higher search space
size compared to h4, which is in agreement with what we have found before.
However, the tree also shows that higher numbers of activities in the log (≥16.5)
result in higher search space size.

k <= 1.5
samples = 408
value = 0.527

var of dfg pagerank < 0.0002
samples = 204
value = 0.257

True

max dfg pagerank <= 0.116
samples = 204
value = 0.798

False

samples = 8
value = 0.556

var of dfg pagerank <= 0.001
samples = 196
value = 0.245

max trace length <= 31.0
samples = 172
value = 0.224

 avg nb of events per trace <= 6.01
samples = 24
value = 0.395

samples = 124
value = 0.2

samples = 48
value = 0.287

samples = 12
value = 0.335

samples = 12
value = 0.454

nb of activities >= 16.5
samples = 120
value = 0.841

heuristic != h3
samples = 84
value = 0.736

graph diameter of dfg <= 0.075
samples = 48
value = 0.906

graph betweeness centrality of dfg <= 30.35
samples = 72
value = 0.798

samples = 24
value = 0.955

samples = 24
value = 0.857

samples = 24
value = 0.734

samples = 48
value = 0.83

heuristic != h4
samples = 63
value = 0.7

var of utility dfg pagerank <= 0.001
samples = 21
value = 0.842

samples = 21
value = 0.799

samples = 42
value = 0.651

samples = 15
value = 0.81

samples = 6
value = 0.921

Fig. 6. Regression tree for the relation between log properties and search space ratio.

Figure 7 shows a regression tree built with nDCG100 as the variable to predict.
Most of the features used in this regression tree are event log properties; e.g.,
the total number of activities, the number of events or the average number of
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nb of activities <= 12.5
samples = 408
value = 0.962

k <= 1.5
samples = 40
value = 0.817

True

gini index event utilities <= 0.594
samples = 368
value = 0.977

False

 avg nb of events per trace <= 4.184
samples = 20
value = 0.671

graph density of dfg <= 0.589
samples = 20
value = 0.962

samples = 12
value = 0.545

samples = 8
value = 0.861

samples = 12
value = 0.99

samples = 8
value = 0.92

samples = 8
value = 0.777

k <= 1.5
samples = 360
value = 0.982

nb of events <= 1915.5
samples = 180
value = 0.964

 avg nb of events per trace <= 19.155
samples = 180

value = 1.0

avg nb of activities per trace <= 6.065
samples = 156
value = 0.972

graph density of dfg <= 0.175
samples = 24
value = 0.911

samples = 92
value = 0.96

samples = 64
value = 0.99

samples = 16
value = 0.951

samples = 8
value = 0.832

samples = 156
value = 1.0

is_h3 <= 0.5
samples = 24
value = 0.997

samples = 18
value = 0.997

samples = 6
value = 1.0

Fig. 7. Regression tree for the relation between log properties and the quality of the
mined HU-LPMs (in terms of nDCG100).

events per trace. This shows that regardless of the heuristic configuration used,
the logs structural properties have a larger impact on the quality of the HU-LPM
ranking extracted than the chosen heuristic. The tree shows that mining with
k = 2 leads to higher nDCG values than k = 1. The tree also surprisingly shows
that the nDCG is higher for event logs with 13 or more activities. Event logs
where the Gini index of the event utilities is low, i.e., where the utility if equally
distributed over the events, result in lower nDCG values. This can be explained
by the fact that with more evenly distributed event utility, there are more strong
HU-LPMs in the log. This leads to a larger unpruned search space size, and to
a harder pruning task where it is easier to miss LPMs with high utility.

Table 4 presents the prediction results for the search space ratio and nDCG100

predictions in terms of MAPE. The table contains two baseline prediction meth-
ods. The first baseline is the Global Mean (GM), i.e., respectively the search
space ratio and average nDCG100 values averaged over all event logs, used as
a static predictor. As a second baseline, we use the Configuration-based Mean
(CBM), i.e., the average search space ratio and average nDCG100 values for all
the runs with identical heuristic and value of parameter k. The CBM baseline
performs better than the global mean, which shows that the search space ratio
and nDCG100 values are dependent on the heuristic and the value of parameter
k. The regression trees that are shown in Figs. 6 and 7 make more accurate pre-
dictions than the configuration-based mean, which shows that there is a benefit
in using information about the event log in predicting the search space size and
the nDCG values. However, a linear regression model outperforms the regression
tree models for both prediction tasks. It is noticeable that the MAPE values for
predicting the search space ratio are very high, while the errors for predicting
the nDCG100 values are very small. The reason for this is that the search space
ratio covers a large interval, with some values close to zero and others close
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Table 4. MAPE average and standard deviation values of different prediction
techniques

Technique MAPE of the search
space ratio prediction

MAPE for the
nDCG100 prediction

Mean Std. dev. Mean Std. dev.

Global mean 825.83 927.21 4.32 7.84

Configuration-based mean 382.75 463.84 3.97 7.62

Regression tree 121.63 159.41 3.57 8.20

Linear regression 86.60 21.81 3.15 7.12

to one, while the values of nDCG are much more concentrated towards values
close to one. This makes the prediction of search space ratio percentage-wise a
much harder prediction task than predicting nDCG. However, the fact that the
prediction errors when using log-based information are several orders smaller
than the baseline methods shows that the search space ratio can be predicted
with reasonable accuracy when log properties are taken into account. While this
predictive experiment was performed with the aim of generating insights in the
relation between log properties and the performance of the heuristics, one could
also envision these predictive models to be used as guidance for heuristic selec-
tion for the process analyst. Given an event log, the prediction models could
provide the analyst with the predicted running time (proportional to the search
space ratio) and the predicted HU-LPM quality for each heuristic and value of
k, aiding the process analyst in making this choice.

6 Conclusion and Future Work

In this paper, we have shown that the High-Utility Local Process Model (HU-
LPM) mining problem is not anti-monotonic when event-level or trace-level util-
ity functions are used. We introduced four heuristic configurable mining tech-
niques to reduce the search space. We have shown on a collection of 57 event
logs that the heuristics techniques can be used to extract HU-LPMs by exploring
a search space several times smaller than the full search space, without much
loss in the quality of the mined HU-LPMs. Additionally, we have discovered
several properties of event logs that influence which of the four heuristic mining
techniques work well, and have developed a predictive model that can predict
the expected search space size and the expected quality of results based on log
properties.

In future work, we intend to take the idea to make the approach log-specific
one step further, by using the event log properties and a predictive model to
predict at each step of the HU-LPM mining algorithm which LPMs can be
pruned and which ones need to be explored. In this way, a log-specific heuristic
mining technique would arise.
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Abstract. The set of regions of a transition system, ordered by set
inclusion, is an orthomodular poset, often referred to as quantum logic,
here called regional logic. Regional logics, which are known to be regular
and rich, are the main subject of investigation in this work. Given a
regular, rich logic L, one can build a transition system A, such that L
embeds into the regional logic of A. Call a logic stable if the embedding
is an isomorphism. We give some necessary conditions for a logic to
be stable, and show that under these, the embedding has some stronger
property. In particular, we show that any {0, 1}-pasting of n stable logics
is stable, and that, whenever L contains n maximal Boolean sublogics
with pairwise identical intersections, L is stable. The full characterization
of the class of stable logics is still an open problem.

1 Introduction

Regions of transition systems have been introduced by Ehrenfeucht and Rozen-
berg [7,8] and applied to the synthesis of net systems in several ways, as
described in [1,2]. They correspond to conditions (or Boolean places) in elemen-
tary net systems; if we think of such a net system as a model of a distributed
system, regions can be taken as propositions expressing properties that can be
observed “locally” by a component of the system.

This notion of locality is subordinated to that of sequential component. As
such it can be interpreted as spatial locality. Namely, a property is local when-
ever it is fully determined by the state of a single component, subject to a single
clock. In this sense, the synthesis procedure allows for a full description of the
implementation of a distributed system, provided its global behaviour specified
by a transition system. The notion of global property is here naturally under-
stood as follows. A state of the transition system is global in that it can be
seen as composed by the states of each of its local sequential components. It
must then correspond to a collection of locally observable properties, which is
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complete in that it determines uniquely a property, or region, for each of its
components.

We are interested in the order structure of regions both when they are seen
concretely as sets ordered by set inclusion and when they are seen abstractly as
a partially ordered set of propositions; in general this set is a family of Boolean
algebras, partially overlapping, usually called a quantum logic [11]. Each Boolean
algebra corresponds, intuitively, to a component of the distributed system, and
describes the logic of local propositions.

In more detail, we exploit a duality between condition/event transition sys-
tems and rich and regular quantum logics, presented in [4]. In that contribution,
with some difference in notation that will be explained in a remark at the end of
Sect. 2, we proved that, given a rich and regular quantum logic L (we use simply
logic in what follows), one can build a condition/event transition system A, such
that L embeds into the logic generated by the regions of A. In the present work,
we explore the case in which this embedding is an isomorphism, in which case we
call the logic stable. We give some necessary conditions for a logic to be stable,
while the full characterization of the class remains an open problem.

The special cases analyzed in this paper exploit the fact that any quantum
logic can be seen as a family of partially overlapping Boolean algebras. In par-
ticular, we show that the so called {0, 1}-pasting of n stable logics, is stable, and
that, whenever L contains n maximal Boolean sublogics with pairwise identical
intersections, L is stable.

In the next section, we recall basic definitions on condition/event transition
systems (CETS) and regions, and on quantum logics, in particular on rich and
regular logics. In Sect. 3 we recall that to any CETS it is possible to associate
the quantum logic of its regions, and recall a synthesis procedure to associate a
CETS to any rich and regular logic. Sections 4 and 5 constitute the original part
of the paper: the first deals with some results towards the characterization of
stable logics, the second considers some particular subclasses of logics, and shows
that they are stable. Section 6 concludes the paper, suggesting some further
development.

2 Preliminary Definitions and Notations

2.1 Transition Systems

Transition systems are a class of automata representing the global behaviour of
a system in opposition to the representation via local states or local properties. A
relation between these two ways of representation is extensively reported in the
literature, see [7–9] as first papers on the subject and [1] for a complete survey.
In this contribution, we will always consider finite transition systems.

Definition 1. A transition system is a triple A = (Q,E, T ) where Q is a set
of states, E is a set of events and T ⊆ Q × E × Q is a set of transitions. We
assume that the following conditions are respected:

1. the underlying graph of the transition system is connected;
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2. ∀(q1, e, q2) ∈ T q1 �= q2;
3. ∀(q, e1, q1), (q, e2, q2) ∈ T q1 = q2 ⇒ e1 = e2;
4. ∀e ∈ E ∃ (q1, e, q2) ∈ T .

In some cases, we will drop axiom 1, which imposes connection.
A region of a transition system is a set of its states such that the occurrences

of one of its events have the same crossing relation, namely entering, leaving the
region itself, or otherwise neither of the two. This is formalised as follows.

Definition 2. A region of a transition system A = (Q,E, T ) is a subset r of Q
such that ∀e ∈ E, ∀(q1, e, q2), (q3, e, q4) ∈ T :

1. (q1 ∈ r and q2 �∈ r) ⇒ (q3 ∈ r and q4 �∈ r); and
2. (q1 �∈ r and q2 ∈ r) ⇒ (q3 �∈ r and q4 ∈ r).

Given a transition system A, its set of regions will be denoted by R(A); given
a state q ∈ Q, the set of regions containing q will be denoted by Rq(A) and,
when the transition system is clear from the context, simply by Rq. Note that
the set of regions R(A) of a transition system A = (Q,E, T ) cannot be empty
since at least the whole set of states Q is a region.

q1

q2

q3

q4

q5

e2

e1
e2

e1

e3e4

Fig. 1. The CETS A0 and a region v = {q1, q2}

Example 1. Consider the transition system A0 given in Fig. 1. The set v =
{q1, q2} is a region, in fact it is such that e1 leaves it, e4 enters it, and e2
and e3 do not cross its boundary. Clearly, the complement of v: {q3, q4, q5} is
also a region, as well as {q5}; whereas, for example, {q4, q5} is not a region since
transition (q3, e2, q4) is entering whereas (q1, e2, q2) does not cross its boundary.
Rq1(A0) = {{q1, q2}, {q1, q3}, {q1, q2, q5}, {q1, q3, q5}, {q1, q2, q3, q4, q5}}.

Definition 3. Let A = (Q,E, T ) be a transition system. The pre-set and post-
set operations, denoted respectively by the operators •( . ) and ( . )•, applied to
regions r ∈ R(A) and events e ∈ E are defined by:

1. •r = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 �∈ r and q2 ∈ r};
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2. r• = {e ∈ E | ∃ (q1, e, q2) ∈ T such that q1 ∈ r and q2 �∈ r};
3. •e = {r ∈ R(A) | e ∈ r•};
4. e• = {r ∈ R(A) | e ∈ •r}.
Example 2. Considering again Fig. 1 and the region v = {q1, q2}, •v = {e4},
v• = {e1}, •e1 = {v, {q1, q2, q5}} and e1

• = {{q3, q4}, {q3, q4, q5}}.

Condition/event transition systems have been introduced as the class of tran-
sition systems isomorphic to the sequential case graphs of condition/event net
systems [8,10].

Definition 4. A Condition/Event Transition System (CETS) is a transition
system such that the following conditions are satisfied:

1. ∀ q1, q2 ∈ Q Rq1 = Rq2 ⇒ q1 = q2;
2. ∀ q1 ∈ Q,∀ e ∈ E •e ⊆ Rq1 ⇒ ∃ q2 ∈ Q: (q1, e, q2) ∈ T ;
3. ∀ q1 ∈ Q,∀ e ∈ E e• ⊆ Rq1 ⇒ ∃ q2 ∈ Q: (q2, e, q1) ∈ T .

Basic facts concerning regions of transition systems [3] are listed in the fol-
lowing:

Proposition 1. Let A = (Q,E, T ) be a transition system and R(A) its set of
regions, then:

1. ∅ ∈ R(A);
2. Q ∈ R(A);
3. r ∈ R(A) ⇒ Q \ r ∈ R(A);
4. r1, r2 ∈ R(A) ⇒ (r1 ∩ r2 ∈ R(A) ⇔ r1 ∪ r2 ∈ R(A)).

We consider R(A) as enriched with the usual concrete structure. Elements,
seen as subsets of A, are ordered by inclusion. Set union and intersection are
here partial operations; R(A) is closed by set complement.

2.2 Quantum Logics and States on a Logic

We will follow the notation and definitions given in [11], but for the fact that
we will consider only finite structures. In particular, the name used for the basic
order structure defined in this section will be quantum logic, or simply logic. In
the literature, quantum logics are known as well as orthomodular posets. This
class is larger than that of orthomodular lattices since the operators of greatest
lower bound, denoted ∧, and lowest upper bound, denoted ∨—induced by the
order relation—are not always defined. The following definition is taken from
[11] (Definition 1.1.1).

Definition 5. A quantum logic (or logic) L = (L,≤, 0, 1, ( . )′) is a partially
ordered finite set (L,≤) endowed with a least and a greatest element, denoted
by 0 and 1, respectively, and a unary operation ( . )′ (called orthocomplement),
such that the following conditions are satisfied:
∀x, y ∈ L
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1. x ≤ y ⇒ y′ ≤ x′;
2. (x′)′ = x;
3. x ≤ y′ ⇒ x ∨ y ∈ L;
4. x ≤ y ⇒ y = x ∨ (x′ ∧ y).

This latter condition is sometimes referred to as orthomodular law.

Let x, y ∈ L be such that x ≤ y′, then we say that they are orthogonal, denoted
x ⊥ y.

A sublogic of L is a subset L̂ of L that is itself a logic with respect to
the restrictions of the operation (.)′ and the relation ≤ to L̂. In particular,
x ∈ L̂ ⇒ x′ ∈ L̂ and, ∀x, y ∈ L̂ x ≤ y′ ⇒ x ∨ y ∈ L̂. A sublogic is Boolean if it
is a Boolean algebra.

An element a of a logic is an atom if, for any element b of L such that b ≤ a
either b = a or b = 0. Atoms are the least elements in the logic except for the
bottom element. A logic is said to be atomic if any element, except the bottom,
is greater or equal to some atom. Finite logics are atomic. Atomic logics present
the practical advantage to be determined by the relations among their atoms,
and thus allow for a concise representation.

We say that two elements x and y in L are compatible, denoted x $ y if,
and only if, there exist three mutually orthogonal elements x̂, ŷ and z in L such
that x = x̂ ∨ z and y = ŷ ∨ z. Intuitively, we can see maximal sets of mutually
compatible elements in L as maximal Boolean sublogics of L. The following
definition is taken from [11] (Definition 1.3.26).

Definition 6. A logic L is called regular if, for any set {x, y, z} ⊆ L of pairwise
compatible elements, we have that x $ (y ∨ z).

The relation between compatible subsets of a logic L and Boolean sublogics
of L is made clear by the following proposition, to be found in [11] (Proposi-
tion 1.3.29).

Proposition 2. A logic L is regular if and only if every subset of pairwise
compatible elements of L admits an enlargement to a Boolean sublogic of L.

Example 3. The poset shown in Fig. 2 is a regular quantum logic. The set of its
atoms is {v, w, x, y, z}. Examples of orthogonal pairs of elements are: x ⊥ y, x ⊥
w, v ⊥ w. It contains two maximal Boolean sublogics: {0, v, w, x, v′, w′, x′, 1} and
{0, x, y, z, x′, y′, z′, 1}, which intersect in the (non-maximal) Boolean sublogic
{0, x, x′, 1}. Note that x, x′ respectively, is compatible with any other element
of the logic, whereas for example v �$ y and v �$ z.

Morphisms of logics are defined in such a way that they preserve order (and
consequently orthogonality) and compatibility. The formal definition is borrowed
from [11] (Definition 1.2.7)

Definition 7. Let L1 and L2 be logics. A mapping f : L1 → L2 is a morphism
of logics if the following conditions are satisfied:
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0

v′ w′ x′
y′ z′

v w x y z

1

Fig. 2. A regular quantum logic.

1. f(0) = 0;
2. ∀x ∈ L1 f(x′) = f(x)′;
3. ∀x, y ∈ L1 x ⊥ y ⇒ f(x ∨ y) = f(x) ∨ f(y).

A morphism f : L1 → L2 is an isomorphism if f is bijective, and f−1 is a
morphism. Moreover, f is an embedding if f(L1) is a sublogic of L2 and f :
L1 → f(L1) is an isomorphism.

Example 4. Let us consider the logic L given in Fig. 2 and a logic L′ isomorphic
to the Boolean sublogic {0, x, x′, 1}. Then, obviously there is an embedding f :
L′ → L.

A crucial notion in the following is the concept of two-valued state which, in
the case of regional logics, will allow to identify subsets of regions correspond-
ing to states of the related condition/event transition systems. The following
definition can be found in [11] (Definition 2.1.1).

Definition 8. A two-valued state on a quantum logic L is a mapping s : L →
{0, 1} such that:

1. s(1) = 1;
2. ∀x, y ∈ L x ⊥ y ⇒ s(x ∨ y) = s(x) + s(y).

An immediate consequence of the definition is that a state s preserves order.
In [11] a distinction is made between states, that is mappings defined on L

whose co-domain is the interval [0, 1], and two-valued states as in Definition 8
above. Since we are using exclusively two-valued states, in what follows we will
not make this distinction and we will call states the two-valued states of Defini-
tion 8.

If L is atomic, then every state will assign 1 to exactly one atom per maximal
Boolean sublogic.

Given a logic L and x ∈ L, we denote by S(L) the set of all states on L and
by Sx the set {s ∈ S(L) | s(x) = 1}.
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Definition 9. Let L be a logic, and X ⊆ L, then the up-closure of X, denoted
↑X, is the set of all elements in L greater or equal to some element in X.
Formally:

↑X := {a ∈ L | ∃x ∈ X : x ≤ a}
This definition is particularly useful, for it allows to represent states in a concise
way. This representation relies on a result from [4] (Proposition 29), slightly
reformulated in the following proposition.

Proposition 3. Any state s of a finite logic L is the characteristic function of
a set ↑X, where X is a maximal set of pairwise incompatible atoms, such that it
intersects each maximal set of mutually orthogonal atoms.

Example 5. Consider the logic shown in Fig. 2. v �$ y, v �$ z, w �$ y and w �$ z,
and indeed its states are: ↑{v, y} = {v, y, w′, x′, z′, 1}, ↑{v, z}, ↑{w, y}, ↑{w, z}
as well as ↑{x}. Sv = {↑{v, y}, ↑{v, z}}, Sx = {↑{x}}.

Logics which have “enough” states, in such a way that the order relation can be
re-constructed by the evaluation of the states, are called rich.

Definition 10. Let L be a logic and x, y ∈ L. L is rich if:

Sx ⊆ Sy ⇒ x ≤ y.

The converse property: x ≤ y ⇒ Sx ⊆ Sy is a consequence of condition 2. in
Definition 8 above. A characterisation of rich logics, which will be of use in the
contributions of the present work, is provided by the following Theorem ([11],
Sect. 2.4.12).

Theorem 1. Let L be a logic. Then L is rich if and only if ∀a, b ∈ L a �$ b ⇒
Sa ∩ Sb �= ∅.
Example 6. Consider again the logic shown in Fig. 2. It is rich, in fact, for
example, v �$ y and Sv ∩ Sy = {↑{v, y}} since Sv = {↑{v, y}, ↑{v, z}} and
Sy = {↑{v, y}, ↑{w, y}}.

A particular type of logic is known as concrete logic. A logic is called concrete
if it can be represented as a collection of subsets of a given set Ω. In this case,
the order relation is the set inclusion between subsets of Ω while the orthocom-
plement ( . )′ is the set complement in Ω.

Definition 11. The tuple (Δ,⊆, ∅, Ω, (.)′), where Δ is a collection of subsets of
a given set Ω and A ∈ Δ ⇒ (A)′ = Ω \ A, is a concrete logic if and only if the
following conditions are satisfied:

1. ∅ ∈ Δ;
2. A ∈ Δ ⇒ Ω \ A ∈ Δ;
3. ∀A1, A2 ∈ Δ A1 ∩ A2 = ∅ ⇒ A1 ∪ A2 ∈ Δ.
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Note that in this concrete representation of a logic, orthogonality is equivalent
to being pairwise disjoint, and two elements A1, A2 ∈ Δ will be compatible if
and only if A1 ∩A2 ∈ Δ. A more detailed presentation of concrete logics and the
discussion on the satisfaction by concrete logics of properties 1–4 in Definition 5
can be found in [11], p. 2.

As shown in Sect. 3 below, the set of regions R(A) of a CETS A is a concrete
logic. This is the reason why we are interested in concrete logics and in the
following theorem (due to Stanley Gudder and reported in [11] as Theorem 2.2.1)
that relates richness to concreteness:

Theorem 2. A logic L is isomorphic (as a logic) to a concrete logic if and only
if it is rich.

The proof of this theorem uses a property of duality between L and the set
of its states S(L): each element in x ∈ L can be represented by the set Sx of
the s ∈ S(L) such that s(x) = 1. Conversely, we note that states are in fact
characteristic functions, and can therefore be interpreted as subsets of L. We
will use the same duality in the next sections.

Remark. In the present paper, we have partly changed notation and terminology
with respect to [4]. In particular, here we use ‘rich and regular logic’ to denote
what was called ‘prime and coherent orthomodular poset’; moreover, ‘two-valued
state’ or ‘state’ of a logic was called ‘prime filter’ to stress the connection with
the concept of ultrafilter in Boolean algebras.

3 Regional Logics and Synthesis of Saturated Transition
Systems

In the following, we recall how to associate to any CETS a concrete regular logic,
and how to construct a CETS starting from a rich and regular logic; afterwards,
we discuss the relations between these two transformations.

Let us consider the properties of regions recalled in Proposition 1. By using
these properties, it is possible to construct a logic starting from the regions of a
transition system. More precisely, if A = (Q,E, T ) is a finite CETS and R(A) is
its set of regions then R(A) = (R(A),⊆, ∅, Q, (.)′) (where r ∈ R(A) ⇒ (r)′ =
Q \ r) is a rich and regular quantum logic as proved in [4]. Moreover, R(A) is a
concrete logic as in Definition 11. We will say that R(A) is the regional logic of
A, and that a logic L is regional if it is isomorphic to R(A) for some A.

Example 7. Consider the CETS A0 given in Fig. 3. Its regional logic R(A0) is
isomorphic to the logic L given in Fig. 2, where for example v is {q1, q2}, w is
{q3, q4}, x is {q5}, y is {q1, q3}, z is {q2, q4}, and so on for their complements.

In [4], a synthesis procedure allowing to construct a CETS, denoted A(L),
starting from a rich and regular logic L was presented and set in categorical terms
by showing the existence of two contravariant functors between the categories of
CETS and rich and regular quantum logics.
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Fig. 3. Some regions of A0: x and v are disjoint as subsets of states, so they are
orthogonal elements of R(A0) [see Fig. 2]. Analogously, v and z have a non-empty
intersection as subsets of states, and since v ∩ z = {q2} is not a region, v and z are
incompatible elements of R(A0).

In the following, besides illustrating the synthesis procedure, we show by
means of examples that in general there is no isomorphism between L and
R(A(L)) as well as between A and A(R(A)).

The core of the synthesis procedure is in interpreting the states of S(L) as the
states of a transition system. A state of the transition system can be identified
with the set of all regions containing it, and, by Proposition 3, it coincides with
some state of a logic, as in Definition 8. In fact, the transition system associated
to a logic L is constructed by taking S(L) as the set of states, and symmetric
differences between states as events. Formally we have the following.

E(L) = {〈s1 \ s2, s2 \ s1〉 | s1, s2 ∈ S(L), s1 �= s2}. (1)

The set of transitions is now naturally defined as the set of all pairs of distinct
states, each labelled by the corresponding ordered symmetric difference. In the
following, [s1, s2] will denote 〈s1 \ s2, s2 \ s1〉.

T (L) = {(s1, [s1, s2], s2) | s1, s2 ∈ S(L), s1 �= s2} (2)

Of course, the same label can have several occurrences. We can now define the
transition system

A(L) = (S(L), E(L), T (L)). (3)

The transition system A(L) includes a transition for each ordered pair of states;
hence we call it saturated of transitions. A(L) is a CETS, as shown in [4].

Example 8. The saturated CETS A(L) synthesised from the logic L in Fig. 2 is
given in Fig. 4.

At this point, two natural questions arise about the two opposite transfor-
mations and the possibility that they are inverse of each other:
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e1
e2

e1

Fig. 4. Saturated Transition System synthesised from the logic in Fig. 2. For clarity,
not all transitions have been depicted: for each arc in the figure, there is another one
in the opposite direction. Also, only repeated labels have been indicated.

1. Given a rich and regular logic L, build the CETS A(L) and consider its
regional logic R(A(L)). Is R(A(L)) isomorphic to L?

2. Given a CETS A0, construct the CETS associated to its regional logic
A(R(A0)). Is A(R(A0)) isomorphic to A0?

In the general case, L embeds into R(A(L)). In fact, for each x ∈ L, Sx is a
region of A(L) and the embedding is given by φ(x) = Sx ⊆ S(L).

The fact that φ( . ) is an embedding of logics will be formally proved in the
next section in Proposition 4. However, φ( . ) is not always an isomorphism, and
this can be clarified by the following example.

Example 9. Consider the set Ω = {1, 2, . . . , 6} and define Δ as the collection
of the X ∈ P(Ω) such that |X| is an even number. Then L = (Δ,⊆, ∅, Ω, (.)′)
is a regular concrete logic in which, for x, y ∈ Δ, x $ y ⇔ x ∩ y ∈ Δ. All the
states of L are represented by the sets δi = {x ∈ Δ | i ∈ x} for i = {1, 2, . . . , 6}.
The CETS associated to L, A(L) has then six states and a set of transitions,
computed as in Eq. (2) above, whose labels are all distinct. This means that the
regions of the CETS A(L), defined as in Eq. (3) above, are isomorphic to the
power set P(Ω) that strictly contains Δ.

Viceversa, by assuming as given a CETS A = (Q,E, T ), the general case
shows that S(R(A)), and then also A(R(A)), can contain states which do not
correspond to any state in Q. This means that, in general, A is not isomorphic
to A(R(A)), as for example in the following.

Example 10. Consider the CETS A = (Q,E, T ) shown in Fig. 5. Its regions
are the trivial ones, ∅ and Q, plus x = {1, 2, 5}, y = {1, 2, 6}, z = {1, 3, 5},
w = {1, 3, 6} and the respective complements {3, 4, 6} = ({1, 2, 5})′, {3, 4, 5} =
({1, 2, 6})′, {2, 4, 6} = ({1, 3, 5})′ and {2, 4, 5} = ({1, 3, 6})′. The corresponding
concrete logic is represented in Fig. 5 and its states are formed by choosing
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exactly one element from each complementary pair of disjoint non-trivial regions.
Hence, there are sixteen states. By applying the synthesis procedure above to the
logic R(A) = (R(A),⊆, ∅, Q, (.)′), we find that six out of the sixteen states in
S(R(A)) correspond to the original states of A.

1

2

3

4

5

6

b

a

a

b

d

c

c

d

x x′ y y′

1

0

z z′ w w′

Fig. 5. A CETS and its regional logic.

Concerning the relation between regions and events, we note that pre- and
post-regions of an event e ∈ E can be retrieved in R(A) as set differences between
states of the logic. Remember that Rq1 is the set of regions containing q1 and
Rq2 is the set of regions containing q2. If (q1, e, q2) is a transition in A, then
Rq1 \ Rq2 gives the set of regions from which e exits, namely the set of pre-
regions of e; the difference in the other direction gives the set of post-regions. By
definition of region, these differences are independent of the individual occur-
rence of e in A: let (q1, e, q2), (q3, e, q4) ∈ T . Then Rq1 \ Rq2 = Rq3 \ Rq4 = •e
and Rq2 \Rq1 = Rq4 \Rq3 = e•. Hence, these set differences allow us to identify
different occurrences as corresponding to the same event, in other words, that
two transitions carry the same label.

Example 11. For the CETS A in Fig. 5, the case can be exemplified by consider-
ing the two events labelled a, leading from state 1 to state 3 and from state 2 to
state 4, respectively. In this case, R1 is the set composed by {1, 2, 5}, {1, 2, 6},
{1, 3, 5}, {1, 3, 6} and R3 is composed by {3, 4, 6}, {3, 4, 5}, {1, 3, 5}, {1, 3, 6}. By
computing the set differences as above, we find that: R1\R3 = R2\R4, the set of
regions from which a exits. The symmetric case leads to R3\R1 = R4\R2. With
reference to the logic R(A) of the CETS A, both represented in Fig. 5, we can
compute, in terms of symmetric differences, the transitions between any couple
of the sixteen states of the logic R(A) as in Eq. (2) above. We find, among many
others, the transitions corresponding to the identical labels of A. For example,
by considering the states in Sx and in Sy, we have that Sx \ Sy = Sy′ \ Sx′ .

4 Towards the Characterization of Stable Regional Logics

In the previous section, we have considered two cases: the first one deals with the
construction of a logic R(A) starting from a CETS A and the second one deals
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with the construction, or synthesis, of a CETS A(L) starting from a regular
and rich logic L. In both cases, by applying again the process and comput-
ing A(R(A)) and R(A(L)) we obtain two embeddings. The original CETS A
embeds in terms of both states and transitions into the CETS resulting from
the synthesis procedure applied to R(A), and the original logic L embeds into
the concrete logic formed by taking Ω as the states of A(L) and Δ as the set
of regions of A(L). We say that the logic L is stable if this embedding is an
isomorphism of logics.

Definition 12. A quantum logic L is stable if there is an isomorphism of logics
from L onto R(A(L)).

Our long-term aim is to characterize the class of stable regional logics. In what
follows, we present some new results towards such a goal. First we discuss two
necessary conditions for a logic to be regional, and then we prove that one implies
the other. Afterwards, in Subsect. 4.2, we prove that there is an embedding of
logics from L to R(A(L)), and that, under the same condition, this embedding
is strong in the sense that it preserves also incompatibility.

4.1 Regional Logics Are ETI and TIP

In [6] and [5] it is shown that regional logics satisfy the properties called tip and
eti, respectively. In the following, after recalling the definitions, we show that
any eti logic is also a tip logic.

The property tip results from the translation in the abstract setting of quan-
tum logic of a property of regions of transition systems, which we call triple
intersection property and which is expressed by the following lemma, the proof
of which can be found in [6].

Lemma 1. Let A be a CETS, and let a, b, c ∈ R(A) be such that: a ∩ b =
b ∩ c = c ∩ a, then z = a ∩ b ∩ c ∈ R(A).

The triple intersection property (tip) for a logic L is then obtained by considering
for any element in L the set of two-valued states selecting that element and from
the fact that this set identifies a region of the CETS A(L) synthesised from L.

Definition 13. A logic L is tip if

∀a, b, c ∈ L : Sa ∩ Sb = Sb ∩ Sc = Sc ∩ Sa ⇒ ∃z ∈ L : Sz = Sa ∩ Sb ∩ Sc

As well as tip, also eti is inspired by a property of regions. If q1, q2, q3, and q4
are distinct states, so that (q1, e, q2), and (q3, e, q4) are two different transitions
in a CETS A = (Q,E, T ), then R(A) must contain two incompatible regions,
one containing q1 and q2 but not q3, the other containing q1 and q3 but not
q2. Hence, events with multiple occurrences and pairs of incompatible regions
are related. In this sense, we say that the events of an abstract logic L testify
incompatibility ; L is said to be eti if, for any pair of incompatible regions, the
set E(L) contains an element witnessing this incompatibility.
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Definition 14. A logic L is eti if ∀a, b ∈ L : a �$ b ⇒

∃s1 ∈ Sa ∩ Sb, sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ : sa \ s1 = s0 \ sb

Example 12. An example of a concrete logic which is neither tip nor eti is the
logic of the subsets of even cardinality of {1, 2, 3, 4, 5, 6}, already seen in Exam-
ple 9. This logic is regular and rich, but not regional as discussed in [4]. In order
to see that L is not tip, let us consider the elements in L: {1, 2}, {1, 3}, {1, 4},
then S{1,2} ∩ S{1,3} = S{1,3} ∩ S{1,4} = S{1,4} ∩ S{1,2} = {δ1}, where δ1 is the
two-valued state of L selecting all the elements containing 1. It is then imme-
diate to see that there is no z in L such that Sz = {δ1}. L is not eti since the
symmetric differences among the six states of the associated transition systems
are all different, and then it is not possible for a pair of incompatible elements
of L to find pairs of equal symmetric differences.

Any regional logic is tip, as shown in [6], and eti, as shown in [5]. Although we
do not know yet if the two properties, eti and tip, coincide, we can prove that
eti implies tip.

Theorem 3. Let L be a eti logic. Then L is tip.

Proof. By contradiction, let L be eti and not tip. Not tip means: ∃a, b, c ∈ L :
Sa ∩ Sb = Sb ∩ Sc = Sc ∩ Sa �= ∅ and ∀z ∈ L : Sz �= Sa ∩ Sb ∩ Sc. We have two
cases.

First case: a $ b. Then since Sa ∩ Sb �= ∅, a �⊥ b and then there exist three
mutually orthogonal elements â, b̂ and x in L such that a = â ∨ x and b = b̂ ∨ x.
This implies Sa to be the disjoint union of Sâ and Sx, and Sb to be the disjoint
union of Sb̂ and Sx, then we get the contradiction: ∃x : Sx = Sa ∩ Sb = Sc ∩ Sa.

Second case: a �$ b. Then, since L is eti, there are four states: s1 ∈ Sa ∩ Sb,
sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ such that: sa \ s1 = s0 \ sb. Then
s1 ∈ Sa∩ Sb implies s1 ∈ Sc. Since Sc is a region in R(A(L)), then either sa ∈ Sc

and sb /∈ Sc, or sb ∈ Sc and sa /∈ Sc. In any case this contradicts the hypothesis
Sa ∩ Sb = Sb ∩ Sc = Sc ∩ Sa. �

4.2 Strong Embedding of L into R(A(L))

At this point, we stress the fact that given a regular, and rich logic L, and its
synthesised CETS A(L), the injection defined by φ(x) = Sx is a morphism of
logics. Furthermore, we show that φ : L → R(A(L)) is an embedding of logics.
To check that φ is a morphism, we verify the three properties in Definition 7.
First note that S0 = ∅ is the bottom element in R(A(L)). Second, since any
x ∈ L is orthogonal to its complement x′, from point 2. in Definition 8, it stands
that Sx ∩ Sx′ = ∅, and furthermore, ∀x ∈ L : Sx ∪ Sx′ = S(L), so Sx′ = S(L)\Sx.
The third point is a direct consequence of Proposition 1.

On the other hand, put Sx = Sy, then L being rich, it holds from Definition 10
that x ≤ y and y ≤ x, so φ is injective. We even see, thanks to the following
proposition, that φ|L is an isomorphism, and so φ is an embedding. To prove so,
it is sufficient to show that φ−1|φ(L) is a morphism of logics.
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Proposition 4. Let L be a rich and regular logic, and φ : L → R(A(L)) be
defined by φ(x) = Sx for all x ∈ L. Then ψ ≡ φ−1|φ(L) is a logic morphism.

Proof. Clearly, ∀x ∈ L : ψ(Sx) = x. Now, since L is rich, the only element
whose associated set of states is the bottom element, hence ψ(∅) = 0. Also,
ψ(S(L) \ Sx) = ψ(Sx′) = x′, so it preserves orthocomplements. Finally, consider
two disjoint Sx,Sy. Then Sx ⊆ S(L) \Sy = Sy′ , and since L is rich, x ⊥ y. From
point 2. in Definition 8 it stands that {s ∈ S(L) | s(x ∨ y) = 1} = {s ∈ S(L) |
s(x) = 1} ∪ {s ∈ S(L) | s(y) = 1} = Sx ∪ Sy. Hence ψ(Sx ∪ Sy) = x ∨ y. �

Now, φ being an embedding means that L and R(A(L)) would be isomorphic
if φ was surjective. We have also seen in the previous section that L being
eti is a necessary condition for that. We shall now see that if L is eti, the
embedding verifies a stronger property, required (but not sufficient) for φ to be
an isomorphism.

We remind the reader that logic morphisms preserve order, orthogonality and
compatibility. Since φ is an embedding it shall also reflect these relations. How-
ever, in general this is only true when considering them restricted to the image
φ(L). Indeed, if φ is an embedding then L is isomorphic to φ(L), but the lack
of surjectivity might, in the general case, allow the images of two incompatible
elements to be compatible. We shall explain this notion through an example.

Example 13. Consider the logic L = {0, u, u′, v, v′, 1}, and the Boolean logic B
whose atoms are {a1, a2, a3, a4} (Fig. 6). Then the mapping given by φ(u) =
a1 ∨a2, φ(u′) = a3 ∨a4, φ(v) = a1 ∨a3, φ(v′) = a2 ∨a4 is indeed an embedding.
Since (a1 ∨ a2)′ = a3 ∨ a4 and (a1 ∨ a3)′ = a2 ∨ a4, the sublogic L1 = {0, a1 ∨
a2, a3 ∨a4, a1 ∨a3, a2 ∨a4, 1} of B is isomorphic to L. However, when considered
in the whole of B, we see that a1 is both a1 ≤ a1 ∨ a2 and a1 ≤ a1 ∨ a3, with
{a1, a2, a3} mutually orthogonal in B. Thus φ(u) $ φ(v), whereas u �$ v. This
does not prevent φ from being an embedding because, in fact a1, a2, a3 /∈ L1.

This example should justify the following definition (see [11]).

Definition 15. Let φ : L1 → L2 be an embedding between logics. Then φ is said
to be a strong embedding if

∀a, b ∈ L1 : a $ b ⇔ φ(a) $ φ(b)

For instance, a logic with incompatible elements cannot embed strongly into a
Boolean logic.

We shall now prove that a logic L being eti is a sufficient condition for
φ : L → R(A(L)) to be a strong embedding.

Theorem 4. Let L be a rich and regular logic. If L is eti, then the embedding
φ : L → R(A(L)) defined as φ(x) = Sx is strong.

Proof. We have already shown that φ preserves compatibility, it will therefore
be sufficient to prove that it also preserves incompatibility. So let a, b ∈ L verify
a �$ b. Since L is eti, ∃s1 ∈ Sa ∩ Sb, sa ∈ Sa ∩ Sb′ , sb ∈ Sb ∩ Sa′ , s0 ∈ Sa′ ∩ Sb′ :



66 L. Bernardinello et al.
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Fig. 6. An example of embedding which is not strong.

sa \ s1 = s0 \ sb. Then e = [s1, sa] ∈ E(L) will be a label in the saturated
transition system A(L), and the transitions (s1, e, sa), (sb, e, s0) ∈ T (L) will
prevent Sa ∩ Sb from being a region. Indeed, (s1, e, sa) crosses the border of
Sa ∩ Sb, whereas (sb, e, s0) does not. Since R(A(L)) is a concrete logic, we have
that Sa = φ(a) �$ φ(b) = Sb. �

This result implies, in particular, that if new regions are produced by the syn-
thesis procedure, these cannot be contained in the image by φ of an atom.
Orthocomplementation implies therefore that they cannot contain the images
of coatoms (maximal elements except for the top). Thus, the possible lack of
surjectivity of φ is narrowed down.

5 Classes of Stable Regional Logics

In this section we look at a few subclasses of concrete logics, and show that they
are stable.

To start with the simplest example, let L be a finite Boolean logic with k
atoms. Then L is a regular rich logic, isomorphic to the power set of {1, · · · , k}, in
which singletons correspond to atoms. L has exactly k states, each corresponding
to ↑{x}, where x is an atom of L.

This implies that all the ordered symmetric differences between states differ
in at least one atom, so that each transition in A(L) carries a unique label, and
all subsets of states are regions. Hence, L and R(A(L)) are isomorphic, and L
is stable.

In the next cases, we will use the notion of restriction of a transition system
to a subset of events. We will say that A1 = (S,E1, T1) is a restriction of A =
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(S,E, T ) if they have the same set of states, E1 ⊆ E, and T1 is obtained by
removing from T all transitions labelled by events in E \E1. From the definition
of region, it follows that R(A) ⊆ R(A1).

The next case we consider is that of a logic obtained as the so-called {0, 1}-
pasting of two (or more) logics. In plain words, the {0, 1}-pasting of L1 and L2

is the disjoint union of L1 and L2, but for identification of 01 with 02, and 11
with 12 (see Fig. 7).

Definition 16. Let L1 and L2 be two disjoint logics with 0i, 1i for i = 1, 2 the
respective least and greatest elements. Define on L1 ∪L2 the equivalence relation

∼:= {(a, a) | a ∈ L1 ∪ L2} ∪ {(01, 02), (11, 12)}.

Then the {0-1}-pasting of L1 and L2, denoted by L1 ||L2 is given by the set
(L1 ∪ L2)/∼, together with the partial order obtained as the union of the partial
orders of L1 and L2, up to ∼.

The {0-1}-pasting of L1 and L2 is again a logic ([11], Proposition 1.2.6). Without
loss of generality, in what follows we will simplify the notation concerning the {0-
1}-pasting of L1 and L2 by indicating by the same element 0 and, respectively,
1 the bottom and top elements in both L1 and L2.

Remark 1. As a useful consequence, the set of states S(L1 ||L2) of L1 ||L2, con-
sists in sets obtained by taking the union s1∪s2 for any pair of states s1 ∈ S(L1)
and s2 ∈ S(L2).

The {0, 1}-pasting of logics is related to a construction on transition systems.
Given two transition systems, A1 and A2, with disjoint sets of events, we can
build a new one by putting them side-by-side and letting them work in parallel.
States of this new transition system are pairs of “local” states of the two com-
ponents. We will call the result the parallel product of A1 and A2, and denote it
by A1 ||A2 (see Fig. 8).

Definition 17. Let Ai = (Qi, Ei, Ti) be a CETS for i = 1, 2, with E1 ∩ E2 = ∅.
Define

A1 ||A2 = (Q1 × Q2, E1 ∪ E2, T )

where

T ={((q1, q2), e, (q′
1, q2)) | (q1, e, q′

1) ∈ T1, q2 ∈ Q2} ∪
{((q1, q2), e, (q1, q′

2)) | (q2, e, q′
2) ∈ T2, q1 ∈ Q1}

The next lemma shows that the parallel product of transition systems and the
{0, 1}-pasting of logics are strictly related.

Proposition 5. Let Ai = (Qi, Ei, Ti) be a CETS for i = 1, 2, with E1 ∩E2 = ∅.
Then R(A1 ||A2) and R(A1) ||R(A2) are isomorphic logics.
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Proof. By construction, if there is a transition ((q1, q2), e, (q′
1, q2)) in T, then, for

each q′
2 in Q2, T contains a transition ((q1, q′

2), e, (q
′
1, q

′
2)). Hence, for each region

r of A1, the set r × Q2 is a region of A1 ||A2, and, for each region r of A2, the
same holds for the set Q1 × r. For any region r of A1 ||A2, the projection of its
states on the first component must be a region of A1 (and symmetrically for the
projection on the second component), because in any transition only one of the
two components of a state will change; hence, the full set of non-trivial regions
of A1 ||A2 is given by {r × Q2 | r ∈ R(A1)} ∪ {Q1 × r | r ∈ R(A2)}. �

Fig. 7. {0, 1}-pasting of the logic in Fig. 2, and a Boolean algebra with 3 atoms.
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Fig. 8. A CETS such that its poset of regions is the one depicted in Fig. 7. It is the
product of the CETS of Fig. 1 and a sequence of three states.

Proposition 6. Let L1 and L2 be stable regional logics. Then L = L1 ||L2 is a
stable regional logic.
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Proof. By Theorem 2, we can identify L with the isomorphic concrete logic where
each x in L is represented by Sx. Then, as discussed in Sect. 3, L ⊆ R(A(L)).

Remark 1 implies that

S(L) = {s1 ∪ s2 | s1 ∈ S(L1), s2 ∈ S(L2)}.

Since s1 ∩ s2 = {1} for each choice of s1 and s2 above, we can represent S(L) as
S(L1) × S(L2).

We will now define a transition system on S(L), by taking a subset of the
events and transitions of the saturated transition system. The idea is to choose
only the “local” transitions, namely transitions that change only one component
of a state. Define

EM = {[(s1, s2), (s′
1, s2)] | s1, s

′
1 ∈ S(L1), s2 ∈ S(L2)} ∪

{[(s1, s2), (s1, s′
2)] | s1 ∈ S(L1), s2, s′

2 ∈ S(L2)}
We must now take all the transitions corresponding to labels in E.

TM = {((s1, s2), [(s1, s2), (s′
1, s2)], (s

′
1, s2)) | s1, s

′
1 ∈ S(L1), s2 ∈ S(L2)} ∪

{((s1, s2), [(s1, s2), (s1, s′
2)], (s1, s

′
2)) | s1 ∈ S(L1), s2, s′

2 ∈ S(L2)}.

The transition system AM (L) = (S(L), EM , TM ) is a restriction of A(L), as
such, its set of regions is a superset of R(A(L)).

On the other hand, AM is isomorphic to A(L1) || A(L2). We can then apply
Proposition 5, and the hypothesis of stability of L1 and L2 to derive

R(AM (L)) = R(A(L1) || A(L2)) = R(A(L1)) ||R(A(L2)) = L1 ||L2 = L

and
L ⊆ R(A(L)) ⊆ R(AM (L)) = L

so that L = R(A(L)), and L is stable. �

The construction and the argument above can be generalised to the case
of the {0, 1}-pasting of K logics, noting that L1 ||L2 ||L3 is isomorphic to
L1 || (L2 ||L3).

Let us now suppose that L is a rich, regular quantum logic, which is the
union of Boolean algebras such that their pairwise intersections are all the same
Boolean algebra. More formally, L =

⋃
i≤n Bi, where {Bi}i≤n is a finite family

of finite Boolean algebras, and there is a Boolean algebra B such that ∀i �= j :
Bi ∩ Bj = B. B corresponds to what is called the centre of L in [11], it is a
sublogic of any Bi. An example of such a logic with n = 2 and B = {0, x, x′, 1}
has been given in Fig. 2 and discussed in Examples 1, 2, and 3.

We shall prove that such logics are stable, for which we require that the
center B contains at least an atom of L. This is, however, always the case, as
shown in the following lemma.

Lemma 2. Let {B} ∪ {Bi}i≤n be a finite family of finite Boolean algebras, and
L be a logic such that L =

⋃
i≤n Bi, and ∀i �= j : Bi ∩ Bj = B. Then there is at

least one atom of B which is an atom of L.
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Proof. Note that by construction, each Bi is a maximal Boolean subalgebra of
L. Hence, for any xi ∈ Bi \ B, and xj ∈ Bj \ B: i �= j ⇒ xi �$ xj . We proceed by
reductio ad absurdum, so suppose that no atom of B is an atom of L. Let x be
an atom of B, then neither x nor x′ are atoms of L. Then ∃ x1 ∈ L \B : x1 < x,
(hence x′ < x′

1). Suppose w.l.g. that x1 ∈ B1. Since x1 /∈ B we have that
∀j �= 1 : x1 /∈ Bj , and so x′

1 /∈ Bj . It holds, in particular for j = 2. On the
other hand, B � B2 and x /∈ {0L, 1L} imply that ∃x2 ∈ B2 \ B : x $ x2, hence
x2 /∈ B1. We distinguish two cases. Either x ⊥ x2, or ∃y2 ∈ B2 : y2 = x ∧ x2

with y2 �= 0B2 = 0L, and since x is an atom of B: y2 /∈ B1. From x ⊥ x2, it
follows that x2 ≤ x′ ≤ x′

1, so in particular x′
1 $ x2, hence x1 $ x2, which is in

contradiction with (x1 /∈ B2) ∧ (x2 /∈ B1). If y2 = x ∧ x2, we have that x′ < x′
1

and x′ < y′
2 with x′

1 ∈ B1 \ B and y′
2 ∈ B2 \ B. Since, by hypothesis, x′ is not

an atom of L, there must be an atom y of L such that y < x′, and y /∈ B. Now,
there must be some i such that y ∈ Bi \ B. If i = 1 then y /∈ B2, so y �$ y′

2, but
y < y′

2, which is a contradiction. If i �= 1 then y /∈ B1, and inconsistency follows
from y < x′

1 and y �$ x′
1. �

We can now prove the following result.

Proposition 7. Let {B}∪{Bi}i≤n be a finite family of finite Boolean algebras,
and L be a logic such that L =

⋃
i≤n Bi, and ∀i �= j : Bi ∩ Bj = B. Then L is

stable.

Proof. Let AT(L) denote the atoms of L. Lemma 2 shows, that some atom of
B is in AT(L). Since ∀i ≤ n : B ⊆ Bi, any pair of atoms x ∈ B ∩ AT(L),
y ∈ AT(L) are orthogonal. Hence, a state containing an atom of L belonging to
B will contain no other atom in L. This allows us to partition the states of L
into two classes. On one hand, the class SB of states that contain exactly one
atom x ∈ AT(L) ∩ B. Since the family {Bi \ B} is pairwise disjoint, the class S
of remaining states will contain exactly one atom in each of the set differences
Bi \ B.

Now, the carrier of A(L), is the disjoint union of S and SB : S(L) = S ∪ SB .
Denote the states in S by ↑{xi}i≤n where each xi is an atom of Bi, and the
states in SB by ↑{x} where x is an atom of both B and L.

Let EM(L) := {〈↑{x} \ ↑{y}, ↑{y} \ ↑{x}〉 | ∃i ≤ n : x, y ∈ Bi \ B are atoms}
be the set of events associated to local transitions among states of S, and define
TM(L) as the set of all transitions in A(L) with labels in EM(L). Finally, define
AM (L) = (S(L), EM(L), TM(L)). Clearly, AM (L) is a generalised transition
system, which is a restriction of A(L). In particular, every region of A(L) is also
a region of AM (L).

AM (L) is not connected because the states ↑{x} ∈ SB are all isolated.
Each transition in A(L) starting from, or leading to, any ↑{x} carries a unique

label, which has no other occurrence. Hence, the singleton formed by this state
is a region in A(L), as it is in AM (L). Furthermore, such singleton is disjoint to
any other minimal region A(L), and so the corresponding region is orthogonal to
all other atoms of R(A(L)). It therefore belongs to its center. In fact, all subsets
of SB are regions of A(L), and as a power set, they form a Boolean algebra.
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Now, each transition t ∈ TM(L) corresponds to an ordered pair of states of
S. For each such transition t = (↑{xi}i≤n, e, ↑{yi}i≤n), there is an index i ≤ n
such that ∀j �= i : xj = yj . In this way, two transitions t = (↑{xi}i≤n, e, ↑{yi}i≤n)
and t̃ = (↑{ui}i≤n, e, ↑{vi}i≤n) carry the same label e ∈ EM(L) if and only if
there is an i ≤ n, such that xi = ui, yi = vi, and ∀j �= i : xj = yj and uj = vj .

For each j ≤ n, let Aj be the sequential transition system synthesized from
the Boolean algebra generated by the atoms of Bj\B. Then EM(L) prevents any
subset of S, which is not the disjoint union of sets of the form {↑{xi}}×Πj �=iAj

from being a region.
In this way, we can define a natural bijection from the atoms of L to the

atoms of R(A(L)), which maps the x ∈ B to the singletons {↑{x}}, and the
xi ∈ Bi \ B to {↑{xi}} × Πj �=iAj . Such a bijection preserves orthogonality and
incompatibility, so that the logics generated by these atoms are isomorphic. �

6 Conclusions

With the results presented in this paper we have done a further step towards
the characterization of the rich and regular quantum logics, which result to be
isomorphic to the orthomodular posets of the regions of the CETSs synthesised
starting from the logics themself.

We are particularly interested in such a characterization because it is the basis
for founding a logic of distributed systems. While the regions of a single sequen-
tial component constitute a Boolean logic, the presence of concurrency leads to
a family of partially overlapping Boolean sublogics, each one corresponding to a
sequential component.
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Abstract. The efficacy of decision diagram techniques for state space
generation is known to be heavily dependent on the variable order. Order-
ing can be done a-priori (static) or during the state space generation
(dynamic). We focus our attention on static ordering techniques. Many
static decision diagram variable ordering techniques exist, but it is hard
to choose which method to use, since only fragmented performance infor-
mation is available. In the work reported in this paper we used the mod-
els of the Model Checking Contest 2017 edition to conduct an extensive
comparison of 18 different algorithms, in order to better understand their
efficacy. Comparison is based on the size of the decision diagram of the
reachable state space, which is generated using the Saturation method
provided by the Meddly library.

Keywords: Decision diagrams · Static variable ordering
Heuristic optimization · Saturation

1 Introduction

A binary decision diagram (BDD) [12] is a well-known data structure that has
been extensively used in industrial hardware verification thanks to its ability
of encoding complex boolean functions on very large domains. In the context
of discrete event dynamic systems in general, and of Petri nets in particular,
BDDs and various extensions (e.g. Multi-way Decision Diagrams, or MDDs) were
proposed to efficiently generate and store the state space of complex systems.
Indeed, symbolic state space generation techniques exploit Decision Diagrams
(DDs) because they allow to encode and manipulate entire sets of states at
once, instead of storing and exploring each state explicitly.

The intermediate and final sizes of DD representations are known to be
strongly dependent on the choice of variable order: a good ordering can sig-
nificantly change the memory consumption and the execution time needed to
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generate and encode the state space of a system. Unfortunately finding an opti-
mal variable ordering is known to be NP-complete [11]. Therefore, efficient DD
generation is usually reliant on various heuristics for the selection of (sub)optimal
orderings. In this paper we will only consider static variable ordering, i.e. once
the variable ordering l is selected, the MDD construction starts without the pos-
sibility of changing l. In the literature several papers were published to study the
topic of variable ordering. An overview of these works can be found in [28], and
more recently in [21]. In particular the latter work considers a new set of variable
ordering algorithms, based on Bandwidth-reduction methods [29], and observes
that they can be successfully applied to variable ordering. We also consider the
work published in [20] (based on the ideas in [30]), which are state-of-the-art
variable ordering methods specialized for Petri nets.

The motivation of this work was to understand how these different algorithms
for variable orderings behave. Also, we wanted to investigate whether the avail-
ability of structural information of the Petri net model could make a difference.
As far as we know there is no extensive comparison of these specific methods.

In particular we have addressed the following research objectives:

1. Build an environment (a benchmark) in which different algorithms can be
checked on a vast number of models.

2. Investigate whether structural information like P-semiflows can be exploited
to define better algorithms for variable orderings.

3. Develop metrics to compare variable ordering algorithms in the most fair
manner.

To achieve these objectives we have built a benchmark in which 18 different
algorithms for variable orderings have been implemented and compared on state
space generation of the Petri nets taken from the models of the Model Checking
context (both colored and uncolored), 2017 edition [23]. The implementation
is part of RGMEDD [6], the model-checker of GreatSPN [5], and uses MDD
saturation [14]. The ordering algorithms are either taken from the literature
(both in their basic form and with a few new variations) or they were already
included in GreatSPN. Figure 1, left, depicts the workflow we have followed in
the benchmark.

Given a net system S = (N ,m0) all ordering algorithms in A are run (box 1),
then the reachability set RSl of the system is computed for each ordering l ∈ L
(box 2) and algorithms are ranked according to some MDD metrics MM(RSl),
(box 3). The best algorithm a∗ is then the best algorithm for solving the PN
system S = (N ,m0) (box 4) and its state space RSl could be the one used to
check properties.

This workflow allows to: (1) provide indications on the best performing algo-
rithm for a given model and (2) compare the algorithms in A on a large set
of models to possibly identify the algorithm with the best average performance.
The problem of defining a ranking among algorithms (or of identifying the “best”
algorithm) is non-trivial and will be explored in Sect. 3.

Figure 1, right, shows a high level view of the approach used to compare
variable ordering algorithms in the benchmark. Columns represent algorithms,
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Fig. 1. Workflow for analysis and testing of static variable ordering algorithms.

and rows represent model instances, that is to say a Petri net model with an
associated initial marking. A square in position (j, k) represents the state space
generation for the jth model instance done by GreatSPN using the variable
ordering computed by algorithm ak. A black square indicates that the state
space was generated within the given time and memory limits.

In the analysis of the results from the benchmark we shall distinguish among
model instances for which no variable ordering was good enough to allow Great-
SPN to generate the state space (only white squares on the model instance row,
as for the first two rows in the figure), model instances for which at least one
variable ordering was good enough to generate the state space (at least one black
square in the row), and model instances in which GreatSPN generates the state
space with all variable orderings (all black squares in the row), that we shall
consider “easy” instances.

In the analysis it is also important to distinguish whether we evaluate order-
ing algorithms w.r.t. all possible instances or on a representative set of them.
Figure 1, right, highlights that instances are not independent, since they are
often generated from the same “model” that is to say the same Petri net N by
varying the initial marking m0 or some other parameter (like the cardinality of
the color classes). As we shall see in the experimental part, collecting measures
over all instances, in which all instances have the same weight, may lead to a
distortion of the observed behaviour, since the number of instances per model
can differ significantly. A measure “per model” is therefore also considered.

This work could not have been possible without the models made available
by the Model Checking Contest, the functions of the Meddly MDD library and
the GreatSPN framework. We shall now review them in the following.
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Model Checking Contest. The Model Checking Contest [23] is a yearly scien-
tific event whose aim is to provide a comparison among the different available
verification tools. The 2017 edition employed a set of 817 PNML instances gen-
erated from 75 (un)colored models, provided by the scientific community. The
participating tools are compared on several examination goals, i.e. state space,
reachability, LTL and CTL formulas. The MCC team has designed a score sys-
tem to evaluate tools that we shall employ in a simplified version as one of the
considered benchmark metrics for evaluating the algorithms, as evaluating the
orderings can be reduced to evaluating the same tool, GreatSPN, in as many
variations as the number of ordering algorithms considered.

Meddly Library. Meddly (Multi-terminal and Edge-valued Decision Diagram
LibrarY) [10] is an open-source library implementation of Binary Decision Dia-
grams (BDDs) and several variants, including Multi-way Decision Diagrams
(MDDs, implemented “natively”) and Matrix Diagrams (MxDs, implemented
as MDDs with an identity reduction rule). Users can construct one or more
forests (collections of nodes) over the same or different domains (collections of
variables). Several “apply” operations are implemented, including customized
and efficient relational product operations and saturation [14] for generating the
set of states (as an MDD) reachable from an initial set of states according to
a transition relation (as an MxD). Saturation may be invoked either with an
already known (“pre-generated”) transition relation, or with a transition rela-
tion that is built “on the fly” during saturation [15], although this is currently a
prototype implementation. The transition relation may be specified as a single
monolithic relation that is then automatically split [26], or as a relation parti-
tioned by levels or by events [16], which is usually preferred since the relation
for a single Petri net transition tends to be small and easy to construct.

GreatSPN Framework. GreatSPN is a well-known collection of tools for the
design and analysis of Petri net models [5,6]. The tools are aimed at the qualita-
tive and quantitative analysis of Generalized Stochastic Petri Net (GSPN) [1] and
Stochastic Symmetrical Net (SSN) through computation of structural proper-
ties, state space generation and analysis, analytical computation of performance
indices, fluid approximation and diffusion approximation, symbolic CTL model
checking, all available through a common graphical user interface [4]. The state
space generation [9] of GreatSPN is based on Meddly. In this paper we use the
collection of variable ordering heuristics implemented in GreatSPN. This collec-
tion has been enlarged to include all the variable ordering algorithms described
in Sect. 2.

The paper is organized as follows: Sect. 2 reviews the considered algorithms;
Sect. 3 describes the benchmark (models, scores and results); and Sect. 4 con-
cludes the paper outlining possible future directions of work.
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2 The Set A of Variable Ordering Algorithms

In this section we briefly review the algorithms considered by the benchmark.
Although our target model category is that of Petri nets, we describe the algo-
rithms in a more general form (as some of them were not defined specifically
for Petri nets). We therefore consider the following high level description of the
model.

Let V be the set of variables, that translates directly to MDD levels. Let
E be the set of events in the model. Events are connected to input and output
variables. Let V in(e) and V out(e) be the sets of input and output variables of
event e, respectively. Let Ein(v) and Eout(v) be the set of events to which variable
v participates as an input or as an output variable, respectively. For some models,
structural information is known in the form of disjoint variable partitions named
structural units. Let Π be the set of structural units. With Π(v) we denote the
unit of variable v. Let V (Π) be the set of vertices in unit π ∈ Π. In this paper
we consider three different types of structural unit sets. Let ΠPSF be the set of
units corresponding to the P-semiflows of the net, obtained ignoring the place
multiplicity. On some models, structural units are known because the model is
composed of smaller parts. We mainly refer to [18] for the concept of Nested
Units (NU). Let ΠNU be this set of structural units, which is defined only for
a subset of models. Finally, structural units can be derived using a clustering
algorithm. Let ΠCl be the set of such units. We will discuss clustering in Sect. 2.6.

Following these criteria, we subdivide the set of algorithms A into AGen, the
set of algorithms that do not use any structural information; APSF, the set of
algorithms that require ΠPSF; and ANU, the set of algorithms that require ΠNU.
Since clustering can be computed on almost any model, we consider methods
that use ΠCl as part of AGen.

In our context, the set of MDD variables V corresponds to the place set of
the Petri net, and the set of events is the transition set of the Petri net. Let
l : V → N be a variable order, i.e. an assignment of consecutive integer values
to the variables V .

2.1 Breadth-First and Depth-First Orderings

Breadth-first and Depth-first search orderings (BFS and DFS) are two of the
simplest possible variable ordering heuristics. They consist of a traversal of the
net graph, starting from the first place, recording the visited places in breadth
and depth order. These two methods usually show poor performance, but are
included nonetheless in our tests since they are sometimes employed for BDD
generation.

2.2 Force-Based Orderings

The Force heuristic, introduced in [3], is a n-dimensional graph layering tech-
nique based on the idea that variables form a hyper-graph, such that variables
connected by the same event are subject to an “attractive” force, while variables
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not directly connected by an event are subject to a “repulsive” force. Events
and variables are positioned over a real-valued line, and then sorted to get the
ordering.

Algorithm 1. Pseudocode of the Force heuristic.
Function Force:

Shuffle the variables randomly.
repeat:

for each event e ∈ E:
compute center of gravity coge = 1

|e|
∑

v∈e l(v)
for each variable v ∈ V :

compute hyper-position p(v) = 1
E(v)

∑
e∈E(v) coge

Sort vertices according the their p(v) value.
Compute PTS (i) =

∑
e∈E

∑
v∈e

∣
∣coge − p(v)

∣
∣.

until series of PTS (i) values monotonically decreases.
return the variable order that had the smallest PTS (i) value.

Algorithm 1 gives the general skeleton of the Force algorithm. The algorithm
starts by shuffling the variable set, then it iterates trying to achieve a convergence
of a metric. Usually, different initial orders produce different final orders, so
Force can be seen as a factory of variable orders. In addition, starting from
a non-random initial order usually produces a better order. The metric is the
total distance between the transition points and the variable points, known as
Point-Transition Spans (PTS).

Structural information of the model can be used to establish additional cen-
ters of gravity. We tested the following three variations of the Force method:

– Force: Events are used as centers of gravity, as described in Algorithm1.
– Force-P: P-semiflows are used as centers of gravity, along with the Petri net

events. The method is tested only for those models that have P-semiflows.
– Force-NU: Structural units are used as centers of gravity, along with the

events. This intuitively tries to keep together those variables that belong to
the same structural unit. Again, this variation can be used only for those
models that have Nested Units.

The set A of algorithms considered in the benchmark includes: Force in AGen;
the method Force-P in APSF; and the method Force-NU in ANU, for a total of
three variations of this method.

2.3 Bandwidth-Reduction Methods

Bandwidth-reduction(BR) methods are a class of algorithms that try to per-
mute a sparse matrix into a band matrix, i.e. where most of the non-zero entries
are confined in a (hopefully) small band near the diagonal. It is known [13] that
reducing the event span in the variable order generally improves the compactness



Decision Diagrams for Petri Nets 79

of the generated MDD. Therefore, event span reduction can be seen as an equiv-
alent of a bandwidth reduction on a sparse matrix. A first connection between
bandwidth-reduction methods and variable ordering has been tested in [21] and
in [25] on the model bipartite graph. In these works the considered BR methods
are:

– CM, CM2 and ACM: The Reverse Cuthill-Mckee [17]. We test three implementa-
tions of this method: The one implemented in the Boost-C++ library (CM),
the one implemented in the ViennaCL library (CM2), and the Advanced
Cuthill-Mckee (ACM);

– KING: The King algorithm [22];
– SLO and SLO-16: The Sloan algorithm [29], with two parametric variations.

The first version uses W1 = 1 and W2 = 2 (default values), while the second
version uses W1 = 1, W2 = 16. Further information on these two variants can
be found in [7].

– GPS: the Gibbs-Poole-Stockmeyer algorithm [19].

The choice was motivated by their ready availability in the Boost-C++ and
ViennaCL libraries. In particular, Sloan, which is the state-of-the-art method
for bandwidth reduction, showed promising performance as a variable ordering
method. Sloan almost always outperforms [21] the other BR methods, but for
completeness of our benchmark we have decided to test all of them. We con-
centrate our review on the Sloan method only, due to its effectiveness and its
parametric nature.

The goal of the Sloan algorithm is to condense the entries of a symmetric
square matrix A around its diagonal, thus reducing the matrix bandwidth and
profile [29]. It works on symmetric matrices only, hence it is necessary to impose
some form of translation of the model graph into a form that is accepted by
the algorithm. The work in [25] adopts the symmetrization of the dependency
graph of the model, i.e. the input matrix A for the Sloan algorithm will have
(|V | + |E|) × (|V | + |E|) entries. We follow instead a different approach. The
size of A is U , with |V | ≤ U ≤ |V | + |E|. Every event e generates entries in A:
when |V in(e)| × |V out(e)| < T , where T is a threshold value, all entries in the
cross product V in(e) × V out(e) are set to nonzero in A. If instead |V in(e)| ×
|V out(e)| ≥ T , a pseudo-vertex ve is added, and all V in(e) × {ve} and {ve} ×
V out(e) entries in A are set to be nonzero. Usually U will be equal to V , or just
slightly larger. This choice better represents the variable–variable interaction
matrix, while avoiding degenerate cases where a highly connected event could
generate a dense matrix A. In our implementation, the threshold T is set to 100.
The matrix is finally made symmetric using: A′ = A + AT. As we shall see in
Sect. 3, the computational cost of Sloan remains almost always bounded.

A second relevant characteristic of Sloan is its parametric priority function
P (v′), which guides variable selection in the greedy strategy. A very compact
pseudocode of Sloan is given in Algorithm2. A more detailed one can be found
in [24]. The method follows two phases. In the first phase it determines a pseudo-
diameter of the A matrix graph, i.e. two vertices v, u that have an (almost)
maximal distance. Usually, a heuristic approach based on the construction of
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Algorithm 2. Pseudocode of the Sloan algorithm.
Function Sloan:

Select a vertex u of the graph.
Select v as the most-distant vertex to u with a graph traversal.
Establish a gradient from 0 in v to d in u using a breadth-first traversal.
Initialize traversal frontier Q = {v}
repeat until Q is empty:

Remove from the frontier Q the vertex v′ that minimizes P (v′).
Add v′ to the variable ordering l.
Add the unexplored adjacent vertices of v′ to Q.

the root level structure of the graph is employed. The method then performs
a traversal, starting from v, exploring in sequence all vertices in the traversal
frontier Q that maximize the priority function:

P (v′) = −W1 · incr(v′) + W2 · dist(v, v′)

where incr(v′) is the number of unexplored vertices adjacent to v′, dist(v, v′)
is the distance between the initial vertex v and v′, and W1 and W2 are two
integer weights. The weights control how Sloan prioritizes the traversal of the
local cluster (W1) and how much the selection should follow the gradient (W2).
Since the two weights control a linear combination of factors, in our analysis we
shall consider only the ratio W1

W2
. Two ratios are tested: W1

W2
= 1

2 , named SLO,
and W1

W2
= 1

16 , named SLO-16. An analysis of the parametric variations of Sloan
for variable ordering selection can be found in [7].

2.4 P-Semiflows Chaining Algorithm

In this subsection we propose a new heuristic algorithm exploiting the ΠPSF set
of structural units obtained by the P-semiflows computation. A P-semiflow is
a positive, integer, left annuler of the incidence matrix of a Petri net, and it
is known that, in any reachable marking, the sum of tokens in the net places,
weighted by the P-semi-flow coefficients, is constant and equal to the weighted
sum of the initial marking (P-invariant). Its main idea is to maintain the places
shared between two ΠPSF units (i.e. P-semiflows) as close as possible in the
final MDD variable ordering, since their markings cannot vary arbitrarily. The
pseudo-code is reported in Algorithm 3.

The algorithm takes as input the ΠPSF set and returns as output a variable
ordering (stored in the ordered l). Initially, the πi unit sharing the highest num-
ber of places with another unit is removed by ΠPSF and saved in πcurr. All its
places are added to l.

Then the main loop runs until ΠPSF becomes empty. The loop comprises the
following operations. The πj unit sharing the highest number of places with πcurr

is selected. All the places of πj in l, which are not currently in C (i.e. the list of
currently discovered common places) are removed. The common places between
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Algorithm 3. Pseudocode of the P-semiflows chaining algorithm.
Function P-chaining(ΠPSF):

l = ∅ is the ordered list of places.
C = ∅ is the set of current discovered common places.
Select a unit πi ∈ ΠPSF s.t. max{i,j}∈|ΠPSF| πi ∩ πj with i �= j
ΠPSF = ΠPSF \ {πi}
πcurr = πi

Append V (πcurr) to l
repeat until ΠPSF is empty:

Select a unit πj ∈ ΠPSF s.t. maxj∈|ΠPSF| πcurr ∩ πj

Remove (l ∩ V (πj)) \ C from l
Append V (πcurr ∩ πj) \ C to l
Append V (πj) \ (C ∩ V (πcurr)) to l
Add V (πcurr ∩ πj) to C
πcurr = πj

ΠPSF = ΠPSF \ {πj}
return l

πi and πj not present in C are appended to l. Then the places present only in
πj are added to l. After these steps, C is updated with the common places in πi

and πj , and πj is removed by ΠPSF. Finally πcurr becomes πj , completing the
iteration. This algorithm is named P and belongs to the APSF set.

2.5 The Noack and the Tovchigrechko Greedy Heuristics
Algorithms

The Noack [27] and the Tovchigrechko [30] methods are greedy heuristics that
build up the variable order sequence by picking, at every iteration, the variable
that minimizes an objective function. A detailed description can be found in [20].
A pseudo-code is given in Algorithm 4.

Algorithm 4. Pseudocode of the Noack/Tovchigrechko heuristics.
Function NOACK-TOV:

S = ∅ is the set of already selected places.
for i from 1 to |V |:

compute weight W (v) = f(v, S) for each v �∈ S.
find v that maximizes W (v).
l(i) = v.
S ← S ∪ {v}.

return the variable order l.
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The main difference between the Noack and the Tovchigrechko methods is
the weight function f(v, S), defined as:

fNoack(v, S) =
∑

e∈Eout(v)
k1(e)∧k2(e)

(
g1(e) + z1(e)

)
+

∑

e∈Ein(v)
k1(e)∧k2(e)

(
g2(e) + c2(e)

)

fTov(v, S) =
∑

e∈Eout(v)
k1(e)

g1(e) +
∑

e∈Eout(v)
k2(e)

c1(e) +
∑

e∈Ein(v)
k1(e)

g2(e) +
∑

e∈Ein(v)
k2(e)

c2(e)

where the sub-terms are defined as:

g1(e) =
max

(
0.1, |S ∩ V in(e)|

)
|V in(e)| , g2(e) = 1+|S ∩ V in(e)|

|V in(e)|

c1(e) =
max

(
0.1, 2 · |S ∩ V out(e)|

)
|V out(e)| , c2(e) =

max
(
0.2, 2 · |S ∩ V out(e)|

)
|V out(e)|

z1(e) = 2·|S ∩ V out(e)|
|V out(e)| , k1(e) = |V in(e)| > 0, k2(e) = |V out(e)| > 0

Not much technical information is known about the criteria that were fol-
lowed for the definition of the fNoack and fTov functions. An important charac-
teristic is that both functions have different criteria for input and output event
conditions, i.e. they do not work on the symmetrized event relation, like the
Sloan method. The Noack and Tovchigrechko heuristics will be called NOACK and
TOV in the benchmark.

2.6 Markov Clustering Heuristic

The heuristic MCL is based on the idea of exploring the effectiveness of clustering
algorithms to improve variable order technique. The hypothesis is that in some
models, it could be beneficial to first group places that belong to connected
clusters. For our tests we selected the Markov Cluster algorithm [31]. The method
works as a modified version of Sloan, where clusters are first ordered according
to their average gradient, and then places belonging to the same cluster will
appear consecutively on the variable ordering, following the cluster orders. This
method is named MCL and belongs to the AGen set.

2.7 Gradient-Π Ordering

The Gradient-Π heuristic is a new heuristic that mixes a set of structural infor-
mation Π with a gradient-like approach similar to the Sloan method. A detailed
description can be found in [8]. We tested two variations of this method:

– Grad-P: the set Π is the set ΠPSF of P-semiflows of the net.
– Grad-NU: the set Π is the set ΠNU of Nested Units of the net.

A pseudo-code is given in Algorithm 5.
Gradient-Π shares with the P-chaining method the idea of ordering the vari-

ables taking one invariant at a time. The main differences are that (1) the struc-
tural units are ordered according to a score(π) function that is based on the
gradient, and (2) the variables inside each unit π are again ordered in gradient
order.
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Algorithm 5. Pseudocode of the Gradient-Π heuristics.
Function Gradient-Π(v0, Π):

Select v as the most-distant vertex to v0 with a graph traversal.
Establish a gradient from 0 in v to d in v0 using a breadth-first traversal.
l ← {}
while exists at least one π ∈ Π with π \ S �= ∅:

for each element π ∈ Π with π \ S �= ∅:
Compute score(π) =

∑
v∈π ∩ S

grad(v) − ∑
v∈π\S grad(v)

Let πmax be the element with maximum score(π) value.
Append variables in (πmax \ S) to l in ascending gradient order.
S ← S ∪ πmax.

Append all variables in (V \ S) to l in ascending gradient order.
return l.

3 The Benchmark

The considered model instances are that of the Model Checking Contest, 2017
edition [23], which consists of 817 PNML files. We discarded several instances
that our tool was not capable to solve in the imposed time and memory limits,
because either the net was too big or the RS MDD was too large under any
considered ordering. Thus, we considered for the benchmark the set I made of
393 instances, belonging to a set M of 69 models. These 393 instances run for the
18 tested algorithms for 20 min, with 4 GB of memory and a decision diagram
cache of 226 entries. In the 393 instances of I two sub-groups are identified: The
set IPSF ⊂ I of instances for which P-semiflows are available, with 315 instances
generated from a subset MPSF of 62 models; The set INU ⊂ I of instances for
which nested units are available, with 109 instances generated from a subset
MNU of 15 models.

The overall tests were performed on OCCAM [2] (Open Computing Cluster
for Advanced data Manipulation), a multi-purpose flexible HPC cluster designed
and maintained by a collaboration between the University of Torino and the
Torino branch of the National Institute for Nuclear Physics. OCCAM contains
slightly more than 1100 CPU cores including three different types of computing
nodes: standard Xeon E5 dual-socket nodes, large Xeon E5 quad-sockets nodes
with 768 GB RAM, and multi-GPU NVIDIA nodes.

Scores. Typically, the most important parameter that measures the performance
of variable ordering is the MDD peak size, measured in nodes. The peak size rep-
resents the maximum MDD size reached during the computation, and it there-
fore represents the memory requirement. It is also directly related to the time
cost of building the MDD. For these reasons we preferred to use the peak size
alone instead of weighted measures of time, memory and peak size, that would
make interpretation of the results more complex. The peak size is, however,
a quantity that is strictly related to the model instance. Different instances
of the same model will have unrelated peak sizes, often with different magni-
tudes. To treat instances in a balanced way, some form of normalized score is
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needed. We consider three different score functions: for all of them the score
of an algorithm is first normalized against the other algorithms on the same
instance, which gives a score per instance, and then summed over all instances.
Let i be an instance, solved by algorithms A = {a1, . . . , am} with peak nodes
Pi = {pa1(i), . . . , pam

(i)}. The scores of an algorithm a for an instance i are:

– The Mean Standard Score of instance i is defined as: MSSa(i) = μA(i)−pa(i)
σA(i) ,

where μA(i) and σA(i) are the mean and standard deviations for instance I
summed over all algorithms that solved instance i.

– The Normalized Score for instance i is defined as: NSa(i) = min{p∈Pi}
pa(i)

, which
just rescales the peak nodes taking the minimum as the scaling factor.

– The Model Checking Contest score1 for instance i is defined as: MCCa(i) = 48
if a terminates on i in the given time bound, plus 24 if pa(i) = min{p ∈ Pi}.

The final score used for ranking algorithms over a set I ′ ⊆ I is then determined
as the sum over I ′ of the scores per instance:

– The Mean Standard Score of algorithm a: MSSa = 1
|I′|

∑
i∈I′ MSSa(i)

– The Normalized Score of algorithm a: NSa = 1
|I′|

∑
i∈I′ NSa(i)

– The Model Checking Contest score of a: MCCa = 1
|I′|

∑
i∈I′ MCCa(i).

MSS requires a certain amount of samples to be significant. Therefore, we
apply it only for those model instances were all our tested algorithms terminated
in the time bound. The set of instances where all algorithms finish is named
“Easy instances” hereafter. We use MSS∗

a, NS∗
a and MCC∗

a to denote that the
score is computed on the set of Easy instances only. If we instead consider all
the instances, where some algorithms could not finish in time, we may apply
only the NS and the MCC score. We decided to test the MCC score to check if
it is a good or a biased metric, when compared to the standard score.

Score Normalization: One problem of this benchmark setup is that the MCC
model set is made by multiple parametric instances of the same model, and
the number of model instances per model vary largely. Some models have just
one instance, while other models have up to 40 instances. Usually, the relative
performance of each algorithm on different instances of the same model are
similar, according to our experience. Thus, an instance-oriented benchmark is
biased toward those models that have more instances. Therefore, we consider
two benchmark settings for the computation of the scores:

– Scores “By Instance”: each model instance has the same weight, so those
models with many instances will be more important. This reflects more closely
the MCC score model.

1 We actually use a simplified version where weights, model categories and answer
correctness are not considered.
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– Scores “By Model”: each score value is normalized against the number of
instances Im of each considered model m ∈ M′. Therefore, MSSa is redefined
as:

MSSa = 1
|M′|

∑
m∈M′

1
|Im|

∑
i∈Im

MSSa(i)

Analogously, NSa and MCCa are by-model versions of the NS and MCC scores.

In our opinion, the normalization of the by-model scores reflects more closely
the idea of “average behaviour” of a variable ordering heuristic when applied to
a new, unknown problem.

Assumptions: The computations are carried out by the GreatSPN model checker,
which uses saturation by-events to generate the MDD representation of the state
space. Since we use the MDD peak size for score computation, this is relevant,
since other RS algorithms could produce different scores. We use the “optimistic”
heuristic for cache management of Meddly, which means that created nodes are
kept in cache even if they are not used any longer, and are reclaimed only
when the garbage collector is called. Therefore, the peak size is approximatively
the total number of generated nodes, except when the memory consumption
is too large and the garbage collector needs to be called. We employ Multi-
terminal Decision Diagrams for storing token values, with one level per place.
Other techniques (BDD with multi-level encoding of token counts, MDD with
multiple places per level, etc.) are not considered. We assume also that the
model selection made for the MCC model set is somewhat “fair”. In principle
this is true, in the sense that the models have been selected using various criteria
(variety, interest, case studies, ...) that have nothing to do with the performance
of the saturation algorithm.

Results: Table 1 describes the general summary of the benchmark results. For
each algorithm, we report again its requirement class (AGen,APSF,ANU). The
table reports the average results for the “By instances” and “By Models” normal-
ization. For the“By instances” group, it reports the number of instances where
the algorithm is applied, the number of solved instances in the time and memory
bounds, and the number of times the algorithm finds the best ordering among
the others. The next four columns report the NS score on all instances NSa,
the MSS score on the easy instances (MSS∗

a), the NS score on the easy instances
(NS∗

a), and the MCCa score on all instances. The structure is repeated for the “By
model” normalization. First the number of applied models is reported, followed
by the number of models solved by each algorithm (which can be fractional, since
when an algorithm solves only some instances of a model, it gets a fractional
score) and the number of best orders found. Finally, the scores are repeated,
normalized by model.

From the table emerges that the Sloan algorithm has the best average per-
formance on the MCC models, with a clear margin. It is then followed by the
TOV/NOACK heuristics, and the Force heuristics. Methods that exploit structural
information also show very positive results. Gradient-P (which is applied only
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Table 1. Performance of the ordering algorithms using the MCC2017 models.

Algorithms By instances By models

Instances Average scores Models Average scores

Name A N solv. Best NSa MSS∗
a NS∗

a MCCa N solv. Best NSa MSS
∗
a NS

∗
a MCCa

Force AGen 393 289 41 0.37 −0.16 0.21 37.80 69 27.31 9.89 0.79 −0.39 0.44 41.34

BFS AGen 393 188 12 0.10 0.46 0.07 23.69 69 5.80 1.34 0.52 1.03 0.11 25.50

DFS AGen 393 187 3 0.08 0.41 0.07 23.02 69 5.11 0.62 0.50 0.76 0.12 24.34

CM AGen 393 263 42 0.31 −0.13 0.18 34.69 69 16.35 2.81 0.68 −0.25 0.31 33.79

CM2 AGen 393 274 46 0.27 0.08 0.13 36.27 69 16.30 7.82 0.70 0.27 0.21 36.46

ACM AGen 393 275 46 0.27 0.08 0.13 36.40 69 16.25 7.82 0.70 0.27 0.21 36.49

GPS AGen 393 276 46 0.27 0.08 0.13 36.52 69 16.31 7.82 0.70 0.27 0.21 36.53

KING AGen 393 249 27 0.28 −0.13 0.18 32.06 69 15.43 2.16 0.66 −0.21 0.30 32.62

SLO AGen 393 327 36 0.39 −0.13 0.20 42.14 69 24.76 4.65 0.88 −0.32 0.37 43.99

SLO−16 AGen 393 331 43 0.40 −0.12 0.19 43.05 69 26.24 8.31 0.89 −0.32 0.39 45.56

NOACK AGen 393 290 37 0.37 −0.12 0.21 37.68 69 29.18 6.87 0.77 −0.32 0.45 39.55

TOV AGen 393 293 46 0.38 −0.12 0.21 38.60 69 29.30 8.90 0.80 −0.32 0.46 41.59

MCL AGen 393 223 13 0.20 0.11 0.12 28.03 69 13.00 2.38 0.64 0.16 0.22 31.38

Algorithms that require P-semiflows:

P-chain APSF 315 234 18 0.22 0.05 0.14 37.03 62 13.30 4.35 0.80 0.24 0.26 40.09

GradP APSF 315 260 73 0.55 −0.18 0.25 45.18 62 32.98 13.97 0.87 −0.40 0.51 47.27

ForceP APSF 315 255 35 0.39 −0.19 0.22 41.52 62 23.19 6.44 0.82 −0.41 0.43 42.01

Algorithms that require Nested Units:

GradNU ANU 109 92 39 0.66 −0.07 0.11 49.10 15 10.19 6.67 0.94 −0.21 0.34 55.82

ForceNU ANU 109 85 1 0.23 −0.07 0.05 37.65 15 2.35 0.09 0.80 −0.18 0.12 38.45

to 315 instances out of 393) is particularly effective in finding the best variable
orders most of the time. Similarly, Gradient-NU has again very positive scores.

Other methods, like BFS and DFS have usually a bad average behaviour, even
if they perform well on a small subset of instances. Considering the column of
“best” instances, some methods seem to perform well, like CM, but this is a bias
caused by the uneven number of instances per model (i.e. some models have more
instances than others). In fact, the behaviour of the CM algorithm when weighted
by-models is much more modest. To our surprise, the P-chaining method shows
only a mediocre average performance even though there are several instances
where it performs particularly well. In general, most instances are solved by
more than one algorithm. In the rest of the section we go into model details, first
considering the performance of the algorithms, and then by ranking the methods
considering either instances(I, IPSF, INU) or models(M, MPSF, MNU).

3.1 Results of the Benchmark

Figure 2 shows the benchmark results, separated by instance class and algorithm
class. The plots on the left (1, 3, and 5) report the results on the Easy instances,
while those on the right report the results for all the instances. In the left plots
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MSS MCCNS

Fig. 2. Benchmark results, weighted by instance.

we report the three tested metrics, while on the right plots we discard the MSS
metric, since the available samples for each instance may vary and could be too
low for the Gaussian assumption. To fit all scores in a single plot we have rescaled
the score values in the [0,1] range.

Algorithms are sorted by their NS score, best one on the left. The top row
(plot 1 and 2) considers the AGen methods on all I instances. The center row
considers the AGen ∪ APSF methods on the IPSF instances. The bottom row
considers the AGen ∪ ANU methods on the INU instances. Plots 1, 3, and 5
consider 152, 122 and 15 instances, respectively, which are the “easy” instances.
The Easy instances are in a certain sense a biased set, since instances are dropped
(not easy) every time any algorithm fails in generating a reasonable variable
order. However, from these plots it is possible to observe that the trend of the
NS score is close to that of the MSS score. Therefore, we will mainly consider
the NS score only, since it can be computed on the whole set of instances.
Plots 5 and 6 use fewer samples than the others, and the algorithm ranking
is slightly different. We suspect that this discrepancy can be explained by the
small number of available instances. Therefore, we mainly focus our attention
on the other plots. The Sloan methods and the Gradient-Π methods appear
to have the best performance, in terms of both the NS score and the MCC
score. When we look at the average behaviour on all instances (plot 2), we may
also observe that TOV/NOACK and Force have close-to-best performance. This
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MSS MCCNS

Fig. 3. Benchmark results, weighted by model.

shows that being capable of using the structural information of the model for
the purpose of variable ordering can be an effective strategy.

Figure 3 shows the benchmark results weighted “By models”. Plots 1, 3, and
5 consider 56, 50 and 6 models, respectively, which are those models which have
at least one “easy” instance. Some methods have a different ranking due to
the bias introduced by the uneven number of model instances. For example,
the performance of the CM method appears to be worse when weighting “By
models”. This is explained by the fact that CM performs well on three models
(BridgeAndVehicle, Diffusion2D and SmallOperatingSystem) that have a large
number of instances, but on average it does not produce very good variable
orders. Again, the ranking has the Sloan method on top for the NS score on
plots 2 and 4. The Gradient-Π methods show a more modest NS score, even
if they are still on top of the rankings. However, the MCC score of these two
methods are very high, suggesting their effectiveness (plot 4 and 6). Again, the
number of Easy instances is very small and does not allow to make conclusions
on the results of plots 1, 3 and 5.

As stated before, the ranking of the NS score is not the same as the MCC
score. To better investigate this behaviour we look at the NS score distributions
of the algorithms in Fig. 4.

Figure 4 shows the NS score distributions on the 393 model instances. The
bar of each algorithm a shows the distribution of the NS scores obtained by
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Fig. 4. NS score distributions for the “By Instance” case, on all models.

a for all the instances. From the distribution, it is clear that most algorithms
have very polarized behaviours (either they produce a very good order, or they
fail). However, Sloan has a more continuous distribution, meaning that on many
instances it is capable of producing a reasonable variable order, even if it is
not the best among the generated ones. Therefore, a method that on-average
performs reasonably well will have an high MCC score, like SLO-16 in Fig. 2(2).
Also, Grad-P has a very high chance of finding the best solution among the
tested ones, showing that it is a very promising heuristic.

4 Conclusions and Future Works

In this paper we presented a comparative benchmark of 18 variable ordering
algorithms. Some of these algorithms are popular among Petri net based model
checkers, while others have been defined to investigate the use of structural infor-
mation for variable orderings. We observed that among the generic methods, the
Sloan method, the Tovchigrechko/Noack methods and the Force method have
the best performance, and their effectiveness covers different subsets of model
instances. While the methods of Tovchigrechko/Noack were designed for Petri
net models, the method of Sloan is a standard algorithm for bandwidth reduc-
tion of matrices, whose effectiveness for variable ordering was pointed out only
recently in [21] and [25]. We conjecture that a key ingredient of the Sloan method
is the gradient. This conjecture has been used in [8] to design the new heuristic
Gradient-Π, which is an hybrid between Sloan and P-chain. This heuristic proves
to have very good performance. We conjecture that other algorithms, like TOV
or Force, could be improved by using a superimposed gradient. When the net
has some structural information, like P-semiflows or Nested Units, we observed
that only some specialized algorithms could take a significant advantage from
it. Surprisingly, the P-chaining method (one of the original heuristics of Great-
SPN) showed poor performance when compared to more modern algorithms like
Gradient-Π. However, the general results of other heuristics (Force-P, Gradient-
Π) allow us to conclude that structural information is useful in deriving good
variable orders. Of course, exploitation of structural information cannot be a
general technique, since it is not available for all models.
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We also tested three different scoring metrics. We observed an agreement
between the MSS and the NS score, which is nice since NS can be used even
when few algorithms complete. We also observed that (our simplified version of)
MCC is a good score, that favours a different aspect than MSS/NS, i.e. MCC
favours the average behaviour over finding better ordering. The use of a per-
model weight on the scores has helped in identifying a bias in the benchmark
results. We think that some form of per-model weight is necessary when using the
MCC model set. Another important observation is that all these algorithms show
a significant instability: they could work nicely for some models, and produce
terrible orders for other models. The consequences of this instability are two-fold.
In principle, using a single variable order algorithm may prove to be effective on
a subset of models. In addition, the results are highly influenced by the MCC
model set. It remains unknown if the observations made in this paper remains
the same when using a different model set.

It should be noted that we observed a ranking similar to the one reported
in [25]. That paper deals with metrics for variable ordering (without RS construc-
tion), but in the last section the authors report a small experimental assessment
similar to our benchmark. In that assessment Tovchigrechko was not tested,
and the best algorithms were mostly Sloan and Force. For Sloan, they used the
default parameter setting with a rather different symmetrization of the adja-
cency matrix. In addition, the tested model set was different (106 instances).
However, the final observations drawn in that paper are close to the ones we
get from our tests, confirming the effectiveness of the Sloan method for variable
ordering.
Reproducibility: All results (tool execution logs, raw csv data, processed data)
are available at: www.di.unito.it/∼amparore/PNSE17/. The source code of the
tool is available at: github.com/greatspn/SOURCES.

Acknowledgement. We would like to thank the MCC team and all colleagues that
collaborated with them for the construction of the MCC database of models, and the
Meddly library developers.
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Abstract. Nowadays, modeling complex systems requires a combina-
tion of techniques to facilitate multiple perspectives and adequate mod-
eling. Therefore, UML and other formalisms are used in combination
with Petri nets. Often the different models are transformed into a sin-
gle formalism to simulate the resulting models within a homogeneous
execution environment. For UML, the mapping is usually done via the
transformation to some programming language.

Anyhow, the problem with generative techniques is that the different
perspectives that are provided by the applied modeling techniques can
hardly be retained once the models are transformed into a single formal-
ism. In this contribution we elaborate on how multiple formalisms can
be used together in their original representation.

One of the main challenges for our approach is the provision of means
for coupling mentioned formalisms so they can be executed together. We
utilize the synchronization features of Reference Nets to couple multiple
modeling techniques. Therefore, we present an approach to transform
modeling languages into Reference Nets, which can be executed with the
simulation environment Renew. The simulation events are forwarded to
the original representation in the form of graphical user feedback and
interaction.

This results in a simultaneous and concurrent execution of models fea-
turing a combination of multiple modeling formalisms. A finite automata
modeling and simulation tool is presented to showcase the application of
our concept. Based on our results, we present a case study that utilizes
finite automata in combination with Reference Nets and activity diagrams.

Keywords: Petri nets · Multi-formalism · Model synchronization
Simulation · Reference Nets · Finite automata · Activity diagrams

1 Introduction

Modeling complex systems requires a separation of concerns and demands sup-
port for taking into account multiple perspectives on the system including various
levels of abstraction. This is achieved by combining several modeling techniques.
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Looking back at the original ideas of Petri [29], automata are enhanced by a
communication mechanism, thus introducing the modeling of concurrency. The
new formalism, he calls “net”, facilitates the modeling of additional concepts:
locality (of time and place), asynchronism and concurrency. With his conceptual
extension to the formalism comes a shift in perspective. In consequence, nets
may serve for other purposes than automata.

Petri nets in their various forms have proven to be an adequate technique to
model, analyze and understand concurrent systems. They provide an operational
semantics, and by utilizing high-level Petri nets, modelers have a technique at
hand to cover multiple abstraction levels and perspectives. Anyhow, Petri nets
are not always the optimal solution for every modeling task. We agree with
Milner, who says: “I reject the idea that there can be a unique conceptual model,
or one preferred formalism, for all aspects of something as large as concurrent
systems modeling” [25, p. 78].

Depending on the context and the application area, various requirements to
the modeling technique have to be met. Extending a formalism (or creating a new
one) allows to shift the focus to other aspects, thus providing a different abstrac-
tion. Multiple techniques may be combined to facilitate various perspectives in
order to cover different levels of abstraction (vertical) or for a combination of
complementing views (horizontal).

Today, modeling techniques are quite elaborate, and the means for modeling
are systematically developed and researched. The purposes for constructing con-
ceptual models and their usage areas are manyfold. Krogstie [19, p. 3] has put
them into categories: models may be used for system (forward) design, for the
(computer-assisted) analysis, to support communication, for quality assurance,
model deployment and activation, or just for making sense out of something.

The complexity of systems has dramatically increased since the beginning of
computer science. This raises the necessity to provide several perspectives at the
same time. Taking into account different perspectives only makes sense if they
can be related or linked in some way.

Standard modeling languages like UML (Unified Modeling Language) offer a
portfolio of techniques to provide multiple modeling perspectives covering var-
ious levels of abstraction. Model driven approaches facilitate the development
of domain specific languages that can be related on the basis of meta-models.
Usually, they are transformed into a single target language. If no reverse transfor-
mation for visualizing the simulation state exists, the transformation comprises
a loss of the desired abstraction level and may blur the previously given per-
spective. Model simulation environments support the execution of models, but
models usually do not provide the means to be used in combination.

Let us assume, a software application is modeled using three different tech-
niques. The structure is modeled with a Component Diagram, the components’
behavior is modeled by means of Sequence Diagrams and the data is modeled by
an Entity Relation Diagram. In order to execute the modeled application, the
three different techniques are transformed into a single target programming lan-
guage. This results in a number of files/classes/functions from which we cannot
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easily derive the former perspectives (structure, behavior, data). On the tech-
nical level of the execution language, it is challenging to investigate a running
application without proper tool support.

The concurrent execution of multiple modeling techniques in their original
representation using explicit model coupling is promising in order to combine the
advantages of linking models and direct simulation. Consequently, tool support
is required not only to support the modeling of multiple perspectives, but also
to integrate the different views and to keep them consistent with each other.

We identify the following two main challenges: (1) For the generic coupling of
multiple modeling techniques an adequate mechanism has to be found. (2) The
coupled models from various modeling techniques have to be concurrently sim-
ulated in one environment without losing the original representation.

This work is an extended version of a workshop publication [26]. We propose a
conceptual extension of current modeling techniques by synchronous channels [7]
as they are provided in the context of Reference Nets. Synchronous channels can
supply synchronous communication between models in order to exchange data
or control other models. Furthermore, we propose to map the constructs of the
modeling techniques to Reference Net constructs. It should be noted that this
mapping is not equivalent to the transformation that we reject above, since the
original representation of the model is preserved and even visually observable
during simulation including the possibility to interact with the simulation. For
modelers it should appear as if a model is being simulated in its original modeling
technique. In order to achieve this, we propagate the simulation events of the
underlying Reference Net back to the original model.

2 Proposal for Coupling Through Synchronization

In this section we briefly introduce the conceptual and technical background of
our work and present a simple introductory example of the coupling of multiple
formalisms. First, we present the Renew environment for modeling and execu-
tion of Reference Nets and other modeling techniques. (Java) Reference Nets as
our main modeling and simulation formalism are introduced afterwards. Last,
with a simple example, we demonstrate our idea of multi-formalism execution,
which is presented in general in Sect. 3.

2.1 Renew

Renew is a continuously developed extensible modeling and simulation envi-
ronment for Petri nets and other modeling techniques [21]. Due to its recent
enhancements and extensions it has evolved into an IDE (integrated develop-
ment environment) for the development of Petri net-based software [6]. Renew
is focused on Reference Nets and fully supports that formalism in terms of model-
ing and execution with or without graphical feedback. Benefiting from its plugin
architecture, Renew has been extended with various modeling techniques and
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formalisms over the past years. With recent efforts towards model-driven lan-
guage engineering [27], Renew has become an environment for the development
of modeling techniques and tools as well. The current development version sup-
ports the concurrent and coupled simulation of multiple formalisms. Renew is
written in Java and available including the source code for various platforms,
such as Linux, Mac OS and Windows.1

2.2 Reference Nets

The (Java) Reference Net formalism [20] is a high-level Petri net formalism that
combines the nets-within-nets paradigm [31] with synchronous channels [7] and
a Java inscription language. This formalism makes it possible to build complex
systems using dynamic net hierarchies. The nets-within-nets concept is imple-
mented using a reference semantics so that tokens can be references to nets.
With the Java inscription language, it is possible to use Java objects as tokens
and execute Java code during the firing of transitions. The synchronous channels
enable the synchronous firing of multiple transitions distributed among multiple
nets and a bidirectional exchange of information. An introduction to Reference
Nets is available in the Renew manual [22], the formal definition can be found
in [20] (in German). In the following we give a brief overview of the features of
Reference Nets.

Fig. 1. Example Reference Net system showcasing selected features (adapted from
[12, p. 77])

The Reference Net system depicted in Fig. 1 exhibits a selection of Reference
Net constructs and focuses on those that are relevant for this contribution. It
consists of two corresponding nets, somenet and othernet. The places can hold
1 The full multi-formalism feature will be part of Renew version 2.6 and then be avail-

able at http://renew.de. The current development version can be found at http://
paose.net/wiki/MultiFormalism.

http://renew.de
http://paose.net/wiki/MultiFormalism
http://paose.net/wiki/MultiFormalism
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black tokens, values of elementary data types or object and net references. Java
types are imported and declared in the declaration node. The Reference Net for-
malism makes use of templates and instances analogously to classes and objects
in object-oriented programming languages. Net instances are created from net
templates using the new keyword as shown in the lower part of Fig. 1a. Transi-
tions have a flexible inscription language featuring guards, synchronous channels,
and Java expressions. Places and arcs can also hold inscriptions. Virtual places
are references to other places depicted as double bordered circles, where the same
semantic place may have multiple graphical figures in order to prevent long and
crossing arcs.

The two highlighted transitions from somenet and othernet form a syn-
chronous channel, which always consists of two parts: downlink and uplink. The
downlink must hold a reference to the net containing the uplink. The net somenet
in Fig. 1a holds the :exchange(sum,repr) channel’s downlink and a reference
(net) to the net othernet in Fig. 1(b), which contains the uplink. Even though the
invocation of the synchronous channel is directed, due to the required reference,
the information exchange is bidirectional.

The unification algorithm searches for bindings of a transition that satisfy
the possible assignments of variables with respect to the declared inscriptions on
transitions, arcs, and places. If both transitions participating in a synchronous
channel are enabled, they can fire synchronously and exchange information in
both directions. In this example the variable sum in somenet that is used in the
channel :exchange(sum,repr) is unified with the variable sum from the tuple
of sum and repr from othernet.

The mechanism of synchronous channels provides powerful features for the
coupling of multiple models. As described above, a synchronous channel consists
of a pair of up- and downlink. The main reason for this is an efficient implemen-
tation (with mostly polynomial complexity instead of exponential complexity)
that has been described in [20]. If multiple uplinks of one net can participate
in the firing of synchronized transitions, one of the possible uplinks is chosen
non-deterministically. For each downlink (and its parameters) there is exactly
one uplink that will be bound when a transition is fired, and both must partici-
pate since the firing of the transitions is atomic. In the following we will briefly
sketch our approach to coupling multiple modeling techniques by introducing
our running example, before we generalize from this idea in order to develop our
conceptual approach.

2.3 Coupling Finite Automata with Reference Nets

The coupling of finite automata and Reference Nets serves as a simple example
of linking multiple formalisms. We facilitate the coupling through enhancing
the finite automata formalism with synchronous channels. More precisely, we
develop a concept to synchronize finite automata state transitions with the firing
of Reference Net transitions.

In this section we outline the coarse idea by presenting a useful example
for the coupling of finite automata and Reference Nets. The general concept
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for the coupling and simulation of multiple formalisms is described in Sect. 3.
An exemplary implementation that allows the simultaneous and synchronized
execution of both – finite automata and Reference Nets – is described in Sect. 4.

One application area of multi-formalism simulation is the controlling of sys-
tems to avoid unwanted behavior such as deadlocks or security violations. To
ensure orderly behavior, it is possible to use a controlling instance to restrict
the possibilities of the controlled system. Ezpeleta et al. use controllers with
Reference Nets in such a way [10].

We present a simple example to motivate a goal of controlling nets – avoid-
ance of deadlocks and unwanted situations, as mentioned by Burkhard [5]. The
Reference Net in Fig. 2 depicts a simple production and consumption process.
The consumption (lower right part) requires at least one preceding production
(upper right part) to prevent the system from running into a deadlock.

Fig. 2. Reference Net with potential deadlock

At the left hand side there are three manually fireable transitions, each of
which instantiates one of the controller automata, which are shown in Fig. 3. The
token that is passed through the Reference Net holds a reference to one of the
controller automata. Producing (fa:prod()) puts a token into the storage place.
Consuming is processed in two steps. In the first step the consumption process
is entered (fa:cons()). In a second step a token from the storage is consumed.
If there is none, the net is stuck in a deadlock.

To avoid a deadlock, one may use a finite automaton. Three dead-lock-a-
voi-dance strategies are shown in Fig. 3. The strategy avoid (Fig. 3a) constrains
the net to produce at least once before each consumption. The strategy max2
(Fig. 3b) limits the number of tokens in the storage to 2, so that a consumption
process takes place at least after every second production. The third strategy
twoEach (Fig. 3c) predefines the order to two productions followed by two con-
sumptions repeatedly. With all three strategies a deadlock is avoided.

3 Concept for Multi-formalism Simulation

In the following we elaborate on our approach to multi-formalism simulation that
we sketch in Sect. 2. We generalize the idea of using finite automata to control
and visualize parts of a system. On the basis of Reference Nets we present a
method to link multiple formalisms through synchronized actions.
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Fig. 3. Different deadlock avoidance strategies

3.1 Coupling via Synchronous Channels

In order to capture the overall structure and behavior of complex software sys-
tems, several modeling techniques are applied in combination. Coupling of mod-
els supports the modeling process in general by providing modeling techniques
that exactly match the requirements of the modeling purpose. Each created
model covers a distinct, yet partly overlapping perspective of the system. All
models need to be integrated in a consistent way to cover the complete system.

In a common setting – e.g. when using UML – the models are, more or less,
modeled in isolation. The relations to other modeling techniques and therefore
between the created models are not shown explicitly. While at first sight this
appears to make it easier for the modeler, this is a problem. Modelers must know
how models interact with each other. Usually, this relation is established by the
compiler of the models if the models can be used directly for code generation.
In most modeling environments this is not the case. In consequence, the models
are complemented with implementation details to facilitate their execution.

As motivated in the introduction, the transformation of models into a single
target language may lead to blurred perspectives and difficulties in examining
the system.

While, of course, a common execution language may work in the background,
we propose to directly execute the models and to make the coupling explicit
in order to retain the perspectives. The combined simulation in their original
representation requires an operational semantics of the applied techniques and
a mechanism for the coupling of models.

Coupling multiple techniques requires considerable conceptual and techni-
cal support. We use, in addition to the operational semantics of the modeling
techniques, an execution environment that properly supports multi-formalism
simulation, Renew. A drawback of the explicit coupling of multiple modeling
techniques is that it involves an extension of the modeling languages.

Direct simulation is not applicable for every modeling technique. For example,
the execution of a solely structural diagram seems not to be useful. In this
contribution we mainly consider behavioral techniques that are discrete and
state-based. This covers many of the UML behavioral diagrams and process
modeling languages, such as BPMN and EPC.
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3.2 Model Coupling with Graphical Feedback

In our group we have studied the necessary and sufficient solutions to imple-
ment modeling techniques within our framework(s). To extend high-level Petri
nets by synchronous channels elaborate algorithms were needed. The specifica-
tion, design and implementation was a highly complex task. However, on top of
this a very powerful semantics for the description of other modeling techniques
is available now. With previous contributions we have shown the development
of new formalisms on the basis of Renew by providing operational semantics
through a mapping to Petri nets [16,27]. In this contribution we propose to cre-
ate formalisms that use a mapping to Reference Nets in the background in order
to provide the operational semantics for the modeling technique but present the
original representation to the user.

Fig. 4. Conceptual model of the model synchronization

Reference Nets are well-suited to cover multiple properties of modeling tech-
niques, especially those of discrete, state-based behavioral techniques that we
consider in this contribution. In order to simulate an arbitrary number of mod-
els concurrently, the execution language has to provide an intuitive mechanism
to support the implementation of concurrency. The requirement for atomicity
of activities and resource allocation emerges from the possibility of concurrent
activities in a set of models. The simulated models should not affect each other,
unless it is explicitly intended via synchronization. Thus, the execution language
has to support strict data encapsulation for models in simulation. For process
modeling languages often dynamic hierarchization is required (e.g. for subpro-
cesses in BPMN 2.0). Due to the nets-within-nets concept, encapsulation of sim-
ulated models and dynamic hierarchization is provided naturally by Reference
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Nets. Reference Nets as a Petri net formalism provide a powerful mechanism to
implement concurrent behavior, resource allocation and atomicity of actions.

Figure 4 summarizes the general idea of our approach to multi-formalism
modeling and execution. The upper part (Graphical Layer) of the figure con-
tains the graphical models (model drawings) and model instance drawings that
are visible to the user and permit user interaction. Model drawings are artifacts
that are created from a graphical editor within Renew or may be imported from
an external tool – comparable to classes in Java. The model instance drawings
are instantiated drawings – comparable to objects in Java. These reflect the sim-
ulation state to the user and allow control over the simulation, e.g. by triggering
a certain simulation step.

The displayed model drawings on the top-left and top-right hand side are
arbitrary in a sense that they do not have a real application or semantics and
serve as representative for any modeling technique a modeler may want to use.
A simple example of how a concrete modeling technique is implemented is pro-
vided for communicating automata in Sect. 4. For a specific modeling technique
a mapping from the constructs of the modeling technique to Reference Net con-
structs is needed in order to obtain an executable model. This may be compared
to a code generation approach. The development of such a mapping is a part of
the modeling effort, a developer of a modeling language is obliged to perform.

Graphical models are compiled into non-graphical Reference Nets, which can
be instantiated and executed in the Renew simulator (Simulation Layer). Syn-
chronization is performed on the level of the Reference Net instances (originating
from the same or other modeling techniques). A mapping of the dynamic view of
generated Reference Nets back to the modeling technique constructs even allows
a direct feedback. The presented solution enables the simulator to pass simu-
lation events from the Reference Net to the original model, e.g. to highlight a
corresponding graphical figure (described in Sect. 4.4).

Using model transformation with Reference Nets as target formalism to pro-
vide semantics and support for coupled simulation of modeling languages comes
with several benefits. Synchronous channels provide a common conceptual basis
for combining multiple formalisms. Following the presented approach, all for-
malisms share this mechanism for communication, they are designed to be used
in combination. The mapping to Reference Net constructs makes it easier to
develop formalisms and to concentrate on the modeling language engineering. It
supports a prototypical approach because language constructs may be designed
in their Reference Net representation to be later on replaced with the constructs
of the formalism in development. Users of the implemented modeling languages
directly profit from the native feedback in comparison to generative approaches.

3.3 Limitations

Using Reference Nets as the target formalism for various modeling techniques in
order to introduce coupled simulation also comes with a few limitations.

By using Petri nets as the target language, their advantages and disadvan-
tages are inherited to the source languages. An essential feature of Petri nets is
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the principle of locality. While this has many advantages regarding the modeling
of concurrency, it is a limitation to the implementation of global behavior. Our
concept is based on the premise that the source languages only exhibit local
behavior, in the sense that the constructs depend only on their direct environ-
ment. With Reference Nets as target formalism, global effects can be achieved
but require encoding in data structures or extensive use of the Java inscription
language.

In Reference Nets there exists no means for global synchronization. As
described in Sect. 2.2, one synchronous channel, comprising up- and downlink,
synchronizes exactly two transitions. Consequently, there is no broadcast com-
munication synchronizing all transitions by default. A synchronous channel only
provides the synchronized action of two elements. The synchronization of more
than two transitions is accomplished by combining multiple channel inscriptions
on one transition (having at most one uplink, but several downlinks). In many
cases, these restrictions do not constrain the general possibilities of modeling or
easy alternatives exist. For instance, when a model instance can/shall not hold
references to other models, communication may be provided by a system net
that holds references to all participants.

A property that is inherent in continuous systems and also in many model-
ing techniques is time. An extension of Reference Nets with timed expressions
exists [22]. However, Renew supports the execution of these nets, but the for-
malism can only be simulated sequentially, and Renew’s implementation of the
Reference Net formalism focuses on concurrency. The presented concept is thus
not well-suited for timed modeling techniques using Reference Nets as target
language.

Reference Nets do not support probabilities and priorities in a natural way.
Modeling these is only possible with great effort and thus not intended. Hence,
it is not advisable to use the presented approach for probabilistic and prioritized
modeling techniques.

In general transforming models into a single formalism has the advantage of
being able to verify within a single formalism. For Reference Nets, however, there
are not many verification tools available yet. The development of verification
tools is one of our current research topics. We already provide a prototypical
implementation for the generation of reachability graphs and simple CTL model
checking tasks for restricted net formalisms.

The limited scope of variables to one transition and its connected arcs is a
sensible property for Petri net formalisms because it fits the general concept of
locality, which is inherent in Petri nets. For other modeling techniques this may
be a limitation. In some cases, Reference Nets can be used to provide operational
semantics to modeling techniques with global variables. With synchronous chan-
nels it is possible to provide global access interfaces to data objects residing in
places.
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4 Development of a Finite Automata Plugin

In order to demonstrate the basic concepts and tasks that have to be applied to
couple models we describe the development of a Finite Automata plugin (FA plu-
gin). Although finite automata do not add respective advantages to Petri nets,
they are well-suited for the illustration of our concepts. This plugin extends
Renew with the capabilities for modeling and simulating finite automata that
have the ability to synchronize with Reference Nets. Here we focus on the devel-
opment of the simulation and synchronization abilities.

The development consists of four main tasks. (1) Extend the finite automata
modeling language, (2) develop a mapping from finite automata concepts to Ref-
erence Net concepts, (3) implement a compiler that compiles the finite automata
constructs according to the previously developed mapping to Reference Net con-
structs and (4) implement the feedback from simulation events to a graphical rep-
resentation. With the completion of these four tasks, the FA plugin for Renew
provides the concurrent simulation and synchronization of finite automata in
combination with Reference Net-based formalisms. The FA plugin as described
in this section is part of the Renew package referenced in Sect. 2.1.

4.1 Extending the Finite Automata Modeling Language

In order to couple finite automate along with Reference Nets we extend the finite
automata modeling language with Reference Net inscriptions (cf. Sect. 2.3). The
direct mapping of inscriptions from state transitions to inscriptions on Refer-
ence Net transitions makes the use of synchronous channels and other Reference
Net inscription types possible. Consequently, Reference Nets or other modeling
techniques that provide compatible synchronous channels can synchronize with
finite automata in the same way.

Fig. 5. Available inscription types for finite automata

Since the inscriptions of the finite automata are inherited from Reference
Nets, the syntax and the semantics are similar (see [22, p. 48 ff.] for details). In
general this creates multiple possibilities to inscribe state transitions of automata
as depicted in Fig. 5. Due to the restricted expressiveness of finite automata, some
of these inscription types are only of limited use. An important consideration is
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that variables in finite automata can not be stored and only accessed arc-locally
(see Sect. 3.3). As a result, the applicability of downlinks is limited. Additionally,
the application context affects which inscription types are reasonable to use. For
the following examples presented in this contribution we solely use the manual
and uplink inscriptions. These can be used analogously to the Reference Nets (see
Sect. 2.2).

4.2 Mapping Finite Automata Concepts to Reference Net Concepts

The second task includes the provision of semantics via a mapping to Reference
Nets in order to exploit their synchronization features.

Table 1. Mapping of finite automata and Reference Net constructs

The mapping of finite automata to Reference Nets is straightforward as dis-
played in Table 1a. A finite automaton’s state is mapped to a Reference Net’s
place. We do not distinguish between regular and end states because we are
more interested in the dynamic behavior than in the investigation of the for-
mal language an automaton generates. Start states are mapped to places that
are initially marked with a black token (represented as []). A state transition
between two states is mapped to a transition that is connected to the places
representing the corresponding states. This also holds for the special case of a
self-loop. The inscriptions of the state transitions are mapped to inscriptions of
net transitions. Thus, for example, a synchronous channel that is attached to a
finite automata state transition is attached to the corresponding Reference Net
transition (holds for up- and downlinks).

In general the provision of a mapping to Reference Nets is the difficult part
of the development process. For languages that already have a formal seman-
tics, the language developer has to ensure that the Petri net-based semantics
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equals the original semantics but this task is out of scope in this contribution.
In many cases the source language does not have a formal semantics at all (e.g.
for domain specific modeling languages) and the semantics is defined with the
transformation.

4.3 Implement Compiler

For the implementation of a compiler for FA models within Renew we benefit
from its plugin architecture, which allows to plug in additional formalisms with-
out the requirement to change the simulator code. For the simulation in Renew,
a graphical model is first converted into an abstract model without the graphical
information. This is the input for a specific formalism compiler that translates
the abstract models into executable models. This task includes the parsing of
inscriptions. Following the approach presented in this paper the transformation
into Reference Nets is an additional task.

The compiler for the FA formalism processes the FA model construct by
construct and maps them to the corresponding Reference Net elements according
to the presented mapping (cf. Table 1). In this step the extension of the modeling
language comes into play because the constructs from the language extension
need to be considered as well. For the extended FA models the inscriptions
on state transitions are directly attached to the resulting net transitions. The
application of the mapping in this step is hard-coded in the compiler class.
However, we are working on a model-based generic compiler that allows the user
to provide the mapping in the form of net templates [28]. The compilation of
the target elements is then delegated to the Reference Net compiler.

Another important step in this compilation task is the management of the
identifiers of the FA constructs and their executable Reference Net counter-
parts. This is important for the implementation of the simulation feedback. The
graphical simulation environment of Renew uses the identifiers of net elements
to find the corresponding graphical constructs. Therefore, the IDs of the target
Reference Net elements have to match the source FA constructs. In general, a
modeling construct may be mapped to multiple Reference Net constructs. For
this purpose the element IDs are complemented with additional group IDs to
realize a bijective mapping.

4.4 Implement Simulation Feedback

In addition to the compiler that realizes the static mapping of FA and Refer-
ence Net constructs, we have to manually implement the visual representation
of the simulation state. This gives the user graphical feedback in the original
representation of the modeling technique (i.e. the state of the simulation of the
Reference Net at runtime has to be mapped back on the automaton).

To provide the simulation feedback we have to implement the classes for
the graphical model instances. These classes define their representation and the
changes in reaction to simulation events. Renew has a simple mechanism to pro-
vide graphical representation classes for instance models. The net elements in the
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simulation are registered to the graphical instance components as listeners, which
is possible due to the bijective mapping via the IDs. With this mechanism the
representations of the static constructs are used and a generic highlighting mech-
anism can change its colors to represent activity in the corresponding construct.
The language developer can specify in the instance representation classes on
which simulation event they should change the representation using the generic
highlighting mechanism. Since one construct from the modeling language may
be mapped to multiple net elements (places and transitions) the developer has
to decide which events the construct should reflect. For the FA tool the reflection
of the simulation events is depicted in Table 1b. FA states reflect the marking of
the corresponding places resulting in a gray filling and FA state transitions are
highlighted during the firing of the respective net transitions with red color. The
specific form of visualization and the color mapping are automatically derived
by Renew’s graphical simulator. We have been working on solutions for the
model-based specification of visual properties in simulated models [28], but this
goes beyond the scope of this contribution.

Additionally, the possibility to interact with the simulation has to be imple-
mented. The classes for the graphical elements instances may contain methods
to provide support for firing of transitions as a reaction to e.g. a mouse click.
Therefore, the developer has to define which transition of the Reference Net
construct shall fire.

Due to the implementation of the simulation feedback and interaction as
presented here, the modeling and simulation tool behaves as if it was a native
implementation for the modeling language.

5 Elevator Application

In this section we present a more complex example for the use of multi-formalism
execution. The presented system is a model of an elevator, which is partly created
as automaton and partly as Reference Net. Subsequently, we discuss exchanging
the Reference Net part with an activity diagram.

The elevator can move up- and downwards between three floors and open its
door on each of the floors. It is possible to call the elevator on a floor by pressing
the button on the respective floor. For reasons of simplicity, we assume that
pressing the button on one floor has the same effect as pressing the button for
the destination floor from inside the elevator. Thus, we do not model the touch
panel inside the elevator explicitly. In this scenario the status of the elevator and
the status of the button on each floor is simple. These are systems without any
concurrency and with a defined state. Therefore, these components are modeled
as finite automata. The complex part in this scenario is the control mechanism
that ensures a reasonable serving strategy. Thus, a more expressive technique is
required to model this part. We examine the utilization of Reference Nets and
activity diagrams.

The automata models depicted in Fig. 6 have multiple state transitions
attached with uplink inscriptions in order to be synchronized with the Refer-
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Fig. 6. Automata models of the elevator example

ence Net. With the loop at each state, it is possible to implement state depen-
dent behavior (e.g. opening the door is only possible when the button on the
respective floor is pressed). State transitions may occur nondeterministically (no
inscription), due to manual interaction by the user (manual inscription) or trig-
gered through the call of a synchronous channel (uplink inscription) initiated by
the controlling Reference Net. Pressing the button in a floor is the only possible
interaction with the system. Therefore, the transition from pressed to not pressed
in Fig. 6b is inscribed with the manual keyword, which has the effect that the
firing has to be initiated manually by clicking the transition and the simulator
does not fire this transition automatically.

5.1 Elevator Control Modeled as Reference Net

The Reference Net in Fig. 7 implements an elevator control that serves a floor
when the elevator is requested by a pressed button and prefers to keep the
movement direction. At the top of the net, instances of the automaton models
are created (one instance of elevator, three instances of floor).

The actual elevator control is divided vertically into the three floors. Each
floor consists of three or four control places (green places) representing the ele-
vator on the respective floor on its way downwards (leftmost place), on its way
upwards (rightmost place), or with an open door (places in the center). Changes
to the elevator and floor models or state queries to these models require access
to the elevator and floors places. This is achieved by using virtual places (virtual
copies of places depicted as circles with a double border, see Sect. 2.2).

The elevator is initialized with closed doors in the ground floor. With Tran-
sition o, in the bottom, the door is opened initially. Transition cu0 closes the
door of the elevator (elevator:close()), which can then start its way upwards.
This is only possible, when the elevator was requested on one of the higher floors
(i.e. the button is pressed on one of the higher floors, fn:p(); guard n > 0). If
the door is closed, the elevator may move upwards one floor with Transition u1
(elevator:up()) if the elevator was requested from a higher floor (fn:p();
guard n > 0) and it was not requested on the same floor (e.g. somebody wants
to get in, f0:np()).
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Fig. 7. Reference Net for controlling the elevator

With this mechanism, the elevator can move upwards until it reaches a floor
where the button is pressed (e.g. on the second floor). There, it has to open the
door (elevator:open(2)) and the request for the floor is reset (f2:unpress()).

On the first floor the elevator has two places representing an open door to
distinguish the two directions. The elevator is allowed to change its direction
(with Transitions td1, tu1 ) if there is no request in the current direction (e.g.
f2:np()) and a request in the other direction (f0:p()). Analogously to the right
hand side of the elevator control, the left side implements the controlling of the
elevator moving downwards.

The Reference Net displayed in Fig. 7 models a low-level perspective on the
elevator control and provides an implementation that is ready to be executed
in the Renew simulation environment. In the following Section we present an
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abstraction of this perspective that focuses on the activities and decisions in the
model and emphasizes the control flow.

5.2 Elevator Control Modeled as Extended Activity Diagram

The provision of another abstraction for such a complex model as the elevator
control may improve the readability, and the expressiveness gained by additional
constructs from the applied language may decrease the modeling effort. In the
previous section we utilize finite automata in order to encapsulate the state of the
elevator system. UML activity diagrams focus on the activities in a process and
provide useful constructs for modeling an elevator control. Thus, we exchange
the modeling technique for controlling the elevator, the Reference Net (depicted
in Fig. 7), with an activity diagram. Analogously to the finite automata, we
extend activity diagrams by synchronous channels and Reference Net-specific
inscriptions.

Fig. 8. Excerpt of the extended activity diagram for controlling the elevator (right
side) and the generated Reference Net implementation (left side).
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Figure 8 shows a combined drawing of the graphical and the simulation layer
of the activity diagram that is an alternative model to the Reference Net elevator
control (cf. Fig. 7). Depicted to the right is an excerpt of the elevator model as
activity diagram, which covers a part of the ground and first floor. The left side
displays the generated Reference Net that corresponds to the left side of the
activity diagram, which is not shown. Note that the partly displayed Reference
Net model is not exactly the same as the one from Fig. 7, but the behavior
is similar in the sense that it implements the same serving strategy. This net
is composed of components that originate from a direct mapping of activity
diagram constructs, comparable to the semantic mapping we present for finite
automata in Table 1. The complete mapping is not displayed here because we
do not want to focus on Petri net semantics for specific modeling languages in
this contribution. The mapping for the used constructs can be deduced from the
generated Reference Net in Fig. 8.

Utilizing activity diagrams as an alternative modeling technique comes with
several effects. The elevator control modeled as Reference Net (cf. Fig. 7) contains
multiple transitions, which serve different functions. They may act as activities or
decisions. For example, the call f0:p() is a query for a specific state, whereas the
call elevator:up() is an actual activity. These functions become visible in the
Reference Net only by looking at the context. The exchange of the Reference Net
with an activity diagram emphasizes the separation of activities and decisions.

For the activity diagram model we make use of a global storage for referenced
models. The model references are stored in a single place and a synchronous chan-
nel provides global access. This feature requires the specification of the elements
to be initialized and the interfaces to access the elements in the activity diagram
model. These declarations can be found in the lower part of Fig. 8. At the left side
of the activity diagram part the used models are declared as key value tuples in
a data declaration node. The declaration of the elevator automaton for example
is a tuple ["elevator",Net.forName("elevator").buildInstance()], where
the first element is the identifier to access the model and the second element
is the code for the creation of a net instance. The information from the data
declaration node is used to generate a single place containing all the objects and
a channel to access these objects into the Reference Net (:get(o)). Addition-
ally an interface to the data/models has to be specified which happens in the
variable declaration node in the bottom-right corner. The entries in this node
correspond to variables that are available in the activity diagram. The variable
f0 for example is declared with f0: ["floor",[0,f0]], where the part before
the colon corresponds to the variable name and the part behind is the pattern
corresponding to the data declaration. Based on this pattern, the effective call to
the :get(o) channel in the Reference Net can be generated into every transition
inscription where the variable is used. This type of data interface declaration
facilitates construction such as this:get(["floor",[n,fn]]); guard n > 1 to
reference any floor above the first.

Beyond the improved readability, the UML activity diagram formalism can
provide constructs to reduce modeling effort for the extension of the elevator
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system, for example to implement a more elaborated control strategy, cover addi-
tional aspects of the system or handle multiple elevators. Time event actions may
be used to implement waiting times of the elevator before it opens or closes doors,
exception handler elements can be used to model failures in the system (e.g. an
elevator moving up or down with an open door) and swimlanes may enhance
the separation of multiple floors or elevators.

6 Related Work

In this section we briefly relate our proposal to work in the area of multi-
formalism modeling and execution.

Zeigler [32] proposes the multifaceted modeling methodology, which is an
approach to simulation and modeling by integrating multiple models. The hereby
used Discrete Event System Specification (DEVS) formalism is capable of con-
structing coupled models that are composed of atomic DEVS models. In his work
an abstract simulation concept for the DEVS formalism was developed. The con-
cept includes the coupling of several simulators for each component in a system
of systems to facilitate simulation using a global coordinator for synchroniza-
tion. Our approach is different from his as we attach importance to concurrent
simulation, in particular to true concurrency of Renew.

Lara et al. [23] introduce a tool that supports the combined use of multi-
formalism modeling and meta-modeling, called AToM3. Due to the definition
of graph grammar models, formalisms can be transformed into an appropriate
formalism for which simulation is already supported. They suggest the DEVS
formalism as the central modeling formalism that can be universally used for sim-
ulation purposes. AToM3 also supports code generation, a meta-modeling layer
that can be used to model formalisms in a graphical manner, and the possibility
to transform models by preserving the behavior [2]. In contrast to our approach,
Lara et al. focus on providing meta-modeling and model-transformation features.
The transformed models have to be simulated in an external environment.

Möbius is a tool for modeling and simulating systems composed of multiple
formalisms. The project focuses on extensibility by new formalisms and solvers,
which is demonstrated in [8]. An abstract functional interface is implemented,
which transforms models to framework components to allow for addition of for-
malisms and interaction between models. Their approach differs from ours in the
way of having an overall system state. The Möbius tool enables selective sharing
of model states, so that solvers (i.e. simulators) are able to access them.

One practical implementation of a multi-formalism modeling and simulation
concept was done by the GEMOC Initiative [13]. This initiative’s vision is to
advance the research on the coordinated use of modeling languages. They rec-
ognized a problem in the unavailability of a generic runtime service for multiple
modeling languages. GEMOC Studio is proposed as a tool to create meta-models
for both the representation and the operational semantics of modeling languages.
Created models of multiple languages can then be executed in coordination,
while being debugged and graphically visualized. They use the Behavioral Coor-
dination Operator Language (BCOoL [24]) to explicitly specify the coordination
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patterns between heterogeneous languages. The used execution engine operates
as a coordinator of multiple language-specific engines.

Frank [11] proposes a method for multi-perspective modeling that extends
the classical approach (of e.g. UML) to conceptual modeling by including the
organizational environment. He is also interested in tool support and states the
following requirement we share: “A tool environment for enterprise modeling
should allow for creating multi-language diagrams, i.e., diagrams that integrate
diagrams of models that were created with different DSML” [11, S. 946]. The
linking of techniques he proposes is established on the level of a meta-model,
but the method lacks an environment to properly support the execution. “How-
ever, there are other paradigms that come with specific advantages, too. [...]
Languages used for creating simulation models would allow for supplementing
enterprise models with simulation features. Petri nets provide mature support for
process analysis and automation” [11, S. 960]. We find the combination of such
approaches to modeling language engineering with the provision of operational
semantics for a dedicated execution environment most promising.

Jeusfeld [18] proposes the linking of multiple perspectives through declara-
tive constraints in the context of meta-modeling domain-specific languages for
the ADOxx platform. He distinguishes the relation between model and exter-
nal environment from the internal model validity and focuses on the latter. The
constraint language is used to define a Petri net firing rule and to sketch a firing
rule of BPMN constructs.

There are other researchers who have tried to combine various formalisms
with Petri nets. The set of all firings of a Petri net can be considered to be a
language. The research of automata and Petri nets as language descriptions has
led to the control of Petri nets by (finite) automata [5]. The results suggest that
controlling Petri nets through finite automata can be beneficial. A combination of
finite automata and high-level Petri nets can be seen as a vertical composition, as
both techniques basically provide the behavioral modeling perspective according
to Krogstie [19], just on another level of abstraction.

While first the idea of language intersections were of interest, the idea of
a controller was used in the context of application modeling [30]. An elevator
system was modeled, however, just the control was addressed and no other mod-
eling techniques were applied. In other research, flexible manufacturing systems
(FMS) were used to demonstrate central aspects of control theory (cf. [14] for
discrete event system discussion). Most of the authors’ work concentrates on
techniques that provide one specific modeling perspective. A production system
can be controlled by a simple model to ensure that no deadlocks can occur [9,15].

Petri nets are often used as target language for approaches that transform
abstract modeling languages into a single formalism. Often the motivation is
to be able to formally verify the generated Petri nets. Activity diagrams in
particular are covered by multiple authors (e.g. [1,17]).

Overall our approach presented here allows to provide modelers with the
coupling and simulation of their favorite modeling techniques. The complexity
can be reduced by using an appropriate modeling technique, like finite automata,
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workflows or other modeling techniques like BPMN, eEPCs, activity diagrams,
etc. However, each formalism needs to be connected via the synchronous channels
to be executed within our environment. Systems complying to our interfaces
could also mimic our approach if sufficient support for the execution of modeling
techniques is available, for example with CO-OPN/2 [3] or the Zero-safe net
formalism [4]. Our illustrations of the principle usage in Sects. 4 and 5 can be
seen as proof of concepts.

7 Conclusion

In this contribution we conceptually present how various formalisms can be used
together not only for modeling, but also for simulation while preserving their
original representation.

In our opinion, providing a solution for the simulation of these formalisms can
increase the benefit of using multiple formalisms for the modeling of complex
systems. Instead of transforming the models of multiple formalisms into one
single formalism, we provide simulation feedback in the original representation
of the models. Therefore, the various formalisms are mapped to Reference Nets
and the simulation events are returned to the original representation of the
model (cf. challenge (2) in Sect. 1).

We argue that the synchronization and data exchange between models of
various formalisms should not be achieved through the development of several
individual coupling mechanisms. Instead, we are of the opinion, that this should
be achieved through one coupling mechanism.

We propose the generic coupling of models using the synchronization mech-
anism from Reference Nets: synchronous channels (cf. challenge (1) in Sect. 1).
Synchronous channels facilitate the synchronization of several models and the
bidirectional exchange of data – regardless of whether the models are of various
or the same formalism.

As a proof-of-concept, we practically demonstrate how this approach can
be implemented for the coupling of finite automata and Reference Nets as well
as the coupling of finite automata and activity diagrams. The latter results in
a system model in which Reference Nets are no longer utilized to model the
system, but rather are only applied for the actual implementation.

Considering the example of activity diagrams, we present a possibility to sup-
port techniques with data and global access to this data. In the future, we will
examine how to support the development of techniques through meta-modeling
and to provide a close adaption to the simulation environment of Renew, i.e. to
model the techniques themselves, the drawing tools and their operational seman-
tics [27,28]. In this context we develop a Renew plugin that integrates the
concept of dynamic hierarchies from Reference Nets into the multi-formalism
approach to provide the modeling and simulation of statecharts.
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Abstract. The web service composition problem can be stated as fol-
lows: given a finite state machine M , representing a service business
protocol, and a set of finite state machines R, representing the business
protocols of existing services, the question is to check whether there is a
simulation relation between M and the shuffle product closure of R.

This paper studies the impact of several parameters on the complex-
ity of this problem. We show that the problem is Exptime-complete if we
bound either: (i) the number of instances of services in R that can be
used in a composition, or(ii) the number of instances of services in R
that can be used in parallel, or (iii) the number of the so-called hybrid
states in the finite state machines of R by 0, 1 or 2. The problem is still
open for 3 hybrid states.

1 Introduction

Web Services [2] is a new computing paradigm that tends to become a technology
of choice to facilitate interoperation among autonomous and distributed appli-
cations. The UDDI consortium defines Web services as self-contained, modular
business applications that have open, Internet-oriented, standards-based inter-
faces. Several models have been proposed in the literature to describe different
facets of services. In particular, the importance of specifying external behaviour
of services, also called service business protocols, has been highlighted in several
research works [3,5,8]. Through literature, different models have been used to
represent web service business protocols. The Finite States Machines (FSM) for-
malism is widely adopted in this context to model statefull applications exposed
as web services where states represent the different phases that a service may
go through while transitions represent “abstract” activities that a service can
perform [3,5,8].

We consider in this paper the problem of Web Service Composition (WSC).
This problem arises from the situation where none of the existing services can
provide a requested functionality. In this case, the idea is to find out, algorith-
mically, if the target functionality could be composed out of the existing services
(components repository). This automatic approach of composition simplifies the
development of software by reusing existing components and offers capabilities
to customize complex systems built on the fly [11].
c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
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We focus more particularly on a specific instance of WSC, namely the (busi-
ness) protocol synthesis problem, which can be stated as follows: given a set of
business protocols of available services and given a business protocol of a target
service, is it possible to synthesize automatically a mediator that implements
the target service using the existing ones? We find this case interesting for two
reasons. First, such description provides developers with all information neces-
sary to write clients that can correctly interact with a given service or with a
set of services [4]. Second, business protocols can be described by the means of
FSMs and it is much simpler than some richer frameworks where WSC is proven
undecidable [6].

[15] shows that in this context, the WSC problem can then be formalized as
the problem of deciding whether there exists a simulation relation between the
target protocol and the shuffle (or asynchronous product) of the available ones.
Another related problem discussed in [15], is the bisimulation relation between
FSMs. It is, however, less interesting in the context of WSC, since bisimulation
requires that the target service should be able to admit all possible branchings
in the composing services, which is too complex and unnecessary in this case.

The results in [15] are however based on the implicit assumption that at most
one instance of each available service can be used in a composition. This setting
has been extended in [11] to the case where the number of instances that can
be used in a composition is unbounded. WSC is formalized in this latter case
as a simulation problem between an FSM and an infinite state machine, called
Product Closure State Machine (PCSM), that is able to compute the shuffle
closure of an FSM.

Shuffle product of FSMs (and PCSM) is a subclass of Basic Parallel Processes
(BPP), the class of communication free petri nets: every transition has at most
one input place. Simulation of FSM by BPP was proven Expspace-hard by Lasota
[14] and 2-Exptime-hard in [10].

Complexity analysis of WSC was first considered by Musholl et al. [15], under
the aforementioned implicit assumption, where it is shown Exptime-Complete. In
case of unbounded instances, the WSC problem has been proved decidable with
an Ackermanian function as upper bound in [11]. The proof of [11] is based on
Dickson’s lemma, and hence cannot be exploited to derive tighter upper bounds.
An Expspace-hard lower bound is given by Lasota [14].

One of the complexity sources derived from analyzing the algorithm given in
[11] is related to the presence of the so-called hybrid states (final states with out-
going transitions and correspond to unbounded places in Petri net terminology)
in the input. We finish up in this article the work in [11] and prove that if such
hybrid states do not appear in the FSMs simulating the target then the problem
is Exptime-complete. Since such hybrid states can appear in a FSM describing
a web service’s business protocol (example in Fig. 1), then it is also interesting
to see the impact of their existence on the WSC problem complexity.

We investigate as well in this paper additional parameters related to bounded
web services composition: the number of instances available of each of the sim-
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Fig. 1. An informal description of the behavior of a service managing a catalog (left)
and its describing FSM (right).

ulating FSMs and the number of these instances allowed, at most, to be used in
the simulation simultaneously.

Formally, let us consider as inputs a FSM M (the target protocol) and a set
of FSMs R (the protocols of the available services), we study the complexity of
the following problems:

1. WSC(M,R): The problem of composing M using an unbounded number of
instances of R.

2. BC(M,R, k): The problem of composing M using at most k instances of each
FSM in R.

3. PBC(M,R, k): The problem of composing M using simultaneously at most
k FSM instances in R (in parallel).

4. UCHS(M,R, k): The problem of composing M using an unbounded number
of instances of R, where the number of hybrid states in R is bounded by
k ∈ {0, 1, 2}.

Table in Fig. 2 displays known and new complexity results regarding the WSC
problem.

Paper Organisation. Section 2 recalls some basic definitions needed in this paper.
In Sect. 3, we investigate the problem of bounded web services composition and
proves that it is Exptime-Complete. Next, we define web service composition
with fixed number of parallel instances, and show that it is Exptime-Complete
in general and is NP-complete when M is loop free and polynomial for k = 1.
In Sect. 5, we consider the web service composition when the number of hybrid
states is bounded. We show that this problem is Exptime-Complete for k = 0,
k = 1 and k = 2. We conclude in Sect. 6.
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Acyclic FSM general FSM

NP-complete[11] Exptime-complete [15]
NP-complete[11] Exptime-complete

Polynomial Polynomial
NP-complete Exptime-complete

NP-complete [11] Decidable [11]
0) NP-complete[11] Exptime-complete
1) NP-complete[11] Exptime-complete
2) NP-complete[11] Exptime-complete
3) NP-complete[11] Open

M

BC(M,R, 1)
BC(M,R, k)
PBC(M,R, 1)
PBC(M,R, k)
WSC(M,R)

(M,R,

(M,R,

(M,R,

UCHS

UCHS

UCHS

UCHS(M,R,

Fig. 2. Complexity results of WSC sub-problems

2 Preliminaries

Service business protocols are formally described in this context as FSMs. We
recall below the definition of such machines.

Definition 1 (Finite State Machine (FSM)). A State Machine (SM) M
is a tuple M = (ΣM , QM , FM , q0M , δM ), where: ΣM is a finite alphabet, QM is
a set of states, δM ⊆ QM × ΣM × QM is a set of labeled transitions, FM ⊆ QM

is a set of final states, and q0M ∈ QM is the initial state. If QM is finite then M
is called a Finite State Machine (FSM).

Moreover, a state q ∈ QM is called: accessible, if there exists a path from the
initial state to q; co-accessible, if there exists a path from q to a final state. We
consider here only FSMs where all states are both accessible and co-accessible.
Hence, we can define the norm of a state q as the finite length of the shortest
path from q to a final state. The norm of an FSM M , noted norm(M), is the
maximal norm of its states.

An execution of a FSM M can be seen as a path of a token that moves from
a state q ∈ QM to another p ∈ QM linked by a transition (q, a, p) ∈ δM , where
a ∈ Σ. An execution is valid when the token begins its path in q0M and finishes
it in a final state pf ∈ FM . Every state that a token can visit during a valid
execution, the initial q0 and last pf states excluded, is called an intermediate
state. We denote by I(M) the set of intermediate states of M . If a state is both
final and intermediate, then it is called hybrid. The set of hybrid states is denoted
H(M). Finally, if a state p is final but not intermediate, (i.e. p ∈ FM \ H(M)),
then p is called terminal, since all executions reaching such state ought to be
terminated. Note that every execution can be terminated when the token is in
the initial state, i.e. initial state is in FM .

k-Iterated Product Machine (k-IPM) and Product State Machine (PCSM).
We start by defining the asynchronous product and union operations on FSMs:

Definition 2 (Asynchronous product and Union of two FSMs). Let
M = (ΣM , QM , FM , q0M , δM ) and M ′ = (ΣM ′ , QM ′ , FM ′ , q0M ′ , δM ′) be two state
machines. We have:
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– The shuffle or asynchronous product of M and M ′, denoted M × M ′,
is a state machine (ΣM ∪ ΣM ′ , QM × QM ′ , FM × FM ′ , (q0M , q0M ′), λ) where
the transition function λ is defined as follows: λ = {((q, q′), a, (q1, q1′)) :
((q, a, q1) ∈ δM and q′ = q′

1) or ((q′, a, q1
′) ∈ δM ′ and q = q1)}.

For a set of state machines {M1, ...,Mk} where k ≥ 3, we define reciprocally
M1 × .... × Mk as the state machine ((M1 × ... × Mk−1) × Mk).

– The union of M and M ′, denoted M ∪M ′, is the state machine (ΣM ∪ΣM ′ ∪
{ε}, QM ∪ QM ′ ∪ {q0}, FM ∪ FM ′ , q0, δM ∪ δM ′ ∪ {(q0, ε, q0M ), (q0, ε, q0M ′)}).

For a set of available FSMs R = {M1, ...Mm}, we consider a compact struc-
ture that abstracts all possible executions that can be produced using the com-
ponents of R. First, we begin by the simple case where each Mj can be used
only once:

Definition 3 (Union of asynchronous products of FSMs set). For a
FSMs repository R = {M1....Mm}, we denote the union of all asynchronous
products of R’s subsets as: �(R) =

⋃
{i1,...,ij}⊆{1,...,m}(Mi1 × ... × Mij ).

Second, we consider the case where the number of copies of each Mj ∈ R is
bounded by an integer k:

Definition 4 (k-iterated product of FSMs set R). The k-iterated product
of R is defined by R⊗k = R⊗k−1 × �(R) with R⊗1 = �(R).

Finally, we consider the general case where the number of instances of each
Mj ∈ R is unbounded. This corresponds to the product closure of R [11]:

Definition 5 (Product closure of FSMs set). The product closure of R,
noted R⊗, is defined as: R⊗ =

⋃+∞
i=0 R⊗i .

The Product Closure State Machine (PCSM) of R, defined in [11] and
proven equivalent to R⊗, is the SM with unbounded number of tokens stacked
at the beginning in the initial states in R. Then, the instantaneous description
of a PCSM gives the number of tokens (instances) at each state in R that the
PCSM currently underlies. This description is called a configuration of R⊗ and
every component of the configuration is called a witness of its corresponding
state. We omit from this description the initial states (source: infinite number
of tokens) and terminal states (sink: terminated instances) and represent only
intermediate and hybrid states.

A configuration in R⊗ is called final if all witnesses that correspond to inter-
mediate states (not final) are equal to 0. We define a path of a PCSM as a
sequence of transitions between configurations in R⊗ and a path’s length as
the number of its transitions. For a configuration c ∈ R⊗, norm(c) denotes the
length of the shortest path from c to a final configuration.

Example 1. Figure 3 illustrates the execution of the sequence “abca” by the
PCSM of the FSM set {M,M ′} in Fig. 3(a). M and M ′ contain one intermedi-
ate state q1 and two hybrid states q2 and q5. Therefore, Fig. 3(b) depicts a part
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of the PCSM {M,M ′}⊗ with triplets as configurations where integers witness
respectively the number of tokens in q1, q2 and q5. For each configuration c in
Fig. 3(b), we associate an instant t (or several instants) during the execution
when c describes the PCSM. At the beginning (t = 0), {M,M ′}⊗’s instanta-
neous description is (0, 0, 0), interpreting an empty stack in every state of M
and M ′, except the initial states q0 and q′

0 with an infinite number of tokens
(Fig. 3(c)). To execute the transition (q0, a, q1), a token is moved from q0 to q1 in
Fig. 3(d), corresponding to the configuration (1, 0, 0) in instant t = 1. In t = 2,
the executed transition (q′

0, b, q4) corresponds to moving a token from the initial
state q′

0 to a terminal one q4 (Fig. 3(e)). Since the instantaneous description con-
siders neither initial states nor terminal ones, then the configuration stays the
same as the previous instant. Notice that this move corresponds to both creating
and terminating an instance of the FSM M ′. Then, the transition (q′

0, c, q5) is
executed by moving a token from q′

0 to the hybrid state q5. This creates a new
instance implying, in this case, an increase in the number of simultaneously used
instances in the execution. This is depicted in Fig. 3(f). Finally, a token is moved
from the state q1 to q2 in Fig. 3(g), in order to execute the transition (q1, a, q2).
It changes {M,M ′}⊗’s instantaneous description in t = 4 into (0, 1, 1) which is
a final configuration (i.e (0, 1, 1) ∈ FC) since all tokens in the PCSM are in final
states (either hybrid or terminal).

Formally, we define the PCSM of R as the SM (ΣR, CR⊗ , FC , c0, ΦR⊗), where:

1. ΣR =
⋃

Mj∈R ΣMj
;

2. CR⊗ is the set of states (also called configurations of R⊗). CR⊗ ⊂ N
n,

with: n = nI(R) + nH(R) with: nI(R) = ΣMj∈R|I(Mj)| and nH(R) =
ΣMj∈R|H(Mj)|. For each configuration c, c[m] (the mth component of c) is
called a witness of the unique state qm ∈ QMj

. Note that:
– qm is an intermediate state, if 1 ≤ m ≤ nI(R);
– qm is a hybrid state, if nI(R) + 1 ≤ m ≤ n.

In an abuse of notation, we use c[m] and c[qm] interchangeably.
3. FC is the set of final states. FC = {c ∈ CR⊗ |c[m] = 0, for each: 1 ≤ m ≤

nI(R)};
4. c0 = {0}n is the initial state of R⊗;
5. ΦR⊗ ⊆ CR⊗ × ΣR × CR⊗ is the set of transitions. we have (c1, a, c2) ∈ ΦR⊗

if and only if:
– there exists (q0, a, q) ∈ QMj

, such that: q0 is the initial state of Mj and
c2[q] = c1[q] + 1 and c2[p′] = c1[p′] for each p′ 	= q. Or

– there exists (p, a, q) ∈ QMj
, such that: p is not the initial state of Mj , q

is either a terminal state or the initial state of Mj , c2[p] = c1[p] − 1 and
c2[p′] = c1[p′] for each p′ 	= p. Or

– there exists (p, a, q) ∈ QMj
, such that: neither p nor q is the initial state of

Mj , c2[p] = c1[p]−1, c2[q] = c1[q]+1 and c2[p′] = c1[p′] for each p′ 	= p, q.

We recall below the definition of the simulation preorder between two SMs.
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Fig. 3. An example of execution of a sequence using a PCSM.

Definition 6 (Simulation). Let M = (ΣM , QM , FM , q0M , δM ) and N =
(ΣN , QN , FN , q0N , δN ) be two SMs. A state p ∈ QM is simulated by a state
q ∈ QN , denoted p 
(M,N) q (p 
 q when M and N are understood from
context), if and only if the following two conditions hold:

1. ∀a ∈ ΣM and ∀p′ ∈ QM such that (p, a, p′) ∈ δM , there exists (q, a, q′) ∈ δN
such that p′ 
 q′, and

2. if p ∈ FM , then q ∈ FN .

M is simulated by N , denoted M 
 N , if and only if the initial state of N
simulates the initial state of M, i.e. q0M 
 q0N .
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Observe that, by definition, each transition of a PCSM can at most increase
or decrease a configuration component by 1. In addition, if a configuration is
final then all intermediate states witnesses are equal to 0. Therefore, given a
set of FSMs R and c ∈ CR⊗ , we have Σq∈⋃

Mi∈R I(Mi)c[q] ≤ norm(c). Moreover,
since final states can only be simulated by final ones, then for M an FSM and
p ∈ QM , if p 
 c then norm(c) ≤ norm(p). Hence, we are able to derive the
following property.

Property 1 (Intermediate witnesses bound) [11]. For c ∈ CR⊗ and p ∈ QM ,
if p 
 c then Σq∈I(R)c[q] ≤ norm(p), where I(R) =

⋃
Mi∈R I(Mi).

We denote CM
R⊗ = {c ∈ CR⊗ |Σq∈I(R)c[q] ≤ norm(M)}.

In [11], the WSC problem in the unbounded case is reduced to simulation
test between an FSM and a PCSM and proven to be decidable. The termination
of the algorithm given in [11] is proven using the following property:

Property 2 (configuration cover) [11]. Let c and c′ be two configurations of
R⊗, such that: c[m] = c′[m], m ∈ [1, nI(R)] and c[m] ≤ c′[m], m ∈ [nI(R)+1, n].
If q 
 c, where q is a state of a SM M, then q 
 c′.

We say that c′ covers c, denoted c � c′.

We introduce below the algorithm of [11], focusing the presentation on the
structure of its execution tree.

Definition 7 (Simulation Tree of an FSM by a PCSM). We call a sim-
ulation tree Tsim(M,R⊗) = (V, v0, E) with:

– v0 = (q0M , c0) is the root of the tree;
– V ⊂ QM × CM

R⊗ is the set of nodes;
– If (q, c) ∈ V and q is final in M then so is c in R⊗;
– E ⊂ V × V is the set of the tree’s edges. ∀e = ((p, c), (q, d)) ∈ E : ∃a ∈

ΣM s.t (p, a, q) ∈ δM and (c, a, d) ∈ ΦR⊗ .
– v = (p, c) ∈ V is a leaf in Tsim(M,R⊗) iff p is terminal in A or there exists

an ancestor (p, c′) ∈ V of v in Tsim(M,R⊗) such that c�c′.

Example 2. Figure 4(c) is an example of a simulation tree, verifying if the initial
state s0 of the FSM A (Fig. 4(a)) is simulated by the initial configuration c0 =
(0, 0, 0) of the PCSM {M,M ′}⊗ (Fig. 4(b)). A branch is terminated with success
when a terminal state of A is reached and paired with a final configuration
(all intermediate witnesses are null), or when a configuration of {M,M ′}⊗ that
covers one of its predecessors is reached and paired with the same state of A. In
this case, the simulation tree proves that A 
 {M,M ′}⊗.

In the next section, we shall bound the size of this tree in the case of bounded
WSC problem (i.e., when the number of web services instances allowed to be
used in the simulation is bounded by a parameter k).
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Fig. 4. An example of a simulation tree.

3 Bounded Composition

We call a bounded WSC problem, a service composition problem where the
number of copies of each web service in the repository R used to compose the
target M is bounded a priori by an integer k. This problem is formally stated
as follows.

Problem 1. Bounded Composition BC(M,R, k)
Input: R a set of FSMs; M a target FSM; k an integer.
Question: M 


⋃k
i=0 R⊗i?

The particular case BC(M,R, 1) has been investigated by Muscholl and
Walukiewicz [15] where it is shown to be Exptime-Complete. We shall prove in
this section that BC(M,R, k) is also Exptime-Complete. We point out that the
straightforward reduction of BC(M, R, k) to BC(M,R, 1), obtained by dupli-
cating k times each service of R, is not polynomial in the input size, since k may
be large, and hence cannot be used to achieve our goal.

The parameter k drops the infinite aspect and reduces the search space. In
this case, a loop in M can only be simulated by loops in R. For example, one can
observe that, in Fig. 5, St is not simulated by

⋃k
i=0{R1, R3}⊗i for every k ∈ N.

This is because when we repeat the loop in St (k + 1) times, there is no corre-
sponding execution in

⋃k
i=0{R1, R3}⊗i . However, we have St 


⋃k
i=0{R1, R2}⊗i ,

for any k ≥ 1.
In the following, we give an upper bound of the number of states that might

appear in
⋃k

i=0 R⊗i , with k ∈ N.



Complexity Aspects of Web Services Composition 125
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Fig. 5. A yes instance of BC(M,R, k) with k = 1.

Lemma 1. Let R be a set of FSM and k is an integer. The number of states in⋃k
i=0 R⊗i is bounded by O(2nlogk) where n = nI(R) + nH(R).

Proof. Notice that R⊗ = (
⋃k

i=0 R⊗i) ∪ (
⋃+∞

i=k+1 R⊗i).
In fact, the states in

⋃k
i=0 R⊗i correspond to the PCSM’s configurations

subset {c ∈ CR⊗k | 0 ≤ c[i] ≤ k, i ∈ [1, n]}. Hence, the number of states of
⋃k

i=0 R⊗i is bounded by (k + 1) × . . . × (k + 1) = 2nlog(k+1). �

This lemma reduces the search space to an exponential size and leads to the
following theorem.

Theorem 1. BC(M,R, k) is Exptime-Complete.

Proof. Exptime. To show that BC(M,R, k) is Exptime, we bound the size of
the simulation tree. A node of the simulation tree corresponds to (q, c) where
q is a state of M and c a configuration of R⊗k . According to Lemma 1, the
number of PCSM’s configurations is bounded by kn. So the number of nodes in
the simulation tree is at most |QM | × kn = 2nlog(k)+log(|QM |) and therefore the
complexity is in Exptime.

Exptime-Hardness. It can be deducted directly from the Exptime-Hardness
of the particular case BC(M,R, 1) [15].

Instead of the total number of instances used in the simulation, what happens
if we bound only the number of instances used simultaneously? we raise this
question in the next section and prove that the problem stays Exptime-complete.

4 Bounded Parallel Instances

Now we consider a new parameter in service web composition that bounds the
number of communications in parallel between the target and the services, i.e.
the number of live services executions is bounded, but the number of instances
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is not. It turns out that the web services composition with unbounded instances
and bounded parallel instances is Exptime-Complete.

To show this, we limit the configurations of the PCSM R⊗ to configurations
where the number of waiting instances is bounded by k. Indeed, when we need to
use a new instance in ΦR⊗ , we check if

∑n
i=1 c[i] ≥ k. If so, we decrease c[j] for

some j ∈ [nI(R) + 1, nI(R) + nH(R)], i.e. we finish an instance that is waiting
in a hybrid state. Let us denote by R⊗k,p the obtained PCSM.

Problem 2. Bounded Parallel Instances Composition (PBC(M,R, k))
Input: R a set of FSMs;

M a target FSM.
k an integer, bounding the number of parallel instances of R’s components

used simultaneously in the simulation.
Question: M 
 R⊗k,p?

Note that PBC(M,R, k) can use an unbounded number of instances but
only k instances in parallel.

Theorem 2. PBC(M,R, k) is Exptime-complete.

Proof. First we show that PBC(M,R, k) is Exptime. Clearly the entry of any
configuration is bounded by k (hybrid states are included) and therefore we can
check simulation in Exptime, since the depth of the simulation tree is bounded
by kn (see Lemma 1).

To show the Exptime-hardness, it suffices to note that the unbounded
composition without hybrid states UCHS(M,R, 0) is a particular case of
PBC(M,R, k), since we prove later in Theorem 4 that UCHS(M,R, 0) is
Exptime-hard. In fact, the number of tokens in intermediate states of R is
bounded by norm(M) (Property 1). Hence, when R is hybrid state free, the
number of instances that can be used in the simulation is bounded by norm(M).
In other words, it corresponds to PBC(M,R, norm(M)). �

For k a constant, we obtain the following.

Corollary 1. For each fixed k, PBC(M,R, k) is polynomial.

Proof. First of all, let us consider for every configuration c of R⊗k,p , a new
component c[n + 1] = k − (

∑n
i=1 c[i]), with n = nI(R) + nH(R).

For every configuration c in R⊗k,p , the non-empty witnesses {c[i] > 0,≤ i ≤
n + 1} correspond to a partition of k elements (instances) into a sequence of j
non empty subsets, for j = |{c[i] > 0, 1 ≤ i ≤ n}| ≤ k. Note that j is in fact
inferior to min(k, n), but since k is a constant then it is more interesting to keep
it as a lower bound of j.

For every j ≤ k, the number of labeled partitions of k elements into a
sequence of j non empty subsets is j! × {kj }, where {kj } is a Stirling number
of the second kind [1]. Hence, the number of configurations in R⊗k,p that have j

non-empty witnesses is bounded by Cj
n×j!×{kj }. Notice that Cj

n = en...×(n−j+1)
j!

is in the order of O(nj).
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We conclude that the number of configurations in R⊗k,p is bounded by∑k
j=1 Cj

n × j! × {kj } ∈ O(nk).
Finally, by applying the simulation algorithm in [12], PBC(M,R, k) can be

decided in O(mv.me), where mv = |QM | + |CR⊗ | and me ≤ |QM |2 + |CR⊗ |2 are
respectively the number of edges and transitions in M and R⊗k,p . �

In the following, we show that PBC(M,R, k) is NP-Complete for loop-free
target FSM. Let μ a sequence of letters (a word) over Σ and M the FSM that
recognizes exactly μ. We call μ⊗ the language recognized by M⊗. We consider
the following NP-complete Problem [13].

Problem 3. SHUFFLE PRODUCT
Input: μ and μ′ two words over an alphabet Σ;
Question: μ ∈ μ′⊗?

Theorem 3. PBC(M,R, k) is NP-complete whenever M is loop-free.

Proof. Clearly PBC(M,R, k) is in NP since the simulation relation is polyno-
mial in the size of M . To show the NP-hardness, we reduce SHUFFLE PROD-
UCT to it. Let μ and μ′ be an instance of SHUFFLE PRODUCT. We associate
an FSM M which recognizes exactly μ and R = {N} where N is the FSM that
recognizes exactly μ′. Since M is a chain, then the size of a branch of the simula-
tion tree can not surpass |μ|. Thus, the simulation verification will only explore
R⊗k,p ’s executions where the size is bounded by |μ| ≤ k.|μ′| with k = � |µ|

|µ′|� and
therefore the number of instances is bounded by k. Hence, μ ∈ μ′⊗ iff M 
 R⊗k,p

iff M 
 R⊗. We give an example in Fig. 6. �

μ = {abacbc}

μ′ = {abc}

a b a c b c

a b c k = � |µ|
|µ′|� = 2 M � N⊗2,p

M

N

Fig. 6. An example of SHUFFLE PRODUCT problem.

Another factor of complexity of the WSC problem is the number of hybrid
states in the available services. We investigate next the effect of this parameter
on the complexity of the WSC problem.

5 Bounded Number of Hybrid States

The presence of hybrid states is a source of complexity in a WSC problem. As
mentioned before, the size of intermediate states witnesses in configurations of
R⊗ used to simulate M is bounded by norm(M). We are however unable to
provide a similar bound for the number of hybrid states witnesses.
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Figure 7 is an example of simulation between an FSM M and a PCSM R⊗.
The FSMs in R contain two hybrid states (state 1 and 2) and no intermediate
state. Hence, a configuration of R⊗ is a pair of integers witnessing the number
of tokens in state 1 and state 2. The example illustrates the different roles that
a hybrid state of R can play to simulate a state of M . Indeed a hybrid state of
R, can be used as:

(i) a terminal state, e.g., when testing whether q5 
 (1, 1), we can consider the
second hybrid state of R as a terminal state and terminate the test, or

(ii) an intermediate state, e.g., when testing whether q2 
 (1, 1), the second
hybrid state of R here plays the role of intermediate state, or
both a terminal and an intermediate state, e.g., when testing whether q1 

(1, 0), a transition of ΦR⊗ labeled by (b, (−1, 0)) only appears in one branch
in the simulation tree Tsim(M,R⊗). Hence, the first hybrid state of R⊗ is
considered intermediate in one branch and terminal in the other, or
a hybrid state, e.g., when it is used to simulate a hybrid state of H(M).

a
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c d
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b

c

d

1 2
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(a) (b)

Fig. 7. Example of the simulation tree

We consider in the following the problem defined below.

Problem 4. Unbounded Composition With limited number of Hybrid
States UCHS(M,R, k)
Input: k an integer; R a set of FSMs, containing at most k hybrid states; M a
target FSM.
Question: M 
 R⊗?

It is worth noting that UCHS(M,R, k + 1) is harder then UCHS(M,R, k).
In the sequel, we progressively investigate the complexity of UCHS(M,R, k)
problem for k = 0, then for k = 1 and finally for k = 2.
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5.1 Case of Composition without Hybrid States (i.e. k = 0)

In this section, we are interested in the problem UCHS(M,R, 0). We first give
a polynomial transformation, denoted K, which is used to reduce BC(M,R, 1)
to UCHS(N,R′, 0). This transformation provides a mean to bound the number
of instances used to prove simulation.

Definition 8. Transformation K. For an FSM M = (ΣM , QM , FM , qM0 , δM )
and a set of FSMs R = {M1, ...,Mm}, we define K(M,R)=(N,R′={N1, .., Nm})
where:

1. Each Ni is built based on Mi, by adding a letter ti to its alphabet, a final state
fi and a transition set {(qMi

0 , ti, fi)} ∪ {(q, ti, fi)|q ∈ FMi
}. All final states of

Mi become intermediate in Ni.
2. N is defined as:

– ΣN = ΣM ∪ {ti|1 ≤ i ≤ m};
– QN = QM ∪ {ri|1 ≤ i ≤ m};
– FN = {rm};
– δN = δM ∪ {(q, t1, r1)|q ∈ FM} ∪ {(ri, ti+1, ri+1)|1 ≤ i < m}.

Figure 8 illustrates an example of this transformation. We prove later
in Proposition 2 that K defines a polynomial reduction of BC(M,R, 1) to
UCHS(N,R′, 0). In fact, the intuition behind this reduction is based on two
points:

– By adding the sequence of letters t1, ...., tm at the end of every execution
accepted by N and adding ti at the end of every execution accepted by
Ni ∈ R′, we ensure that even in an unbounded instances simulation, we can
not use more than one instance of every Ni in order to simulate N .

– The construction of R′ verifies that every hybrid state in Mi ∈ R becomes
intermediate in Ni, while keeping its dual role: either terminate the execution
by adding the letter ti to the execution of Ni and reaching the terminal state
fi, or keep the execution in the same way as Mi.

The following propositions show that the transformation K preserves the
simulation preorder.

Proposition 1. Let M be an FSM, R = {M1, ...,Mm} be a set of FSMs and
K(M,R) = (N,R′ = {N1, .., Nm}). For p and q two states of respectively M and
R⊗1 , we have: p 
(M,(R)⊗1 ) q iff p 
(N,(R′)⊗1 ) q.

Proof. By construction of K(M,R), if p 
(M,R⊗1 ) q and p is terminal in M
then p 
(N,(R′)⊗1 ) q.

We suppose next that:
If (p, a, p′) ∈ δM , (q, a, q′) ∈ δR⊗1 and p′ 
(M,R⊗1 ) q′, then p′ 
(N,(R′)⊗1 )

q′.
and prove that p 
(N,(R′)⊗1 ) q.
For each (p, a, p′) ∈ δN , we have:
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Fig. 8. An example of transformation K

– if a ∈ ΣM , then there exists (q, a, q′) ∈ δR⊗1 ⊆ δ(R′)⊗1 such that p′


(N,(R′)⊗1 ) q′.
– else a = t1, p′ = r1 and q is a product of final states of R. therefore, there

exists (q, t1, q′) ∈ δ(R′)⊗1 such that q′ = (f1, q′
i1 , ..., q

′
il
) where q′

ij is final in
R such that p′ 
(N,(R′)⊗1 ) q′.

We conclude that if p 
(M,R⊗1 ) q then p 
(N,(R′)⊗1 ) q.
Reciprocally, we have (p, a, p′) ∈ δN (respectively δ(R′)⊗1 ) and a /∈ {ti|1 ≤

i ≤ m} iff (p, a, p′) ∈ δM (respectively δR⊗1 ). In addition, the definition of K
ensures that if p is final in M and p 
(N,(R′)⊗1 ) q then q is final in R⊗1 . Hence
if p 
(N,(R′)⊗1 ) q then p 
(M,R⊗1 ) q. �

In particular, we take p as the initial state of M and q the initial state of R⊗1 .
This implies that:

Proposition 2. Let M be an FSM, R = {M1, ...,Mm} be a set of FSMs and
K(M,R) = (N,R′ = {N1, .., Nm}). We have: M 
 R⊗1 iff N 
 (R′)⊗.

Hence, K is a polynomial reduction of BC(M,R, 1) problem to the UCHS prob-
lem. This enables to derive the following result.

Theorem 4. UCHS(M,R, 0) problem is Exptime-complete.

Proof. According to Proposition 2, the K transformation reduces BC(M,R, 1)
to UCHS(M,R, 0) in polynomial time. Thus UCHS(M,R, 0) is Exptime-hard.
Since it is also proven Exptime in [11], then UCHS(M,R, 0) is Exptime-
complete. �

5.2 Case of Composition with One Hybrid State

We consider the problem UCHS(M,R, 1) where M is an FSM and R a set
of FSMs containing at most one hybrid state (nH(R) ≤ 1). We denote k0 =
|QM |.2nI(R).log(norm(M)). Two nodes (q, c) and (q′, c′) in a simulation tree are
called comparable if q = q′ and either c�c′ or c′�c. The nodes (q, c) and (q′, c′)
are said incomparable otherwise.
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Property 3. Let R be a set of FSMs containing at most one hybrid state. Two
configurations of R⊗ are comparable by the cover relation, if and only if they
have exactly the same intermediate witnesses.

Proof. According to Property 2, for c, c′ two configurations in R⊗ we have c �
c′ iff :

1. c and c′ have the same intermediate witnesses; and
2. for every hybrid witness c[h], we have: c[h] ≤ c′[h].

In the current case, we consider that R has at most one hybrid witness. Hence,
for any pair of configurations of R⊗, condition 2 is verified.

We conclude that for every two configurations c, c′ in R⊗, c � c′ iff c and c′

have the same intermediate witnesses. �

Property 4. Let S be a set of nodes of Tsim(M,R⊗) that are pairwise incompa-
rable, then |S| ≤ k0.

Proof. In configurations considered in Tsim(M,R⊗), intermediate witnesses are
bounded by norm(M) (Property 1). Therefore and according to Property 3, the
number of incomparable configurations considered in Tsim(M,R⊗) is at most
2nI(R).log(norm(M)). Since S ⊂ QM × CR⊗ , then |S| ≤ k0. �

Proposition 3. If nH(R) = 1, then for each (q, c) ∈ Tsim(M,R⊗), the witness
c[h] of the unique hybrid state in R is bounded by O(k02).

Proof. Let P be a path in Tsim(M,R⊗) and S = (vi = (qi, ci))n∈N be the sub-
sequence of nodes in P satisfying the following properties:

– The node vi is comparable to one of its predecessors v = (qi, c) in P , i.e. v
appears before vi in P ; and

– For each vi, vj ∈ S, vi and vj are incomparable.

If S = ∅, then all nodes of P are not comparable. The size of P is then
bounded by k0, therefore, c[nI(R) + 1] ≤ k0 for each (q,c) in P.

Now suppose that S = (v1...vk), k ∈ N. We prove by induction on the size of
S, i.e. for each n ∈ [1, k], cn[h] ≤ nk0.

For n = 1, all predecessors of v1 in P are pairwise incomparable. Hence,
c1[h] ≤ k0 (Property 4).

For 1 < n < k, we suppose that cn[h] ≤ nk0. Each node v = (q, c) strictly
between vn and vn+1 in P , v is not in S, therefore either:

1. v is comparable to a node vi with i ∈ [1, n]. In this case, c[h] < ci[h] ≤ n.k0
(otherwise ci�c, thus by definition of Tsim(M,R⊗), v should be a leaf).

2. v is incomparable to all its predecessors. The number of such nodes in P
is strictly bounded by k0 − 1 (because they should all be incomparable to
each other and to vn and vn+1). And since transitions displacements is in
{−1, 0, 1}h, then we have c[h] < n.k0 + k0 − 1.
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We conclude from above that for every v = (q, c) between vn and vn+1 in P ,
c[h] ≤ nk0 + k0 − 1 (supposing w.l.o.g that k0 ≥ 1). Thus, cn+1[h] ≤ nk0 + k0 =
(n + 1)k0.

Once we reach the last node vk in S, all its possible successors in P are either:
comparable to a node vi ∈ S with c[h] < ci[h], or incomparable to any of its
predecessors in P or it is the leaf of P.

Finally, since k < k0 (because S is a sequence of incomparable nodes), we
conclude that each node of P is in QM × ([1, norm(A)]nI(R) × [1, k0

2 + k0]). �

Lemma 2. UCHS(M,R, 1) is in Exptime.

Proof. To show that UCHS(M,R, 1) is Exptime, we bound the size of the simu-
lation tree. A node of the simulation tree corresponds to (q, c) where q is a state
of M and c a configuration of R⊗ that verifies, according to Proposition 3, the
following:

– c[h] ≤ k0
2 where c[h] is the witness of the unique hybrid state in R;

– c[i] ≤ norm(M) where c[i] is a witness of an intermediate state in R.

Hence, the number of nodes in the simulation tree is bounded by

|QM |.norm(M)nI(R)

︸ ︷︷ ︸
k0

. (k2
0 + k0) = O(k3

0)

And since deciding simulation only requires to visit each node once, then the
complexity is in Exptime. �

To prove the Exptime-hardness of the problem, we recall that
UCHS(M,R, 0) is Exptime-hard (Theorem 4) and that UCHS(M,R, 1) is
harder than UCHS(M, R, 0).

Theorem 5. UCHS(M,R, 1) is Exptime-complete.

5.3 Case of Composition with Two Hybrid States

In this section, we consider the problem of unbounded composition of web ser-
vices with at most 2 hybrid states in R, i.e. UCHS(M,R, 2).

Our approach is based on reducing the simulation problem to the Z-
reachability issue [7,9].

Interestingly, the simulation verification has been reduced in [11] to a two
players game in a directed graph (Vatt, Vdef , δ, v0), such that V = Vatt ∪ Vdef

is the set of vertices with Vatt ⊆ QM × QN and Vdef ⊆ QM × QN × ΣM , δ ⊆
(Vatt × Vdef ) ∪ (Vdef × Vatt) is the edge set verifying:

– for (q, p) ∈ Vatt and (q, a, q′) ∈ δM , we have ((q, p), (q′, p, a)) ∈ δ; and
– for (q, p, a) ∈ Vdef and (p, a, p′) ∈ δN , we have ((q, p, a), (q, p′)) ∈ δ.
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The game is played by an attacker and a defender. It starts by putting a token
in v0 = (q0M , q0N ) ∈ Vatt, then the players move it along the edges of the graph.
If the token is on a vertex v ∈ Vatt then the attacker moves it, otherwise it is
the defender’s turn.

A strategy of a player x ∈ {a, d} is a function S : V ∗.Vx �→ V , where
V ∗.Vx denotes all sequences of vertices in V that end with a vertex in Vx and
S(v0, ..., vk) = vk+1 implies that (vk, vk+1) ∈ δ. In each different play, a player
x adapts a strategy that decides his moves.

The defender wins every infinite play. Otherwise, the first player who cannot
move loses. M is simulated by N iff the defender has a winning strategy regardless
of his opponent’s strategy.

The Z-reachability game, on the other hand, is played on a finite weighted
graph (V�, V♦, E, v0, e0, k) by 2 players � and ♦. A play begins by placing a
token in v0 ∈ V�, then the players move it along the graph’s edges E ⊆ V ×
V × {−1, 0, 1}k, with V = V� ∪ V♦ and k ∈ N. If the token is in vertex v ∈ V�
then � moves it, otherwise his opponent does. The play is winning for ♦ if the
components of the sum of the weights of the edges traversed plus e0 ∈ N

k are
strictly above (0, .., 0) ∈ N

k during the whole play, otherwise � wins. if the play
is finite, then the first player who cannot move loses. We define here a strategy of
a player x ∈ {�,♦} like in the simulation game. A player wins the Z-reachability
game if he has a strategy that ensures winning, whatever his opponent’s strategy
is. Chaloupka proves in [9] that a 2-dimensional Z-Reachability problem (for
k = 2) can be solved in O(|V |17).

Considering an instance of the problem UCHS(M,R, k), we build next an
equivalent k-dimensional Z-Reachability game of an exponential size.

Theorem 6. There exist an algorithm that can solve UCHS(M,R, 2) in
O((norm(M)n × |QM | × |ΣM |)17), with n is the number of states in R.

Proof. Considering the simulation game (Vatt, Vdef , δ, v0) associated to M and
R⊗, note that the only known upper bound of |Vatt ∪ Vdef | is Ackermanian.
However the set CI = {(c[1], ..., c[nI(R)])|c ∈ CM

R⊗} has an exponential size
(Property 1).

Hence, we consider the weighted graph (V�, V♦, E,w0, e0, k) with: V� ⊆
QM × CI ; V♦ ⊆ QM × CI × ΣM ; E ⊆ V × V × {−1, 0, 1}k, with V = V� ∪ V♦,
k = nH(R) and:

– for (q, c) ∈ V� and (q, a, q′) ∈ δM , we have ((q, p), (q′, p, a), (0, ..., 0)) ∈ δ;
– for (q, c, a) ∈ V♦ and (d, a, d′) ∈ ΦR⊗ with c and d have the same intermediate

components (c[i] = d[i], i ∈ [1, nI(R)]), we have ((q, c, a), (q, c′)) ∈ δ with
c′[i] = d′[i], i ∈ [1, nI(R)].
and w0 = (q0M , (0, ..., 0)) ∈ V� and e0 = (1, .., 1) ∈ N

k.

We consider two mappings:
Let f : Vdef ∪ Vatt �→ V be defined for q, c, a ∈ QM , CM

R⊗ , ΣM as: f(q, c) =
(q, c′) and f(q, c, a) = (q, c′, a) with c′[i] = c[i] for i ∈ [1, nI(R)].

Let g : V ∗ �→ Vd∪Vatt be defined for q, c, a ∈ QM , CM
R⊗ , ΣM and w0, ..., wl ∈ V

as: g(w0, ..., wl, wl+1 = (q, c)) = (q, c′) or g(w0, ..., wl, wl+1 = (q, c, a)) = (q, c′, a)
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and for each i ∈ [1, nI(R)] and j ∈ [1, nH(R)], c′[i] = c[i] and c′[nI(R) + j] is
equal to the jth component of the sum of weights of the edges traversed in the
path {w0, ..., wl+1}.

Let S♦ be a winning strategy of ♦ in the Z-Reachability game
(V�, V♦, E, v0, e0, k). We build next a winning strategy Sd for the defender
in the simulation game (Vatt, Vdef , δ, v0). Let v0, ..., vl ∈ Vatt ∪ Vdef be a
path in the simulation game and wi = f(vi) for each i ∈ [1, l] and wl+1 =
S♦(w0, ..., wl). We take Sd(v0, ..., vl) = g(w0, .., wl+1) because by construction we
have (vl, g(w0, .., wl+1)) ∈ δ. Hence, if S♦ is the winner, then so is the defender.

Reciprocally, we take Sd a winning strategy of the defender in the simulation
game and we build S♦, a winning strategy of ♦ in the Z-Reachability game. Let
w0, ..., wl ∈ V be a path in the Z-Reachability with the sum of weights of the
edges traversed in the path {w0, ..., wl} is superior to (0, ..., 0). Considering vi =
g(w0, ..., wi) for each i ∈ [1, l] and vl+1 = Sd(v0, ..., vl), we take S♦(w0, ..., wl) =
f(vl+1).

Hence we conclude that there is simulation between M and R⊗ iff ♦ wins
the Z-Reachability game. Since for k=2, this is decided in O(|V |17) [9] and
|V | ≤ norm(M)nI(R) × |QM | × |ΣM |, we conclude the result. �

We conclude in the next corollary the Exptime-completeness of
UCHS(M,R, 2).

Corollary 2. UCHS(M,R, 2) is Exptime-complete.

Proof. First, UCHS(M,R, 2) is Exptime according to Theorem 6. Second, it
is harder then UCHS(M,R, 0) which is Exptime-hard (Theorem4). Hence,
UCHS(M,R, 2) is Exptime-complete. �

6 Conclusion

In this paper we have considered two parameters that are source of complexity
of the web services composition problem. We have shown that among the con-
sidered problems, several instances remain Exptime-complete when a parameter
(number of hybrid states or parallel instances) is bounded. It remains an open
question to identify the complexity of UCHS(M,R, 3). [7] proves in the context
of Z-Reachability that the problem is k-Exptime. This complexity is quite far
from the known lower bound, i.e. Expspace hardness.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables. Dover, ninth dover printing, tenth gpo
printing edition (1964)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Archi-
tectures and Applications. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-662-10876-5

https://doi.org/10.1007/978-3-662-10876-5
https://doi.org/10.1007/978-3-662-10876-5


Complexity Aspects of Web Services Composition 135

3. Benatallah, B., Casati, F., Toumani, F.: Web service conversation modeling: a
cornerstone for e-business automation. IEEE Internet Comput. 08(1), 46–54 (2004)

4. Benatallah, B., Casati, F., Toumani, F.: Representing, analysing and managing
web service protocols. Data Knowl. Eng. 58(3), 327–357 (2006)

5. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic
composition of transition-based semantic web services with messaging. In: VLDB,
pp. 613–624 (2005)

6. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic
composition of web services in colombo (2005)
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Abstract. In modern systems CPUs as well as GPUs are equipped with
multi-level memory architectures, where different levels of the hierarchy
vary in latency and capacity. Therefore, various memory access models
were studied. Such a model can be seen as an interface abstracting the
user from the physical architecture details. In this paper we present a
general and uniform GPU computation and memory access model based
on bounded inhibitor Petri nets (PNs). Its effectiveness is demonstrated
by comparing its throughputs to practical computational experiments
performed with the usage of Nvidia GPU with CUDA architecture.

Our PN model is consistent with the workflow of multithreaded GPU
streaming multiprocessors. It models a selection and execution of instruc-
tions for each warp. The three types of instructions included in the model
are: the arithmetic operation, the access to the shared memory and the
access to the global memory. For a given algorithm the model allows to
check how efficient the parallelization is, and whether a different organi-
zation of threads will improve performance.

The accuracy of our model was tested with different kernels. As the
preliminary experiments we used the matrix multiplication program and
stability example created by Nvidia, and as the main experiment a binary
version of the least significant digit radix sort algorithm. We created three
implementations of the algorithm using CUDA architecture, differing in
the usage of shared and global memory as well as organization of calcu-
lations. For each implementation the PN model was used and the results
of experiments are presented in the work.

Keywords: Petri nets · CUDA architecture · GPU · Memory model

1 Introduction

The inter-process communication over a common part of the memory shared by
processes is a usual performance bottleneck in multiprocessor environments. In
modern systems CPUs as well as GPUs are equipped with multi-level memory

This research has been supported by the Polish National Science Center through
grant No. 2013/09/D/ST6/03928.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
M. Koutny et al. (Eds.): ToPNoC XIII, LNCS 11090, pp. 136–157, 2018.
https://doi.org/10.1007/978-3-662-58381-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58381-4_7&domain=pdf
https://doi.org/10.1007/978-3-662-58381-4_7


GPU Computations and Memory Access Model Based on Petri Nets 137

architectures, where different levels of the hierarchy vary in latency and capacity.
By considering different local views of the processes on the common part of the
memory one can try to improve the processor utilization. Therefore, various
memory access models were studied, see for instance [8,12,17]. Such a model
can be seen as an interface abstracting the user from the physical architecture
details. It allows to specify, without a reference to processors, the local views
that are possible in concurrent task executions and maintain its consistency.

Another important issue is the task distribution between threads and
CPU/GPU cores and the instruction scheduling, which can have a significant
impact on the efficiency. Consider for instance running the three threads on a
single processor depicted in Fig. 1. Each of them performs a list of arithmetic
operations interleaved by memory reads/writes consisting of a short preprocess-
ing and then a longer period of waiting for the memory access (which is a usual
situation in parallel computing). In the initial part of the computation each
thread realizes its preprocessing for the memory access and then starts to wait
for the access itself. This causes the processor idle period when all threads are
waiting (marked as I). After that, the arithmetic operations of all threads are
executed simultaneously. They can be scheduled in such a way that one thread
waits for the memory access, while other threads perform their computations
and there is no idle period (marked as II). Thanks to that, the waiting period
of a thread can be hidden behind the active computations of other threads.

(I) (II)

t3

t2

t1

Fig. 1. The example run of the threads t1, t2 and t3 on a single processor. The area
marked with (I) represents the idle period when no computation is done, and the area
marked with (II) represents the period when the waiting for the memory access is
hidden behind arithmetic operations.

The main contribution of this paper is a general and uniform GPU com-
putation and memory access model based on bounded Petri nets [16] together
with the application simulating its execution. For a given algorithm pseudocode
(or the source code) one can use our model to count the number of operations
performed (taking into account their simultaneous execution). The main advan-
tage of the model over the basic arithmetic counting and other models described
below is the possibility of the reorganization of the source code fragments, as well
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as the potential ability to predict a duration of GPU calculations and to handle
the aforementioned computation scheduling. Such an approach might be used to
improve the algorithm code organization and to partition the computation tasks
between the threads to maximally increase the efficiency.

The effectiveness of our model is demonstrated by comparing its through-
puts to practical computational experiments performed with the usage of Nvidia
GPU. We study the impact on the complexity of various parameters such as the
number of concurrent processes, and the level of memory used (shared mem-
ory vs. global memory). The successful application of our model is discussed in
details, as a proof of concept, on a single example of digit radix sorting algorithm.
We do not want to discuss methods of parallelization, nor the most efficient way
of using different types of the memory. It is beyond the scope of this paper. Those
problems are very complex, and cannot be explained in such a short publication.
More about those topics can be found for instance in [6,23].

Our PN model is not the only GPU efficiency model. There are quite a few
other GPU performance models, which can be divided into two groups (according
to [13]):

(1) Calibrated performance models that make specific predictions and include
many lower levels of details. They usually contain many specialized parameters,
some of which may be difficult to obtain or calculate. The first example is a
model presented in [7]. It is the first analytical model of the GPU efficiency.
The most important values used there are MWP (number of memory requestes
that can be executed concurrently) and CWP (number of warps, which can be
computed while one warp is waiting for memory values). The model consists
of 14 equations, which contains 21 parameters. Other example is a model pre-
sented in [22]. The authors created not only performance GPU model but also
power consumption model. In the performance part they estimate execution time
for individual GPU architecture components (e.g. shared, global memory) sep-
arately. This way they easily identify potential performance bottlenecks. The
model has a form of equations and contains 32 parameters. In [26] authors used
stochastic Petri nets to analyse the execution time of MapReduce model on GPU
clusters. Their results are very promising, however they are highly specific and
limited only to the considered model.

(2) Asymptotic models for algorithm analysis at a high level of abstraction
that capture only the essential features of GPU architecture. One of the models
from this group is the model described in [15]. He used elements of PRAM, BSP
and QRQW approaches. The model calculates the number of cycles required for
the whole kernel, taking into account the number of blocks, warps and threads,
the maximal number of cycles required by a single thread to perform calculations
and the number of threads which can be executed in parallel. However the model
is quite simple and some important elements are neglected (like hiding memory
latency in computations). The other asymptotic model is Thread Multi-Core
Memory (TMM) model presented in [12]. Basing on the TMM, GPUs can be
presented as abstract core groups, each containing a number of cores and fast
local memory. The large and slow global memory is shared by all cores. The
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running time of the algorithm is calculated basing on suitable equation with
basic GPU parameters. In [14] authors used colored Petri nets to combine both
approaches to GPU computations modelling. They approach is different then
ours, e.g. they represented warps as tokens. Our model belongs to the asymptotic
group.

One of the most popular GPU efficiency models is the roofline model intro-
duced in [25]. It can be used to obtain performance estimates of GPU compu-
tations, and requires two parameters: the number of operations performed by
a kernel and the number of bytes transferred from/to the memory, which can
be used to calculate the arithmetic intensity I. In the naive roofline model I
can be handily presented as a point in two-dimensional space restricted by two
ceilings lines: the memory bandwidth and the processor’s peak efficiency. The
resulting performance is a bound under which the arithmetic intensity appeared:
the memory bandwidth bound or the peak performance bound. In the extended
versions of the model, additional ceilings can be added. They are related to soft-
ware prefetching or task level parallelism. The roofline model can determine the
type of kernel limitation and show, how optimal the program is. However, such
a simple arithmetic operation cannot precisely represent the complex processes
of kernel execution, like for example hiding the waiting period in calculations
(see Fig. 1). Similar problem occurs in other purely arithmetical models. More
complex tools are necessary for such a purpose.

Our model is one of the first utilizing Petri nets. Other Petri nets based
models [14,26] where developed in parallel.

The paper is organized as follows. In the next section we describe Graphical
Processing Units and CUDA Toolkit, focusing in particular on memory types
(and organization). In Sect. 3 we recall some standard notions and notations
related to Petri nets. Then we introduce our memory access and computation
model followed by the description of radix sort algorithm. We also present the
results of experiments conducted on the base of our implementations of the
radix sort algorithm. We conclude the paper and give some directions of further
research in the last section.

2 CUDA

An intensive development of Graphical Processing Units (GPU in short) resulted
in construction of high performance computational devices, which besides the
graphical display management, allow also the execution of parallel general pur-
pose algorithms (not necessarily related to computer graphics). As opposed to
CPU consisting of a few cores optimized for sequential serial processing, GPU
contains thousands of smaller, more efficient cores designed for handling multi-
ple tasks simultaneously. The most popular ones are GPU’s produced by Nvidia
Corporation, supplied with Nvidia CUDA Toolkit (see [2]).

A program running in heterogeneous environment equipped with GPU can be
split into so-called host parts, which are executed by CPU, and so-called kernel
parts, which are executed by GPU. The host part specify the kernel execution
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context and manages the data transfer between the host and the GPU memory.
The kernel functions create a big number of threads allowing a highly parallel
computation (where each thread runs the same kernel code). GPU threads, as
opposed to CPU threads, are much lighter, hence their creation and controlling
requires less CPU cycles.

All threads executed on GPU are organized into several equally-sized thread
blocks, which in turn are organized into a grid.

A thread block is the set of concurrently executed threads. Such an execution
and the thread cooperation can be coordinated by a barrier synchronization.
Moreover, the data can be exchanged between threads using a shared memory.
The size of a block is limited by the capacity of resources accessible on a single
processor core. On currently available GPU’s a single block can contain up to
1024 threads. Each thread block within a grid is uniquely identified by its block
ID, and each thread within a block – by its thread ID.

A grid is an array of thread blocks executing the same kernel. The number
of blocks in a grid is specified by the amount of data to be processed and the
number of available processors. The exchange of data between threads within a
grid requires the usage of the global memory. Moreover, while all threads within
a single block run simultaneously, different blocks can be executed in any order.

The physical Nvidia GPU architecture consists of several multithreaded
streaming multiprocessors (SM in short). Thread blocks are distributed between
SM’s in such a way that all threads within a single block are concurrently exe-
cuted on the same SM (different blocks may, but not necessarily have to, be
executed on the same SM). A streaming multiprocessor organizes threads into
so-called warps consisting of 32 threads each. The partition is done accord-
ing to increasing thread ID. Each SM works utilizing SIMT (single-instruction,
multiple-threads) architecture, which means that all threads within a single warp
execute one common instruction at a time. Any divergence (e.g. caused by a data
processed) leads to a serial execution of a single computation path until possible
convergence to the same execution path.

A single SM serves multiple warps. It is equipped with a number of warp
schedulers and instruction dispatch units (currently 2 or 4 depending on the
device used). The scheduler selects a warp, which is ready to be executed, and
issues it to the physical cores of GPU. If the currently active warp needs to
wait for the memory read/write operation, it is replaced by another ready warp.
While the replaced warp is waiting for the memory access, other warps perform
their computations, therefore the SM is busy as often as possible. The waiting
period of a single warp is hidden behind the computations of the others (if there
are only enough active warps available) and is not seen outside the SM. The
simulation of such a behavior is the main part of our model.

The above mentioned heterogeneous environment is equipped with the host
memory managed by CPU and the GPU device memory. The latter is signifi-
cantly more complex than the former. Due to a necessary compromise between
the data transfer/access speed and the possible capacity, the GPU device mem-



GPU Computations and Memory Access Model Based on Petri Nets 141

ory consists of various types of data storage, such as global, constant, local and
shared memory.

The global memory is the largest and at the same time the slowest type of
GPU memory (with hundreds of cycles latency). Together with the constant
memory it is the only type of GPU memory, which can be accessed by the
host. It is available for reading and writing for all running threads, however the
data exchange and result sharing are possible only after a kernel-wide global
synchronization.

The content of the global memory is accessed in blocks of size 32, 64 or 128
bytes (depending on the device used). Every time an element within a block
is accessed, the whole block has to be transferred. Therefore, the concurrent
(among the threads within a single warp) global memory read and write opera-
tions are grouped into transactions, the number of which depends on the cache
lines required to serve all threads within a warp. However, if different threads in
a warp refer to different memory blocks, all such blocks have to be transferred
to cache sequentially. Such a situation cause the necessity of repeated global
memory accesses.

The shared memory is a fast memory physically placed inside a multipro-
cessor. It consists of blocks, each of which is available for all threads within a
single thread block. Moreover, each such block is divided into several so-called
memory banks. The access of different threads to different banks is realized
simultaneously, while the access of different threads to the same bank is realized
sequentially. Such a situation is called the bank conflict. The shared memory can
be used for data exchange between threads within the same thread block after
block-wide thread synchronization.

The local memory of a single thread consists of a number of registers, which
are the fastest type of memory available (with almost negligible access time).
It is used to store local thread variables. Due to large number of threads the
capacity of each thread local memory is strongly limited.

To complete the picture, we have to mention also the constant and texture
memory – dedicated parts of the GPU device memory (usually buffered). Both
of them are optimized for access speed within the device, but are available for
threads in read-only mode. Neither of them is considered in our model.

3 Petri Nets

The set of non-negative integers is denoted by IN. Given a set X, the cardinality
(number of elements) of X is denoted by |X|, the powerset (set of all subsets)
by 2X – the cardinality of the powerset is 2|X|. Multisets over X are members
of INX , i.e., functions from X into IN. For convenience and readability, if the set
X is finite, multisets in IN

X will be represented by integer vectors of dimension
|X| (assuming a fixed ordering of the set X). The addition and the partial order
≤ on IN

X are understood componentwise, while < means ≤ and �=.
Let us now recall basic definitions and facts concerning inhibitor Petri nets [1,

19] and coloured Petri nets [10].
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Definition 1. An inhibitor1 place/transition net (p/t-net) is a quintuple S =
(P, T,W, I,M0), where:

– P and T are finite disjoint sets, of places and transitions (actions), respec-
tively;

– W : P × T ∪ T × P → IN is an arc weight function;
– I ⊆ P × T is an inhibition relation;
– M0 ∈ IN

P is a multiset of places, named the initial marking.

For all a ∈ T we use the following denotations:

•a = {p ∈ P | W (p, a) > 0} – the set of entries to a,
a• = {p ∈ P | W (a, p) > 0} – the set of exits from a,
◦a = {p ∈ P | (p, a) ∈ I} – the set of inhibitor places for a,
W (P, a) ∈ IN

P , where W (P, a)(p) = W (p, a),
W (a, P ) ∈ IN

P , where W (a, P )(p) = W (a, p).

Petri nets admit a natural representation as bipartite graphs, in which places
are indicated by circles, and transitions by boxes. Arcs with classical arrow
heads represent the weight function, while arcs with small circles as arrowheads
represent inhibition relation.

The set of all finite strings of transitions is denoted by T ∗, the empty string is
denoted by ε, the length of w ∈ T ∗ is denoted by |w|, the number of occurrences
of a transition a in a string w is denoted by |w|a.

Multisets of places are called markings. In the context of p/t-nets, they are
typically represented by nonnegative integer vectors of dimension |P |, assuming
that P is totally ordered. Markings are depicted by tokens inside the circles,
the capacity of places is unlimited. However, Petri nets used in our model are
bounded (which means that there exist a common bound for all the numbers of
tokens appearing during the computation in a single place).

A transition a ∈ T is enabled at a marking M whenever W (P, a) ≤ M (all
its entries are marked) and ∀p∈◦a M(p) = 0 (all inhibitor places are empty).
If a is enabled at M , then it can be executed. A marking M is called a dead
marking if no transition is enabled at M (which means that ∀a∈T ∃p∈P

(
W (p, a) >

M(p) ∨ ((p, a) ∈ I ∧ M(p) > 0)
)
). The execution of an enabled transition a

is not forced and changes the current marking M to the new marking M ′ =
M − W (P, a) + W (a, P ) (tokens are removed from entries, then put to exits).
We shall denote Ma for the predicate “a is enabled at M” and MaM ′ for the
predicate “a is enabled at M and M ′ is the resulting marking”.

In this paper however, we use the maximal concurrent semantics and in
every marking we execute one of the maximal sets of enabled transitions (i.e. a
step, which is maximally concurrent at this marking). Formally, a set of tran-
sitions A ⊆ T is called step and is enabled if

( ∑
a∈A W (P, a)

) ≤ M and

1 Note that in the case of bounded nets the use of inhibitors is not necessary, one can
provide an equivalent (with more complex structure) net without inhibitors.
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∀p∈(
⋃

a∈A
◦a) M(p) = 0. The execution of a step A changes the current marking

M to the new marking

M ′ =
(
M −

∑

a∈A

W (P, a)
)

+
∑

a∈A

W (a, P ).

We say that a step is maximally concurrent at marking M if A is enabled at M
and ∀a/∈AA ∪ {a} is not enabled at M .

The notions of enabledness and execution can be extended, in a natural way,
to strings of steps (computations): the empty string ε is enabled at any marking,
a string w = Av is enabled at a marking M whenever MAM ′ and v is enabled
at M ′. The predicates MA, Mw, MAM ′ and MwM ′ are defined like for single
transitions.

Another system model used in this paper are coloured Petri nets defined as

Definition 2 ([10]). A (non-hierarchical) coloured Petri net is a nine-tuple
CPN = (P, T,A,Σ, V,C,G,E, I), where:

– P and T are finite, disjoint sets of places and transitions (similar to the case
of inhibitor nets);

– A ⊆ P × T ∪ T × P is a set of directed arcs;
– Σ is a finite set of non-empty colour sets;
– V is a finite set of typed variables such that Type(V ) ∈ Σ for all variables

v ∈ V ;
– C : P → Σ is a colour set function that assigns a colour set to each place;
– G : T → EXPRV is a guard function that assigns a guard to each transition

t such that Type[G(t)] = Bool;
– E : A → EXPRV is an arc expression function that assigns an arc expression

to each arc a such that Type[E(a)] = IN
C(p), where p is the place connected

to the arc a;
– I : P → EXPR∅ is an initialisation function that assigns an initialisation

expression to take each place p such that Type[I(p)] = IN
C(p).

Note that, according to the utilised CPN Tools [24], EXPR is the set of
net inscriptions (over a set of variables V or over an empty set, i.e. using only
constant values) provided by CPN ML. Moreover, by Type[e] we denote the
type of values obtained by evaluation expression e. The set of free variables in
an expression e is denoted by V ar[e], while the type a variable v – by Type[v].
The setting of the particular value to free variable v is called a binding b(v),
we require that b(v) ∈ Type[v] and denote with the use of 〈〉 filled by the list
of valuations and written next to the element to whom it relates. The set of
bindings of a transition t is denoted by B(t). The binding element is a transition
t together with a valuation b(t) of all the free variables related to t. We denote
it by (t, b), where t ∈ T and b ∈ B(t).

A marking M in coloured Petri nets is a function which assigns to each p ∈ P
a multiset of tokens M(p) ∈ IN

C(p). An initial marking is denoted by M0 and
defined for each p ∈ P as follows: M0(p) = I(p)〈〉.
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A binding element (t, b) is enabled at a marking M if G(t)〈b〉 is true and at
each place p ∈ P there is enough tokens at M to fulfil the evaluation of the arc
expression function E(p, t)〈b〉. The resulting marking is obtained by removing
from M(p) the tokens given by E(p, t)〈b〉 and adding those given by E(t, p)〈b〉
for each p ∈ P .

4 Memory Access and Computations Model

The Petri net model of GPU calculations is consistent with the workflow of
multithreaded streaming multiprocessors (SMs). The model represents the way
one SM operates. It models each warp assigned to the SM, selection of the
next instruction for the SM, accesses to the global and shared memory, and
arithmetic operations. It does not represent threads hierarchy (blocks, grid),
repeated accesses to the global memory nor bank conflicts. The model allows
simultaneous accesses to the global memory, but the number of warps, which
can use the global memory, at the same time, is limited by the number of SM
warp schedulers (2 or 4). Each element of the model was created basing on [3,4].

The size of the considered Petri net depends on the number of warps. The
two elements: the place p0 – SM and the transition t0 – waiting are the constant
part of the model, other are generated for every warp. The place p0 represents
the streaming multiprocessor and its initial marking should correspond to the
number of warp schedulers. For the modern graphical cards it should be 2 or 4.
This place is connected by a loop with the transition t0. The transition t0 can
be executed only when the warp schedulers cannot schedule any instruction, i.e.
there is no instruction ready to be executed. The waiting transition is added
to the model to gain control over how many steps of the calculations on the
SM is idle. The minimization of that number is crucial for optimization of GPU
programming. Besides those two elements, the PN model contains 18 places and
17 transitions for every warp required by the analysed algorithm. That part is
called a warp part of PN model (WPNM). The detailed description of the most
important places and transitions of WPNM is presented in Table 1.

The WPNM together with SM place and waiting transition are depicted in
Fig. 2. The place p1 represents the activation of the warp. It is marked when
the warp is active. The place p2 is marked when the warp finishes the execution
of its previous instruction. The warp can be scheduled for the execution only
when the places p2 and p4 are marked. A token in p4 means that the next
instruction is selected and ready. The places from p3 to p10 and the transitions
t2, t3, t4 (the frame I part in Fig. 2) are responsible for controlling and selecting
the instructions. The three types of instructions are allowed in the model: an
arithmetic calculation, an access to the shared memory and an access to the
global memory. The initial marking of the place p5 corresponds to the number
xa of arithmetic operations required by the analyzed algorithm. Similarly, the
initial markings of the places p7 and p9 represent respectively the numbers xs

and xg of read/write operations from/to the shared and global memory. If the
place p3 is marked and at least one of the places: p5, p7, p9 is not empty, the
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next instruction can be selected. The selection is random (if more than one of
the places: p5, p7, p9 is marked then a token is taken from the randomly chosen
one – the distribution of the probability is uniform). When the instruction is
chosen, according to its type (arithmetic calculation, shared memory access,
global memory access) the marking of the corresponding place is decreased and
a token is added to p4. Moreover, (according to the instruction type) one of
the places: p6, p8 or p10 is marked. Now the selected instruction is ready to be
executed and the warp can be processed by SM. The execution of the instruction
is represented by the three parts of the net marked in frame II, frame III and
frame IV (see Fig. 2). They correspond to the type of the selected instruction:
frame II for an arithmetic calculation, frame III – an access to the shared memory
and frame IV – an access to the global memory. The arithmetic calculation is
simply represented by one place and two transitions. When the calculation is
done, tokens are put in places: p2 and p3 (which means that the instruction is
finished and the next one can be selected), and in the place p0 (which means
that SM is ready to execute the next instruction). The same situation is obtained
when the access to the memory (shared or global) is finished, but those parts
of the model contain more places and transitions. Those additional elements are
used to model the memory access latencies. The shared memory latency and the
global memory latency are the parameters of the model and are denoted by l1
for the global memory and by l2 for the shared memory. The transition t9 (t12
respectively) may be executed only after l1 (l2 respectively) executions of t8 (t17
respectively). For testing, their default values were 20 for l1 and 2 for l2, which
is consistent with [4].

The transition t16 is connected by inhibitor arcs with the places p5, p7 and
p9 (the frame I in Fig. 2) and can be executed only when those places are empty,
i.e. there is no instruction left for execution. The transition is also connected by
a regular arc with p2, Moreover, t16 is the only one able to take the token from
the place p1 and its execution is equivalent to the termination of a given warp.

As it was mentioned above, the WPNM (places from p1 to p18 and transitions
from t1 to t17) is generated for a single warp. In the case of multiple warps a
separate WPNM should be generated for each of them. To distinguish between
distinct WPNMs one can either increase the numeration of places and transi-
tions accordingly or assign to them two-part labels consisting of the original
place/transition number together with the warp id. It should be noticed that
each place corresponding to p2 and representing the readiness of the given warp
should be connected by an inhibitor arc with the transition t0. Moreover, each
transition corresponding to t1 should be connected with the place p0 (SM ). The
same goes for transitions corresponding to t5, t14 and t15. Note that the control
is returned by t5 not t11 in the case of part responsible for the access to the
global memory. Thanks to that, SM can process the next ready warp while the
current one is waiting for the memory access.

Our PN model of GPU computation and memory access may be adapted
for any algorithm. Instantiations of the model for different kernels may differ
in the number of warps and the marking of places responsible for instructions
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Fig. 2. The example of a warp PN model (WPNM). In frame I part the next instruc-
tion is selected. Sections: frame II, frame III and frame IV represent the execution of
different types of instructions: arithmetic calculation, access to the shared memory and
access to the global memory (respectively).

counting (i.e. p5, p7 and p9). For the chosen number of required warps, a new
model containing sufficient number of WPNMs can be generated. The other
possibility is the generation of one big model with the maximal possible number
of WPNMs (i.e. 64 for modern graphical cards [4]), and then the necessary
number of places representing active warps should be marked. The number of
WPNMs can be calculated basing on the number of threads and blocks, which
are parameters of the kernel. Notice that the model provides no controlling
mechanism for the maximum number of WPNMs. It is up to the user to be aware
that the maximal number of WPNMs is limited to 64 in modern GPUs. The
number of arithmetic operations and accesses to the shared and global memory
need to be calculated for the considered algorithm. Those numbers should be
used as the initial marking of places p5, p7 and p9. If the model is constructed
according to the description above, it is ready to be used out of the box. The
usage of the model involves the execution of computations according to the
maximal concurrent semantics (i.e. concurrent execution of all transitions that
are enabled) starting from the initial marking until reaching the dead marking.
The latter is obtained only when all places corresponding to p1 (for each WPNM)



GPU Computations and Memory Access Model Based on Petri Nets 147

Table 1. The description of the places and transitions depicted in the Fig. 2.

Place/transition name and description

p0 Streaming Multiprocessor (SM) t0 Waiting

p1 Active warp t1 The warp is executed on SM

p2 The previous instruction is finished and

the warp is ready for the next one

t2 Selection of a calculation for the next

instruction

p3 Check the next instruction t3 Selection of an access to the shared memory

for the next instruction

p4 Next instruction is ready t4 Selection of an access to the global memory

for the next instruction

p5 Arithmetic operations t5 Execution of the access to the global memory

p6 Instruction – arithmetic calculation t6 Execution of the access to the shared memory

p7 Access to the shared memory t7 Execution of arithmetic operation

p8 Instruction – shared memory access t8 Waiting for the global memory access

p9 Access to the global memory t9 Access to the global memory

p10 Instruction – global memory access t11 Access to the global memory is finished

t12 Access to the shared memory

t14 Access to the shared memory is finished

t15 Calculation is finished

t16 Termination of the warp

t17 Waiting for the shared memory access

become empty, which is equivalent to the termination of all warps. The number
of steps of the computation is returned by the model and corresponds to the
GPU execution time.

The maximal concurrent semantics requires the execution of all enabled tran-
sitions. However, some of the enabled transitions may be in a conflict (i.e. exe-
cution of one transition disables another transition). In our implementation of
the model, in every step, a permutation of the enabled transitions is randomly
generated (using uniform distribution). Transitions are executed according to an
order determined by the generated permutation. If two (or more) transitions are
in a conflict, the transition appearing earlier in the considered order is executed.

The initial tests of the PN model were performed using the matrix multipli-
cation kernel from [4] and the stability example from [23]. The PN models were
generated for both kernels. The matrix multiplication program was executed
many times with different sizes of matrices. Similarly, the stability example was
executed with different values of Time Step and Final Time parameters. For
the same data, the computations of the PN model were executed. The execution
times of kernels and the numbers of steps of PN computations were compared.
The results were consistent in both cases.

4.1 The Version of the Model Based on Colored Petri Nets

In the model presented above, the bounded inhibitor Petri nets were used. This
initial model was rewritten with the usage of the colored PNs, which leads to its
simplification. The new version of the model is presented in Fig. 3. It is suitable
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to present arbitrary number of warps. Repetitions of WPNMs are not longer
necessary, because every color of a place contains at least one number, labeled
W , which describes the warp index. That is why the colored PN model for
the whole system is very similar to the model of a single WPNM. The parts
corresponding to frames II, III and IV in Fig. 2 can be easily identified. Only
small differences in those parts appear in models of memory access latencies. In
the inhibitor version, one place and one transition are necessary to model the
latency. Using the colored PN semantics it is sufficient to use a single transition
for this purpose.

The more significant difference between the inhibitor and colored model is
the part corresponding to selection of the next instruction (part I in Fig. 2). In
the colored version, this part is strongly reduced. The numbers of instructions,
which have to be executed, together with their types and the index of a warp
are described by tokens color in place p7. The type of selected instruction (and
the warp id) is transferred to p8, and then it can be recognized by transitions
t5, t6 or t7.

Apart from those differences the colored PN model is in one to one corre-
spondence with the inhibitor model, which was confirmed by tests (see Sect. 5
for details). Example tests results are presented in Fig. 7. Those tests where
performed using randomly generated parameters without maximal concurrent
semantics. The tests show that there is a strong correlation between both mod-
els.

One can also consider the timed PNs, however in our opinion they are not
suitable for our model. In this type of PNs time intervals are associated with
transitions. Namely, a transition a can be executed only if the net’s clock value
belongs to interval defined for a. In the model we are interested in the total time
of the PN simulation. It is hard to predict when a particular transition may be
executed, hence we do not have the sufficient data to establish approximate time
intervals of transitions. We do not want to restrain time of transitions executions,
we want to execute them freely and then check the total time of computation.

5 Experimental Results

In the main experiment we used a binary version of the least significant digit
radix sort algorithm [20,21]. The idea of this method is to sort a list of positive
n-bit integers using their binary representation. We make n runs rearranging
the list in such a manner that in i-th run all the integers having 0 on i-th bit
are arranged in the first part of the array, while those having 1 – in the second
part. An important requirement is to preserve the order of elements which do
not differ on the processed bit. In other words, the sorting subroutine need to
be stable. As a side effect the whole sorting procedure is also stable (Fig. 4).

In the parallel version we made n runs (one for every bit), each run consisting
of three phases. At the beginning of each run, we partition the dataset equally
between m nodes. During the first phase, j-th node counts zeros[i, j] – the
number of elements containing 0 on i-th bit (consequently, we know ones[i, j]
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Fig. 3. The CPN model. Frames like in Fig. 2. The special symbols meaning: Φ =
1′(x, y,G) + +1′(x, y, S) + +1′(x, y, Cal), Ψ is an initial marking of p7 which describes
numbers of arithmetic operations, accesses to the global and shared memory for
each warp. Places p1, p2 and p3 contain one token for each warp in the initial
marking. Colours definitions: C = int with 0..1000000, W = int with 0..100000,
Type = with G|S|Cal, WC = product W ∗ C, WT = product W ∗ Type, WCT =
product W ∗ C ∗ Type.
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Fig. 4. Example of the use of radix sort procedure for four-bit integers. In consecu-
tive columns we present the lists after each run of sorting subroutine. The rectangles
emphasize columns with freshly sorted bits.
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– the number of elements with 1 on i-th bit for this node). In the next phase,
we need to compute the positions for the set of elements assigned to each node.
Namely, j-th node should place all the elements having 0 on i-th bit between∑

k<j zeros[i, k] and
( ∑

k≤j zeros[i, k]
) − 1, while those with 1 on i-th in the

range
[ ∑

k≤m

zeros[i, k] +
∑

k<j

ones[i, k],
∑

k≤m

zeros[i, k] +
( ∑

k≤j

ones[i, k]
) − 1

]
.

The last, third phase, is the rearrangement of the list of integers. Each node
traverses the assigned part of the data splitting it into two parts (containing
only 0 on i-th bit and only 1 on i-th bit) with the use of the positions computed
in the second phase and in a stable manner. Since the output space for the nodes
is partitioned into disjoint blocks, this phase may be realized using either shared
or global memory.

We consider three CUDA implementations of the algorithm described above.
In all versions, the array of integers A to be sorted is stored in the global memory.
During each kernel execution, one block of threads (with different number of
threads) is created. Each thread has its own part of the array A assigned. Its
size is the parameter and is denoted by memsize. The product: threadsNumber∗
memsize should be equal to the size of A. At the beginning of each run, every
thread copies the assigned part of the array A from the global memory to its
local registers, then calculates number of 0 and 1 bits. At the end of the run,
the content of the global memory array is rearranged – each thread moves the
elements from its part of A.

Each of the three implementations of the radix sort algorithm was tested
on a randomly generated array of 65536 integers, with five combinations of
threadsNumber and memsize parameters. For the given implementation and
the value of parameters, the numbers of arithmetic operations and accesses to
the global and shared memory were calculated and used in the PN model (as the
initial marking of the places p5, p7 and p9). As an arithmetic operation we count
every assignment, addition, subtraction, multiplication, division, relational oper-
ation, logical operation and array subscript (arrays in registers). Every access
(read or write) to data stored in the global or shared memory is counted as single
memory operation.

The numbers of steps of the model calculations were compared to the exe-
cution times of kernels. The tests were performed on NVIDIA GeForce GTX
960M graphical card with CUDA Toolkit 8.0. The execution times of kernels are
averages of one hundred runs. The results for the PN model were calculated as
averages of ten computations of the models.

In the first implementation only the global memory is used. The second phase
of the algorithm is performed by thread with id 0. The results of the tests are
depicted in Fig. 5 – the dotted line.

In the second implementation the realization of the second phase is organized
in a more efficient way. Instead of computing all sums incrementally, we compute
all partial sums (for indexes between p · 2q and (p + 1) · 2q, where p and q are
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Fig. 5. The results for the radix sort algorithm tests with 65536 element arrays:
(a) execution times of kernels (ms), (b) steps of the PN model.

suitable non-negative integers) and use them as input components for other
sums.

Having m = 2r nodes we can compute zeros[i, j] and ones[i, j] for all j ≤ m
in r +1 cycles with full system load (using all nodes in every cycle). To do it, we
compute in c-th cycle specific partial sums of lengths between 2c−1 and 2c − 1,
an example for r = 2 is depicted on Fig. 6. In this sample case z[x..y] denotes∑

x≤t≤y zeros[i, t], while o[x..y] –
∑

x≤t≤y ones[i, t], each row corresponds to a
single element in table zeros or ones, while in subsequent columns the values of
partial sums stored in those elements are given. Each arc between x − th and
y − th row denotes the addition of value kept in x− th element to the value kept
in y − th element, the result is stored in y − th element.

More specifically, in the first cycle we compute

zeros[i, 2k] + zeros[i, 2k + 1] and ones[i, 2k] + ones[i, 2k + 1]
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placing results in zeros[i, 2k +1] and ones[i, 2k +1] respectively. The number of
all operations made in this cycle (the number of arcs between first and second
column in example) is m/2 + m/2 = m, hence we can utilize all available nodes
to do it at once.

In subsequent cycles we compute longer partial sums using already precom-
puted ones. This way in c − th cycle we compute

∑

0≤t≤u

zeros[i, 2ck + t] and
∑

0≤t≤u

ones[i, 2ck + t],

where 2c−1 ≤ u < 2c − 1, while 0 ≤ k < 2r−c − 1, and store the results in
zeros[i, 2ck+t] and ones[i, 2ck+t], respectively. Since after the previous cycle all
values

∑
0≤t≤u zeros[i, 2ck+t] and

∑
0≤t≤u ones[i, 2ck+t] are stored in memory,

where 2c−2 ≤ u < 2c−1, while 0 ≤ k < 2r−c+1, we need to add only two elements
for each longer partial sum computed in c − th cycle. Note that the number of
such operations equals the size of the range of u multiplied by the size of the
range of k and doubled (we need to compute both ones and zeros), i.e.

|{u, 2c−1 ≤ u < 2c}| · |{k, 0 ≤ k < 2r−c}| · 2 = 2c−1 · 2r−c · 2 = 2r = m.

Finally, in the last cycle we add the computed so far
∑

k≤m zeros[i, k] to all∑
t≤k ones[i, t] for each k ≤ m. The execution times of kernels and the results

from the PN model are depicted in Fig. 5 – the solid line (Fig. 6).
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Fig. 6. The organization of the second phase of the algorithm for m = 4 (as m = 2r,
r = 2) nodes in r + 1 = 3 cycles.

In the third version of the implementation the arrays zeros and ones are
stored in the shared memory instead of global. The results of those tests are also
presented in Fig. 5 – the dashed line.

The results of the PN model calculations for the first implementation
(Fig. 5(a)) clearly show that this parallelization is not very efficient as compared
to the others, especially for larger numbers of threads. This is confirmed by the
execution times of kernels (Fig. 5(b)). One can easily observe that in both plots
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the number of PN model steps and execution times of kernels for this implemen-
tation initially decrease with the increasing number of threads, however for more
than 256 threads both of them increase. A similar situation can be also noticed
for other implementations, but here the growth is more significant. It can also
be observed that for the largest amounts of threads the number of PN model
steps increases faster than execution times of kernels. In this case the general
direction of changes predicted by our model is consistent with the kernels exe-
cutions (despite the lack of the exact match of the plots). The model predicted
correctly the most efficient choice of the number of threads, which in this case
is 256.

The predictions of the PN model for the 2nd and 3rd implementations are
more consistent with the execution times of kernels. In both cases differences
between implementations are very small. It is probably caused by a relatively
small number of shared memory operations in comparison to accesses to the
global memory. For the larger number of threads, the increase in execution times
of kernels is more significant than in the results from the PN model. The reli-
able explanation of such a difference is an overhead for communication between
threads. It is clear that such overhead will not be observed in the PN model.
However, the general characterization of the results is the same both for the
model and the kernels. The PN model predicted correctly also the most effective
choice of the number of threads for both implementations, which is 512 threads.

5.1 Tests of the CPN Model

The CPN model was created using CPN Tools software [18,24]. The same tool
was used to perform the simulation of the model. Unfortunately CPN Tools uses
only interleaving semantics and does not support the maximal concurrency [24].
Hence, the tests for the inhibitor model were also repeated using interleaving
semantics. The results obtained for the 3rd implementation (number of warps,
arithmetic operations, accesses to the shared and global memory) are presented
in Fig. 7a. One can easily observe that those results are not the same, as it should

Table 2. Statistics of transitions executions for the 3rd implementation and two warps
for both versions of the model.

CPN model Inhibitor model - warp 1 Inhibitor model - warp 2

t0 1178789 t0 734992

t1 131072 t1 65536 t18 65536

t3 131072 t4 65536 t21 65536

t5 131072 t5 65536 t22 65536

t8 1310720 t8 655360 t25 655360

t9 131072 t9 65536 t26 65536

t11 131072 t11 65536 t28 65536

t16 2 t16 1 t33 1
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Fig. 7. Comparisons of the CPN model and the inhibitor model. (a) Results for the 3rd
implementation - all operations. (b) Results only for a selected type of operations: (b)
arithmetic calculations, (c) accesses to the shared memory. (d) accesses to the global
memory.

be expected. That is the reason why we needed a more detailed analysis. Separate
tests for arithmetic operations, accesses to the global memory and accesses to the
shared memory were performed. The results are presented in Fig. 7. It is easy
to notice that the result for arithmetic operations and accesses to the shared
memory are the same for both versions of the model, however differences can be
observed in accesses to the global memory. To find a reason of those differences
we analyzed this case in more details. The number of transitions executions for
two warps are presented in Table 2.

According to Table 2, transition t0 was executed more frequently in the CPN
model than in the inhibitor model. The numbers of executions of other transi-
tions are coherent. Notice that a single transition in the CPN model (except for
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t0) corresponds to a single transition in each of the two WPNM in the inhibitor
model. The number of t0 executions in both cases differ due to different proba-
bility distribution used. When there are only global memory access instructions,
very often both warps are waiting for such an access. Then, in the CPN model
two transitions will be enabled: t0 corresponding to the waiting and t8 cor-
responding to the global memory latency. Without the maximal concurrency
semantics only one of them might be executed, and the probability of choosing
t0 is 1

2 . However, at the same time in the inhibitor model three transitions are
enabled: t0 corresponding to the waiting, t8 corresponding to the global memory
latency for the first warp and t25 corresponding to the global memory latency
for the second warp. Each of them will be executed would the probability 1

3 . The
numbers from the Table 2 corresponded to those observations. Therefore, in the
CPN model t0 is executed more frequently when the interleaving semantics is
used, because in conflict situations it is chosen with the higher probability. For
more warps in the inhibitor model the probability distributions differ even more.
When the maximal concurrency semantics is used the described problem do not
occur, because then in every step all the enabled transitions are executed as a
single step.

6 Conclusions and Future Work

The purpose of our PN based GPU computations and memory access model is to
help in the analysis and optimization of parallel algorithms, which are designed
to be implemented on CUDA graphical cards. We do not require the source code
to be given as an input, however the algorithm description should be detailed
enough to estimate the number of arithmetic operations and accesses to the
global and shared memory. Note that the other tools (e.g. the roofline model)
also require those information. The expected speedup of the computation from a
parallelization can be predicted and compared to other algorithms, even without
using any physical GPU device. The model can help to predict which algorithm is
the fastest, how much its modifications can affect the speedup of the computation
and whether they are significant enough to include them in the source code.

Any inaccurate results demonstrated by our model might be interpreted as
a premise that the algorithm should be improved. As an example recall the
presented results for the radix sort algorithm. The predictions of the PN model
for the first implementation were not satisfying, and the model clearly showed the
possibility of reducing the computation time with different organization of the
second phase of the algorithm. On the other hand, using the shared memory in
this case was not so beneficial. That was confirmed by the GPU kernels execution
times.

Another important advantage of the PN model is the possibility to check how
different values of parameters and the level of parallelization can affect the final
efficiency. As it can be observed in Fig. 5, it is not only a theoretical discussion,
the problem is substantial and can result in very different execution times of
kernels. With the appropriate number of threads, the GPU calculations were even
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three times faster. It should also be noticed that for all three implementations
presented above, different numbers of threads were the most efficient, hence the
selection of the one, universal number of threads is not possible. Our model easily
allows to check different number of threads (warps) and its predictions seem to be
very accurate. Various values of parameters may also result in different numbers
of arithmetic operations and accesses to the memory, and it can be also easily
introduced and analyzed by the model.

Our model can freely swap instructions of various types. It allows to check
whether different order of the instructions may improve the algorithm efficiency,
for example by allowing to hide thread waiting periods in calculations. If the
results of the PN model are significantly better than the results from GPU
kernels execution, that possibility should be considered. Naturally, the swap of
the instructions is not always possible because of the nature of calculations. One
of the most important improvements of the model would be the introduction
of a partial order over the set of instructions. This can be achieved by defining
dependence of instructions basing on the access to the same variable (see [9]).
The partial order would make predictions of the model more accurate.

The PN results are expressed as the number of steps performed, while for
the GPU computations we use the execution times of kernels in milliseconds. To
compare them directly, the special coefficient is required to align one result with
the other. However, different nature of various algorithms, as well as the lack
of research on atomic and comparable in terms of time consumption operations
makes the issue of finding the universal coefficient a very hard task.

Although designing an efficient sorting algorithm was not the aim of this
paper, we described the process of improving the parallel version of the con-
sidered radix sort algorithm. Nevertheless, it is worth to note that providing
its further improvements is possible. The radix sort is quite popular, both in
the most significant digit version (MSD), normally together with merge sort
subroutine [5], and the least significant digit version (LSD), as suggested in [11].

Note that for different GPU devices the execution time of a fixed kernel may
differ, while the number of steps performed by the model remains the same. It
would be useful to prepare a set of benchmarks, which for a given device compute
the universal scaling coefficient for this device and the model.
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Abstract. Data replication is a central mechanism for the engineering
of fault-tolerant distributed systems, and is used in the realization of
most cloud computing services. This paper explores the use of Coloured
Petri Nets (CPNs) for model-based testing of quorum-based distributed
systems. We have developed an approach to model-based testing of fault-
tolerant services implemented using the Go language and the Gorums
framework. We show how a CPN model can be used to obtain both unit
test cases for the quorum logic functions, and system level test cases
consisting of quorum calls. The CPN model is also used to obtain the
test oracles against which the result of running a test case can be com-
pared. We demonstrate the application of our approach by considering
an implementation of a distributed storage service on which we obtain
100% code coverage for the quorum functions, 96.7% statement coverage
on the quorum calls, and 52.3% coverage on the Gorums framework. We
demonstrate similar encouraging results also on a more complex Gorums-
based implementation of the Paxos consensus protocol.

1 Introduction

Distributed systems serve millions of users in many important applications and
domains. However, such complex systems are known to be difficult to imple-
ment correctly because they must cope with challenges such as concurrency and
failures [12]. Thus, when designing and implementing distributed systems, it is
important to ensure correctness and fault-tolerance. Distributed systems can
rely on a quorum system to achieve fault-tolerance, yet it remains challenging
to implement fault-tolerance correctly. Therefore, the use of testing techniques
is essential to detect bugs and to improve the correctness of such systems.

One promising testing approach is model-based testing (MBT) [23]. MBT is a
paradigm based on using models of a system under test (SUT) and its environ-
ment to generate test cases for the system. The goal of MBT is validation and
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M. Koutny et al. (Eds.): ToPNoC XIII, LNCS 11090, pp. 158–180, 2018.
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error-detection by finding observable differences between the behavior of the
implementation and the intended behavior of the SUT. A test case consists of
test input and expected output and can be executed on the SUT. Typically, MBT
involves: (a) build models of the SUT from informal requirements; (b) define test
selection criteria for guiding the generation of test cases and the corresponding test
oracle representing the ground-truth; (c) generate and run test cases; (d) compare
the output from test case execution with the expected result from the test oracle.
The component that performs (c) and (d) is known as a test adaptor and uses a
test oracle to determine whether a test has passed or failed.

In this paper, we investigate the use of Coloured Petri Nets (CPNs) [11]
for model-based testing applied to quorum-based distributed systems [24]. Quo-
rum systems are fundamental to building fault-tolerant distributed systems, and
recently the Gorums framework [17] has been developed to ease the implementa-
tion of quorum-based distributed systems. The Gorums framework constitutes a
distributed middleware that hides the complexity in implementing the commu-
nication, synchronization, message processing, and error handling between the
protocol entities. The widespread use of the Gorums framework will depend on
the correctness of its implementation in Go. This motivates our goal of system-
atically testing the Gorums middleware implementation and provides an MBT
approach that can be used to also systematically test applications that rely on
the Gorums framework implementation.

The contribution of this paper is to propose an MBT approach using CPNs
for quorum-based distributed applications implemented by the Gorums frame-
work. To illustrate the application of our approach, we show in detail how it
can be used on a Gorums-based implementation of a single-writer, multi-reader
distributed storage. The distributed storage system is implemented with a read
and a write quorum call, which clients can use to access the distributed storage.
The distributed storage may return multiple replies to a quorum call. To sim-
plify client access to the storage, Gorums uses a user-defined quorum function to
coalesce the replies into a single reply that can then be returned to the client. For
this particular storage system, we use a majority quorum. By developing a CPN
model of such a distributed storage, we are able to generate test cases consisting
of read and write quorum calls that test the Gorums framework implementa-
tion. For evaluation, we report on results obtained on the distributed storage
system, and present results obtained on a more complex example in the form of
the Paxos consensus protocol [16].

CPNs has been widely used for modeling and verifying models of distributed
systems spanning domains such as workflow systems, communication protocols,
and distributed algorithms [14]. Recently, work has also been done on auto-
mated code generation allowing an implementation of the modeled systems to
be obtained [15]. Comprehensive testing of an implementation is, however, an
equally important task in the engineering of distributed systems, independently
of how the implementation has been obtained. This also applies in the case of
automated code generation, as it is seldom the case that the correctness of the
model-to-text transformations and their implementation can be formally proved.
We have chosen CPNs as the foundation of our MBT approach as it has a strong
track record for modeling distributed systems, and enables compact modeling
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of data and data manipulation which is required for message modeling, quorum
functions modeling, and concrete test case generation. Furthermore, CPNs has
the ability to create parametric models, perform model validation prior to test
case generation, and it has mature tool support for both simulation and state
space exploration, which is important in order to implement our approach and
conduct practical experiments.

The rest of this paper is organized as follows. Section 2 introduces quorum-
based distributed systems and the Gorums framework, and Sect. 3 describes
the Gorums-based distributed storage which constitutes our system under test.
Section 4 presents the constructed CPN model for test case generation, and
Sect. 5 shows how state-spaces can be used to obtain test cases and test ora-
cles. In Sect. 6 we present the Go implementation of our test adapter and how it
is connected to the Gorums implementation of the distributed storage in order
to execute the test cases. In Sect. 7 we report on experimental results. Section 8
presents related work, and in Sect. 9 we sum up conclusions and present direc-
tions for future work. The reader is assumed to be familiar with the basic con-
cepts of high-level Petri Nets. This paper is an extended and revised version of
an earlier workshop paper [25].

2 Quorum-Based Distributed Systems and Gorums

Distributed algorithms are commonly used to implement replicated services, and
they rely on a quorum system [24] to achieve fault tolerance. That is, to access
the replicated state, a process only needs to contact a quorum, e.g. a majority
of the processes. In this way, a system can provide service despite the failure of
individual processes. However, communicating with and handling replies from
sets of processes often complicate the protocol implementations. The Gorums [17]
framework has been developed to alleviate the development effort for building
advanced distributed algorithms, such as Paxos [16] and distributed storage [2].

gRPC servers

Gorums client

Gorums

Quorum Call

Quorum 
Function

Invoke 
RPCs

S1 S3S2

RequestReplies

Fig. 1. Gorums architecture.

The Gorums framework reduces the
complexity of implementing quorum-
based distributed systems by providing
two core abstractions: (a) a flexible and
simple quorum call abstraction, which
is used to communicate with a set of
processes and to collect their responses,
and (b) a quorum function abstrac-
tion which is used to process responses.
These abstractions help to simplify the
main control flow of protocol implemen-
tations. Figure 1 illustrates the interplay
between the main abstractions provided
by Gorums. Gorums consists of a run-
time library and code generator that
extends the gRPC [8] remote procedure
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call library. Gorums allows clients to invoke a quorum call, i.e. a set of RPCs,
on a group of servers, and to collect their replies. The replies are processed by
a quorum function to determine if a quorum has been obtained. The quorum
function is invoked every time a new reply is received at the client, to evaluate
whether or not the received set of replies constitutes a quorum. With Gorums,
developers can specify several RPC service methods using protobuf [9], and
from this specification, Gorums’s code generator will produce code to facilitate
quorum calls and collection of replies. However, each RPC/quorum call method
must provide a user-defined quorum function that Gorums will invoke to deter-
mine if a quorum has been obtained for that specific quorum call. In addition,
the quorum function also provides a single reply value, based on a coalescing of
the received reply values from the different server replicas. This coalesced reply
value is then returned to the client as the result of its quorum call. That is, the
invoking client does not see the individual replies.

The contribution of this paper is to provide an MBT approach for generating
test cases to validate the correctness of the Gorums framework implementation
itself. This comes in addition to test cases for quorum function and quorum call
implementations for a specific use of the framework such as for implementing a
distributed storage. The quorum functions for a specific protocol implementation
must follow a well-defined interface generated by Gorums. These only require a
set of reply values as input and a return of a single reply value together with
a boolean quorum decision. Hence, quorum functions can easily be tested using
unit tests. However, some quorum functions involve complex logic, and their
input and output domains may be large, and so generating test cases from a
model provides significant benefit to verify correctness. A quorum call is imple-
mented by a set of RPCs, invoked at different servers, and so different inter-
leavings must be considered due to invocations by different clients. Hence, using
MBT we can produce sequences of interleavings aimed at finding bugs in the
server-side implementations of the RPC methods and also in the Gorums run-
time system.

3 System Under Test: Gorums and Distributed Storage

We have implemented a distributed storage system, with a single writer and mul-
tiple readers. The storage system is replicated for fault-tolerance, and is imple-
mented using Gorums. To test this storage implementation, we have designed
a corresponding CPN model that we use to generate test cases (see Sect. 4). In
this section, we describe the different components of the distributed storage and
how it has been implemented using Gorums.

As with any RPC library, Gorums requires that the server implements the
methods specified in the service interface. For our distributed storage, we have
implemented two server-side methods: Read() and Write(). These can be invoked
as quorum calls from storage clients, to read/write the state of the storage. In our
current implementation, we allow only a single write quorum call to be invoked,
but any number of read quorum calls can be invoked by the client to read the
state of the storage.
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A client reading from the storage may observe different replies returned by
the different server replicas. The reason for this is that the read may be inter-
leaved with one or more writes generated by the client. To allow a reader to
pick the correct reply value to return from a quorum call, each server main-
tains a timestamp that is incremented for each new Write(). That is, the reader
will always return the value associated with the reply with the highest times-
tamp. Thus, to implement the reader using Gorums, we can simply implement
a user-defined ReadQF quorum function for the Read() quorum call as shown
in Algorithm 1. As this code illustrates, a set of replies from the different servers
are coalesced into a single reply that can then be returned from the quorum call.
The reply of the quorum function is determined by the reply from the server(s)
having the highest timestamp.

The user-defined quorum functions are implemented as methods on an object
of type QuorumSpec, named qs in Algorithm 1. This object holds information about
the quorum size, such as ReadQSize, and other parameters used by the quorum
functions. This qs object must satisfy an interface generated by Gorums’s code
generator. In Algorithm 1, ReadQSize is used to determine if sufficient replies
have been received to return the server reply with the highest timestamp.

Algorithm 1. Read quorum function
1: func (qs QuorumSpec) ReadQF(replies [ ]ReadReply)
2: if len(replies) < qs.ReadQSize then � read quorum size
3: return nil, false � no quorum yet, await more replies

4: highest := ⊥ � reply with highest timestamp seen
5: for r := range replies do
6: if r.Timestamp ≥ highest.Timestamp then
7: highest := r

8: return highest, true � found quorum

4 CPN Testing Model for the Distributed Storage

In this section, we describe the CPN model of our test framework devel-
oped in order to generate test cases for the Gorums framework and the dis-
tributed storage implementation presented in Sect. 3. We model the entire sys-
tem, parametrized by the number of clients and servers. Some key features of
the model are the use of colored tokens for distinguishing multiple incoming and
outgoing messages, and the quorum specification based on the numbers of replies
received so far.

Figure 2 shows the top-most module of the CPN model. The substitution
transition Clients represents the clients (users) of the distributed storage system
while Servers represent the servers. The places ClientToServer and ServerToClient
are used for modeling the message channels for communication between the
clients and the servers. The CPN model has been constructed in a folded manner
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so that the number of servers is a parameter that can be configured without
making changes to the net-structure. Below we provide more details on selected
modules of the CPN model. The complete CPN model including all color sets,
variable declarations, and function definitions is available from [5].

Fig. 2. Top-level module of the CPN model.

Figure 3 shows the client submodule of the Clients substitution transition in
Fig. 2. The substitution transition QuorumCalls is used to model the behavior of
applications running on the clients, which makes the read and write quorum calls.
In particular, the submodules of QuorumCalls serve as test driver modules used to
generate system tests for the distributed storage and the Gorums framework. The
content of QuorumCalls depends on the specific test scenarios to be investigated
for the system under test, and we give a concrete example of a test driver module
in Sect. 6. The substitution transitions Read and Write represent the quorum calls
provided by the distributed storage. The invocation of quorum calls is done by
placing tokens on the Read and Write places. The port places ServerToClient and
ClientToServer are linked to the identically named socket places in Fig. 2.

Fig. 3. The Clients module.
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Fig. 4. The Read module.

Figure 4 shows the submodule of the Read substitution transition which pro-
vides an abstract implementation of the Read() quorum call. The main purpose
of the Read module is to generate test cases for the ReadQF quorum func-
tion. A read quorum call is triggered by the presence of a token with the color
READINVOKED(r), where r identifies the call and is used to match replies from
servers to the call. The execution of a read quorum call starts by sending a read
request to each of the servers. This is modeled by the transition SendReadReq
and the expression on the arc to place ClientToServer, which will add tokens
representing read requests being sent to the servers. In addition, a list-token is
put on place ReadReplies, which is used to collect the replies received from the
servers. The call then enters a WaitingReply state and waits for replies coming
back from the servers. When a read’s reply comes back, represented by a token on
place ServerToClient, then transition ApplyReadQF will be enabled. This transi-
tion takes the current list of readreplies and appends the received readreply
to form readreplies’. The quorum function is then invoked, as represented
by the arc expressions to WaitingReply and Read. If enough replies have been
received, then a read result is returned to the Read place containing the value
with the highest timestamp. As we will see later, we use occurrences of the
ApplyReadQF transition for generating test cases for the ReadQF quorum func-
tion. In addition, we record the result computed by the CPN model as the test
oracle and compare it to the result of our SUT’s implementation of the ReadQF
quorum function. The submodule for the Write() quorum call is similar. It has
a transition ApplyWriteQF, which we use as a basis for generating test cases and
obtain a test oracle for the WriteQF quorum function.

Figure 5 shows the server submodule of the Servers substitution transition in
Fig. 2. The replicated state of each server is modeled by the place State. The two
substitution transitions are used for modeling the handling of write requests and
read requests on the server side.
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Fig. 5. The Server module.

Figure 6 shows the submodule of the substitution HandleWriteRequest mod-
eling the processing of a write request from a client. The incoming write request
will be presented as a value in the list-token on place ClientToServer and contains
a value v’ to be written in the distributed storage together with a timestamp
t’. The server compares the timestamp of the incoming write request with the
timestamp t for the currently stored value v. If the timestamp of the incom-
ing write request is larger, then the new value is stored on the server, and a
write acknowledgment is sent back in a write reply to the client. Otherwise, the
stored value remains unchanged and a negative write acknowledgment is sent
to the client in the write reply. Handling of an incoming request requires that
the server is running (as opposed to failed) as modeled by the double arc
connecting ServerStatus and HandleWriteRequest. The handling of read requests
is modeled in a similar manner, except that no comparison is needed, and the
server simply returns the currently stored value together with its timestamps.

Fig. 6. The HandleWriteRequest module.

5 Test Case Generation

The generation of test cases for Gorums and the distributed storage system
is based on the analysis of executions of the CPN model. Test cases can be
generated for both the quorum functions and the quorum calls.
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The test cases generated for the quorum functions are unit tests, whereas the
test cases generated for quorum calls are system tests consisting of concurrent
and interleaved invocations of read and write quorum calls. The latter tests both
the implementation of the quorum calls and the Gorums framework implemen-
tation. In addition to the test cases, we also generate a test oracle for each test
case to determine whether the test has passed.

5.1 Unit Tests for Quorum Functions

Test cases for the ReadQF quorum function can be obtained by considering
occurrences of the ApplyReadQF transition (Fig. 4). When this transition occurs,
the variable readreplies’ is bound to the list of all replies that have been
received from the servers so far, and which the quorum function is invoked on.
In addition, we can use the implementation of the quorum function in the CPN
model as the test oracle. This means that the expected result of invoking the
quorum function can be obtained by considering the value of the token put
back on place WaitingReply. The value of this token contains the result of invok-
ing the quorum function in its second component. Generally, occurrences of
ApplyReadQF can be detected using either state spaces or simulations:

State-space based detection. We explore the full state space of the CPN
model searching for arcs corresponding to the ApplyReadQF transition. When-
ever an occurrence is encountered we emit a test case together with the
expected result. In this case, we obtain test cases for all the possible ways in
which the quorum function can be invoked in the CPN model.

Simulation-based detection. We run a simulation of the CPN model and use
the monitoring facilities of the CPN Tools [4] simulator to detect occurrences
of the ApplyReadQF transition and emit the corresponding test cases. The
advantage of this approach over the state-space based approach is scalability,
while the disadvantage is potentially reduced test coverage.

Test cases are generated based on detecting transition occurrences. This is
done in a uniform way for both detection approaches. Specifically, we rely on a
detection function, which must evaluate to true whenever a specific transition
occurrence is detected. When this happens, a generator function is invoked to
generate the actual test case. The state space for the CPN testing model of the
distributed storage service is relatively small and we can obtain all test cases
based on state space-based detection. The Paxos consensus protocol considered
in Sect. 7 is more complex, and hence we rely on simulation-based detection for
its test case generation.

Listing 1 shows an example of how our test cases are represented using XML.
The test case for the ReadQF quorum function corresponds to two replies (one
with value 0 and timestamp 0, and one with value 42 and timestamp 1). With
three servers, this constitutes a quorum, and the value returned from the quorum
function is therefore expected to be 42 with the timestamp of 1.
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<Test TestName="ReadQFTest">

<TestCase CaseID="1">

<TestValues>

<Content>

<Value>0</Value>

<Timestamp>0</Timestamp>

</Content>

<Content>

<Value>42</Value>

<Timestamp>1</Timestamp>

</Content>

</TestValues>

<ExpectResults>

<Value>42</Value>

<Timestamp>1</Timestamp>

</ExpectResults>

<ExpectQuorum>true</ExpectQuorum>

</TestCase>

</Test>

Listing 1. Example of generated test cases for read quorum function.

5.2 System Tests of Quorum Calls

The generation of test cases and expected results is based on the submodule of
the QuorumCalls substitution transition (see Fig. 3). This module acts as a test
driver for the system by specifying scenarios for read and write quorum calls to
the underlying quorum system. By varying this module, it is possible to generate
different scenarios of read and write quorum calls.

Figure 7 shows an example of a test driver in which the client executes one
read and one write quorum call as modeled by the transition InvokeRDWR. Upon
completion of these two calls, there are server failures and a new read and a write
call is invoked (modeled by the transition InvokeRDWRFailures). The server fail-
ures are modeled by changing the color of the server-tokens on place ServerStatus
which is used with the place ServerStatus on the HandleWriteRequest (see Fig. 6).
Each quorum call has a unique identifier (1, 2, 3, and 4) for identifying the call.
Each write call also has a value (in this case 42 and 7) to be written to the
distributed storage.

To make test case generation independent to the particular test driver mod-
ule, we exploit that the read and write quorum calls, made during an execution
of the CPN model, can be observed as tokens on the Read and Write socket places
(see Fig. 3). When there is a READINVOKED(i) token on place READ for some
integer i, it means that a read quorum call identified by i has been invoked.
When the read quorum call has terminated, there will be a token with the color
READRESULT(i,v) present on the place Read, where v is the value read by the
call. The invocation and termination of write quorum calls can be detected in
a similar manner by considering the tokens with the colors WRITEINVOKED(i,v)
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Fig. 7. The QuorumCalls module.

and WRITERESULT(i,b) on the place Write (Fig. 3), where the boolean value b
denotes whether the value v was written or not.

Based on this, we can generate test cases in XML format specifying both the
concurrent and sequential execution of read and write calls. Listing 2 (discussed
further below) shows an example where first a read and a write are initiated and
upon completion of these two calls, a new read call is initiated.

<Test TestName="SystemTest">

<TestCase CaseID="WRprRDsqRD">

<Routine RoutineID="A" OperationName="Write">

<OperationValues>

<Value>7</Value>

</OperationValues>

<Routine RoutineID="B" OperationName="Read">

<OperationValues>

<Value>7</Value>

<Value></Value>

</OperationValues>

</Routine>

</Routine>

<Routine RoutineID="A" OperationName="Read">

<OperationValues>

<Value>7</Value>

</OperationValues>

</Routine>

</TestCase>

</Test>

Listing 2. Example of a generated test cases for the concurrent and sequential
execution of read and write calls.

We handle concurrent executions by nesting the read and write Routine
tag as illustrated in Listing 2, while non-nested Routine tags are considered
sequential. For write calls, we use the value tag to specify the value to be written,
and for read calls we use the value tag to describe permissible values for the test
case (see next section) returned by read calls. The absence of a value between
value tags indicates that the result could be null—corresponding to the case
where no value have yet been written into the storage.
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It should be noted if the CPN model specifies that a read and write call may
execute concurrently (independently), but happened to be executed in sequence
in a concrete execution of the CPN model (e.g., first the read executes and com-
pletes and then the write executes an completes), then that will be specified as a
sequential test case in the XML format. This is not a problem as the CPN model
captures all the possible executions and hence there will be another execution
of the CPN model in which the read and the write are running concurrently.

5.3 Test Oracle for System Tests

Checking that the result of an execution with read and write quorum calls is as
expected is more complex than for quorum functions. This is because the result
of concurrently executing read and write calls depends on the order in which
messages are sent and received. Figure 8 shows an example test case in which
there are two routines (threads of execution) that concurrently execute read
and write quorum calls. When Write1 and Reada are initialized and executed
concurrently, the returned result of Reada could be the old value in the servers
before Write1 writes a new value to servers, or the returned result of Reada could
be the value already written by Write1 . The same situation applies to Write2
and Readc . Since they are executed concurrently, the returned value of Readc
could be the value written by Write1 or Write2 .

Write1 Read1 Write2 Write3

Reada Readb Readc Readd

Fig. 8. An example of concurrent and sequential execution of quorum calls.

This means that if we execute (simulate) the CPN model with a test case
containing concurrent read and write quorum calls, then the result returned
upon completion of the calls may be different if we execute the same test case
against the Go implementation. The reason is that we cannot control in what
order the messages are sent and delivered by the underlying gRPC library, i.e.,
due to non-determinism in the execution. When we apply a state-space based
approach for extracting the test cases, e.g., for the quorum function, then we can
compute all the possible legal outcomes of a quorum call since the state space
captures all interleaved executions. In contrast, we cannot obtain all legal values
when extracting test cases from a single execution of the CPN model.

The first step towards constructing a general test oracle is to characterize
the permissible values of a read quorum call. These are:

1. the initial value of the storage in case no writes were invoked before the read
was invoked, or;
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2. the value of the most recent write invoked but not terminated prior to the
read call (if any) or;

3. the value of the most recent write that has terminated prior to invocation of
the read or;

4. the value of a write that was invoked between the invocation and completion
of the read.

The above can be formally captured in the stateful automaton shown in Fig. 9
(left), which can be used to monitor the global correctness of the distributed
storage. The four events are shorthands for the abstract tokens per client-request
observed in the model, e.g., READINVOKED(i) is abbreviated RIi .

The set S is used to collect the set of permissible values for a read call. On
a read call RIi , any pending write WI (c) observed since the last write-return
WI (c) is a potential read-result. We abuse notation from alternating automata
with parametrized propositions [22] to capture that on a read invocation, we
remain in the initial state and collect further input for a new instance of the
monitor with the same current state (indicated by the dashed line) for subsequent
read-invocations. We explain Fig. 9 (right) in the next section.

S = ∅
RIi

WI (c) S � {c}

WRc S = {c}

RRi (x) x ∈ S

WI (c) S � {c}

RRi (x) x �∈ S

S1 S2 S3

R1 R2 Rn

Fig. 9. Read-write automaton (left) and monitor deployment (right).

6 Test Case Execution

Fig. 10. QuoMBT testing framework.

We have developed the QuoMBT test
framework in order to perform model-based
testing of quorum-based systems imple-
mented using the Gorums framework. Also,
we have implemented a client application
and a distributed storage system which
together with Gorums constitute the SUT.
Figure 10 gives an overview of the testing
framework comprised of CPN Tools and a
test adapter. CPN Tools is used for model-
ing and generation of test cases and oracles (see Sects. 4 and 5). The generated
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test cases and oracles are written into XML files by CPN Tools, and then read
by the test adapter. The reader of the test adapter feeds the test cases into the
client application (test cases for quorum calls) and the distributed storage (test
cases for quorum functions) implemented by the Gorums framework. Each test
case is executed with the provided test values as inputs. The tester included in
the test adapter compares the test oracle’s output against the output of each test
case in order to determine whether the test fails or succeeds. The test adapter
is implemented in the Go programming language.

The reader in the test adapter can read XML files for unit tests of read and
write quorum functions, and for system level tests involving quorum calls. The
implementation of the reader uses Go’s encoding/xml package, which makes it
easy to define mappings between Go structs and XML elements. In order to map
XML content into Go structs, each field of the Go struct has an associated XML
tag, which is used by Go’s XML decoder to identify the field to populate with
content from the XML. We could have generated Go-based table-driven tests,
which is already supported by the Go standard library. However, we chose to
use an XML-based format for the generated test cases to enable reuse of the test
generator across programming languages.

We have implemented the tester in the test adapter using the testing package
provided by the Go standard library. This tester can start the implemented
client application and execute generated test cases for the SUT. Go’s testing
infrastructure allows us to simply run the go test command to execute our
generated tests, which will provide pass/fail information for each test case. In
addition, this test infrastructure can also provide code coverage. When testing
the distributed storage, we distinguish between quorum functions and quorum
calls, because quorum functions are defined by developers when implementing
their specific abstractions, whereas quorum calls are provided generally by the
Gorums library. This separation also provides a modular approach to testing.

Our test adapter implements a Go-based tester for testing quorum functions,
i.e., performing the unit tests. We simply iterate through the test cases obtained
from the reader, invoking the ReadQF and WriteQF functions with the test
values, and compare the results against the test oracles. The unit tests for read
and write quorum functions can be performed without running any servers.

The system level tests require a set of running servers to test the complete
system, including parts of the Gorums framework. When doing the system level
tests involving quorum calls, the servers shown in Fig. 1 must be started first.
Then, the test adapter starts a client so that it can execute the quorum calls.
The test value, obtained from XML files, for each write quorum call is written
to servers by calling the write quorum call, and for each read quorum call, the
value returned by the servers will be captured by the tester to compare against
the test oracle. For each write quorum call, the tests simply check if it returns
an acknowledgment from servers.

The non-trivial part of the system test case execution is the concurrent and
sequential executions of read and write quorum calls. For the detailed implemen-
tation of the storage involving quorum calls under test, the testing function for
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quorum calls run through each test case read from the reader. For the run of each
test case, the write and read quorum calls can be executed both sequentially and
concurrently depending on the test driver used. For the sequential executions,
the decision to execute write or read calls is made according to their sequences
in the XML files generated by CPN Tools. For the concurrent executions of write
and read quorum calls, the test execution makes use of go-routines provided by
the Go programming language. Therefore, within each run of test cases, a write
or read quorum call is executed based on their sequence in the XML files. Mean-
while, there may be other read calls that can be executed concurrently with the
running write or read quorum call and this is then done in a separate go-routine.
After executing each test case, the returned values of quorum calls are collected.

In order to obtain a test oracle for quorum calls which can be used in both
state space-based and simulation-based test case generation, we use the automa-
ton in Fig. 9 (left) to perform run-time verification of the Go implementation
when executed on the system test cases derived from the CPN model. Specif-
ically, our test adapter implements a run-time monitor corresponding to the
automaton in order to keep track of the invoked and terminated write calls and
thereby determining whether a value returned from a read call is permissible. Our
test framework currently runs the client (the single writer and multiple readers)
within a single Go process. This allows us to directly call into the monitor before
the client sends the fan-out messages to servers, and after the quorum function
returns the resulting quorum value, to check the result of the read request for
plausibility against the permitted values specified above. This corresponds to
monitoring all calls and returns in a particular deployment, i.e., correlating read
calls and returns of the client in the system against those of the writer in the
shaded area of Fig. 9 (right).

7 Experimental Evaluation

We now consider experimental evaluation of our model-based testing approach
based on CPNs. In Sect. 7.1, we present in detail the results obtained for the
distributed storage system. In Sect. 7.2 we summarise experimental results for
an additional case study in which we have applied our approach to the Paxos
consensus protocol for data replication. The main purpose of the Paxos case
study is to demonstrate the generality of our approach and to show that it
can be applied also to more complex examples of Gorums-based distribution
systems. The library which we have developed for CPN Tools as part of this
work to support test case generation is available via [19].

7.1 Results on Distributed Storage

To perform an evaluation of our model-based test case generation, we consider
the code coverage obtained using different test drivers for concurrent and sequen-
tial execution of quorum calls in the client application. Our experimental evalu-
ation comprises both successful scenarios and scenarios involving server failures
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and programming errors. The toolchain of the Go language includes a code cov-
erage tool which we have used to measure statement coverage.

Table 1 summarizes the experimental results obtained using different test
drivers in which there are not server failures included. We consider the following
test drivers: one read call (RD), one write call (WR), a read call followed by a
write call (RD; WR), a write call followed by a read call (WR; RD), a read and
a write call executed concurrently (WR||RD), a read and a write call executed
concurrently and followed by a read call ((WR||RD); RD).

Table 1. Experimental results for distributed storage – successful scenarios.

Test driver Test case generation Test case execution

(coverage in percentage)

System Unit

ID Name Nodes Arcs Time

(seconds)

QC QF Gorums

library

QCs QFs

RD WR RD WR

S1 RD 39 72 <1 1 3 24.6 84.4 0 100 0

S2 WR 39 72 <1 1 3 24.6 0 84.4 0 100

S3 RD; WR 254 543 <1 1 7 39.1 84.4 84.4 100 100

S4 WR; RD 254 543 <1 1 12 40.8 84.4 84.4 100 100

S5 WR||RD 1,549 4,379 1 6 17 40.8 84.4 84.4 100 100

S6 (WR||RD); RD 3,035 7,867 2 6 17 40.8 84.4 84.4 100 100

The table shows the number of nodes/arcs in the state space of the CPN
model with the given test driver, the state space and test case generation time
in seconds, the number of test cases generated for quorum calls (QC), the number
of test cases generated for quorum functions (QF). For the test case execution,
we show the code coverage (in percentage) that was obtained for the system
level and unit tests. The results for successful execution scenarios show that the
statement coverage for read (RD-QF) and write (WR-QF) quorum functions
is 100% for both system and unit tests, as long as both read and write calls
are involved. The statement coverage for read (RD-QC) and write (WR-QC)
quorum calls is up to 84.4%. For the Gorums library as a whole, the statement
coverage reaches 40.8%. It is worthwhile noting that the sizes of the state spaces
considered are small. This is due to the fact that the CPN testing model describes
the quorum-based system at a high level of abstraction which in turn is what
makes the approach feasible.

The test cases considered above validates that the implementation of the
distributed storage and the Gorums framework works correctly when there are
no server failures. To further increase the code coverage and further evaluate our
approach, we additionally evaluated the following aspects:

Programming errors. Gorums requires the developer to implement the quo-
rum functions for the specific quorum-based system. To evaluate our ability
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to detect programming errors in these function, we injected programming
errors in the quorum functions for the distributed storage (see Algorithm1)
such that the requirement for having a quorum was incorrectly implemented.

Server and communication failures. Quorum-based systems are designed to
tolerate server failures. To test the Gorums framework under such conditions,
we consider the S6 driver from Table 1 and created a scenario in which first S6
is executed, then there is one or more server failures, and then S6 is repeated.
A related scenario is that the client attempts to make quorum-calls before
the servers have started.

Rerunning the test cases from Table 1 in the presence of programming errors
resulted in the test cases not passing. This demonstrates our ability to detect
programming errors in the quorum functions.

The server failures scenarios are handled in the test adapter by a component
that can terminate any number of the servers when executing such test cases.
Our test case execution showed that the distributed storage and the Gorums
framework in a configuration with three servers are able to handle up to one
server failure (as expected). The size of the state spaces generated for these
scenarios ranged between 1,500 states (all servers failed) and 3,000 (no server
failure). The total number of test cases ranged from 9 to 16.

The results for scenarios involving failures and programming errors show that
the statement coverage for read (RD-QF) and write (WR-QF) quorum functions
is still 100% for both system and unit tests. The statement coverage for read (RD-
QC) and write (WR-QC) quorum calls is increased to 96.7%. For the Gorums
library as a whole, the statement coverage is also increased to 52.3%. The reason
for the lower coverage of the Gorums library is that it contains code generated
by Gorums’s code generator, and among them, various auxiliary functions that
are never used by our current implementation. The total number of lines of code
for the system under test is approximately 2100 lines, which include generated
code by Gorums’s code generator (around 1800 lines), server code (around 120
lines), client code (around 80 lines) and the code for quorum functions (around
60 lines).

As part of analyzing the results of the code coverage and experimenting with
the test case generation, we also discovered a code path that was not covered. So
we added an additional test that would cover this particular path. This involved
passing nil as an argument to either the read (RD-QC) or write (WR-QC) quo-
rum calls. The code path in question had recently been introduced to support
a new feature in Gorums, but when the code path was exercised without acti-
vating its intended feature, the test case revealed that this code path had a bug
causing the test client to panic. The bug has since been reported to the Gorums
developers, and a fix has been implemented.

7.2 Results on the Paxos Consensus Protocol

To show that our approach is more generally applicable, we report on one addi-
tional case study which we have conducted with our model-based testing app-
roach for CPNs and the support provided by QuoMBT. The example is an
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implementation of the Paxos protocol using the Gorums framework. Paxos is a
fault-tolerant consensus protocol that makes it possible to construct a replicated
service using a group of server replicas. Paxos is considerably more complex than
the distributed storage system, and each Paxos node (server replica) implements
a proposer, an accepter, and a learner subsystem in addition to software compo-
nents for failure and leader detection. Furthermore, three quorum calls (prepare,
accept, and commit) are used in the implementation of the protocol. Due to the
complexity of the Paxos protocol we have used simulation-based test case gen-
eration using up to 10 simulation runs to extract test cases.

Table 2 summarizes the experimental results obtained. The table shows the
statement coverage obtained for the different subsystems of our Paxos imple-
mentation. Note that the Unit tests are for the quorum functions and hence not
applicable for the other subsystems. The two numbers written below System
tests and Unit tests gives the total number of test cases generated for 3 and 5
replica configurations, respectively. The test case generation for each configura-
tion considered took less than 10 seconds, and the execution of each test case
took less than one minute.

Table 2. Experimental results for test case generation and execution.

Subsystem Component System tests Unit tests

15/38 74/424

Gorums library 51.8% -

Paxos core Proposer 97.4% -

Acceptor 100.0% -

Failure detector 75.0% -

Leader detector 91.4% -

Replica 91.4% -

Quorum calls Prepare 83.9% -

Accept 83.9% -

Commit 83.9% -

Quorum functions Prepare 100.0% 90.0%

Accept 100.0% 85.7%

The results show that the statement coverage of unit tests for Prepare and
Accept quorum functions are up to 90% and 85.7%, respectively. For the sys-
tem tests, the statement coverage for Prepare, Accept and Commit quorum calls
reaches 83.9%, respectively; the results of statement coverage for Prepare and
Accept quorum functions are up to 100%; for the Paxos implementation (Paxos
core in the table), the Proposer module’s statement coverage reaches 97.4%; the
statement coverage of the Acceptor module is up to 100%; the statement cover-
ages of the Failure Detector and Leader Detector modules reach 75.0% and 91.4%,
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respectively; the statement coverage of the Paxos replica module reaches 91.4%;
for the Gorums library as a whole, the highest statement coverage reaches 51.8%.

Similar to the distributed storage system, we obtain a high statement cover-
age for the Paxos implementation. In addition, using the generated test cases we
identified several programming errors in the Paxos implementation which could
then be fixed. To construct the CPN testing model for the Paxos protocol, we
reused the modeling patterns for quorum functions and quorum calls developed
for the distributed storage system. Furthermore, the test case generation algo-
rithms were directly used without change to generate test cases for the Paxos
protocol. The parts that had to be developed specifically for the Paxos protocol
was the observation and detection functions, and parts of the formatting func-
tion used to generate the XML test case representation. Finally, parts of the test
adapter had to be implemented to match the quorum calls and quorum functions
that are specific for the Paxos implementation. This shows that significant parts
of our approach can be used for other Gorum-based protocol implementations.

8 Related Work

Model-based testing is a large research area, and MBT approaches and tools have
been developed based on a variety of modeling formalisms, including flowcharts,
decision tables, finite-state machines, Petri Nets, state-charts, object-oriented
models, and BPMN [13]. Saifan and Dingel’s survey [20] provides a detailed
description of how model-based testing is effective in testing different aspects
of distributed systems, and it classifies model-based testing based on different
criteria and compares several model-based testing tools for distributed systems
based on this classification. The comparison, however, does not identify work
that can be applied to systems that rely on a quorum system to achieve fault-
tolerance.

The Gorums framework has only recently been developed, and hence there
does not yet exist work that have considered model-based testing of this frame-
work. Chubby [3] was one of the first implementations of Paxos that were
deployed in a production environment, and thus were extensively tested. They
highlight that at the time (2007), it was unrealistic to prove correct a real sys-
tem of that size. Thus to achieve robustness, they adopted meticulous software
engineering practices, and tested random sequences of network outages, message
delays, timeouts, and process crashes. Using our CPN model and our generated
tests, we aim to test many of the same attributes in a more systematic manner.
Xiangdong et al. [10] applied a CPN-based simulation method on a quorum-
based distributed storage system called Cassandra [1]. Cassandra is highly con-
figurable, and the focus in their work was to find appropriate parameter settings
to achieve the best performance. To this end, they developed a CPN-based sim-
ulator specifically for Cassandra, which allow tuning various system parameters
such as cluster size, timeouts and read/write ratios, for their CPN models. In our
work, we focus on using the CPN test models for generating test cases to perform
both unit and system tests to the implementations of distributed systems.
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The Integration and System Test Automation (ITSA) tool follows a CPN-
based approach to MBT [28]. The tool can generate test code for a variety of
languages including Java, C/C++, C# and HTML. Compared to the ITSA tool,
our MBT approach is not tied to a particular programming language, since the
test cases can be generated as an XML format, which can be read by any pro-
gramming language. The ITSA tool also uses the state space of the testing model
to generate and select test cases. To obtain concrete test cases with input data,
the tool relies on a separate model-to-implementation mapping. In contrast, we
obtain the input data for the quorum functions and calls directly from the data
modeling contained in the CPN testing model. As a case study, the ISTA tool
has been applied to an online shopping system. However, their approach does
not appear to be suitable for testing complex distributed system protocols, since
they do not handle concurrency and failures, which is at the core of our work in
this paper.

Faria et al. [6] use timed event-driven CPNs to generate test code. They do
not use CPNs as a direct interface to the user, but generate them from UML
sequence diagrams. Their tool suite has a different focus in that they instrument
a running system to observe the messages specified in the sequence diagrams.
The toolset can only perform JUnit tests on Java-based applications, and it has
not been used for unit and system testing of distributed systems. Liu et al. [18]
has also proposed a CPN-based test generation approach. The approach requires
defining a conformance testing-oriented CPN (CT-CPN) model and a PN-ioco
relation specifying how an implementation conforms to its specifications. Their
test case generation algorithm for the CT-CPN model is simulation-based. In our
approach on the other hand, we can directly generate test cases using both state
space-based and simulation-based test case generation for an existing implemen-
tation of the system under test. A model-based test generation technique based
on CPNs is used by Daohua, Eckehard and Jan [27] to verify a module of a
satellite-based train control system. They use CPN Tools to generate the reach-
ability graph of the test model, and use state space analysis with CPN Tools
to extract the expected output of each test case from the path of the reachabil-
ity graph. However, their technique does not support simulation-based test case
generation, which is of utmost importance for scalability.

Moreover, Watanabe and Kudoh [26] propose two different CPN-based test
suite generation methods for concurrent systems. However, their methods do not
directly address a particular way to derive a CPN testing model for a distributed
system, nor do they analyze achieved code coverage. Wei et al. [29] describe two
algorithms for generating test cases and test sequences from a CPN model. In
their method, a CPN model of the system under test is created. This model is
then used as input to their APCO algorithm to generate an initial set of test
cases which can be converted to test sequences using their SPS algorithm. Then,
the set of original test cases and the test sequences can be exported as XML for-
matted files. They demonstrated their MBT approach for testing a radio module
in a centralized railway control system. In contrast to our approach, Wei et al. do
not consider test scenarios with failures, do not handle concurrency, and their
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approach has not been used to validate distributed systems. Finally, we discuss
Farooq, Lam and Li’s test sequence generation technique [7]. They derive a CPN
model from a UML Activity Diagram, and use the derived model to generate
test sequences. They demonstrate their approach on a fictional enterprise com-
merce system, describing the process of purchasing products online. In our MBT
approach, we have designed a testing framework, consisting of the constructed
CPN test models, test case generation algorithms and a test adapter, in order
to enable the execution of the generated tests on real distributed systems.

9 Conclusions and Future Work

The main contribution of our work is an MBT approach that can be used for
testing quorum-based distributed systems implemented using Gorums. Our app-
roach includes modeling patterns, test case generation algorithms, and a test case
execution infrastructure. As case studies, we have applied our approach to a dis-
tributed storage system and a Paxos implementation to illustrate and evaluate
its applicability. The results are promising in that we have obtained high code
coverage by considering both common case execution scenarios and failure sce-
narios. Furthermore, the results have been obtained with relatively simple test
drivers and a small number of test cases. We have shown that in addition to
obtaining results on code coverage, our generated unit and system tests are able
to detect programming errors.

An important attribute of our approach is that the CPN testing model has
been constructed such that it can serve as a basis for model-based testing of
other quorum-based systems. This has been demonstrated by the application of
our approach to the more complex Paxos consensus protocol. In particular, it
is only the modeling of the quorum calls on the client and server side that are
system dependent. To experiment with different quorum functions for a given
quorum system, it is only the implementation of the quorum functions in Stan-
dard ML that needs to be changed. The state space and simulation-based test
case generation approaches are independent of the particular quorum system
under test. Our current solution uses the CPN model to generate test cases and
record the correct response from the quorum function. The global monitor pre-
sented in Sect. 5 independently specifies safe behavior in the form of correct read
calls.

The work presented in this paper opens up several directions of future work.
We have obtained good coverage results on the quorum functions and quorum
calls with the current testing model by considering both successful execution
scenarios and scenarios involving server failures and programming errors. How-
ever, in order to increase coverage and consider more of Gorums’s code paths,
we need to test the quorum calls under additional failures scenarios and adverse
conditions, such as network errors. This will require extensions to the model e.g.
for generating timeouts, which in turn must be recorded in the test cases. This
in turn will require extensions to the test adapter such that the environment can
replay these events during test case execution.
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Model-based testing can be used to test a system either by connecting a
model (acting as a test driver) directly to an instance of the running system,
or, as we do in this paper, generate test cases offline and execute these test
cases against the system. The main challenge related to this, is how to handle
non-determinism during test case execution. In our current approach, we have
addressed this by using monitors known from the field of run-time verification.
Instead of the automaton, a different formal specification logic for (distributed)
systems could have been used, e.g. Scheffel and Schmitz’s distributed temporal
logic [21]. Their three-valued logic would allow us to adequately capture that
the monitor has neither detected successful nor failed completion.

To further evaluate the generality of our modeling and test case generation
approach, we need to apply it to additional quorum-based systems. For example,
we can extend our current distributed storage to support multi-writer storages
with multiple clients. This will challenge the limits of state space-based gener-
ation of test cases as was also demonstrated with the Paxos protocol. A future
direction is to also extend our approach to be applicable also to non quorum-
based distributed systems. In particular, it becomes important to investigate in
more detail the test coverage that can be obtained with simulation versus the
test case coverage that can be obtained with state spaces. We anticipate that
this will motivate work into techniques for on-the-fly test case generation and
test case selection during state space exploration.
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Emmanuel Paviot-Adet1,5, Löıg Jezequel6, Francis Hulin-Hubard7,

Elvio Amparore8, Marco Beccuti8, Bernard Berthomieu9, Hugues Evrard10,
Peter G. Jensen11, Didier Le Botlan9, Torsten Liebke12, Jeroen Meijer13,
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Abstract. Created in 2011, the Model Checking Contest (MCC) is
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ware tools that verify concurrent systems using state-space exploration
techniques and model checking. This article presents the principles and
results of the 2017 edition of the MCC, which took place along with the
Petri Net and ACSD joint conferences in Zaragoza, Spain.

1 Goals and Scope of the Model Checking Contest

The Model Checking Contest (MCC) is part of the growing trend of scientific
contests, among which one can also mention: the SAT1 and the SMT2 competi-
tions, the Hardware Model Checking Competition3, the Rigorous Examination
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1 http://www.satcompetition.org.
2 http://www.smtcomp.org.
3 http://fmv.jku.at/hwmcc/.
4 http://rers-challenge.org.
5 http://www.tauworkshop.com/.

c© Springer-Verlag GmbH Germany, part of Springer Nature 2018
M. Koutny et al. (Eds.): ToPNoC XIII, LNCS 11090, pp. 181–209, 2018.
https://doi.org/10.1007/978-3-662-58381-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-58381-4_9&domain=pdf
http://www.satcompetition.org
http://www.smtcomp.org
http://fmv.jku.at/hwmcc/
http://rers-challenge.org
http://www.tauworkshop.com/
https://doi.org/10.1007/978-3-662-58381-4_9


182 F. Kordon et al.

tition on Software Verification6. The overall goal of these contests is to identify
the theoretical approaches that are the most fruitful in practice when applied to
a variety of examples, and figure out which types of systems are best handled by
each approach. These contests also favor the emergence of systematic, rigorous,
and reproducible ways to assess the capabilities of verification tools on complex
(realistic and synthesized) benchmarks.

The primary goal of the MCC is to evaluate model-checking tools that ana-
lyze formal description of concurrent systems, i.e., systems in which several pro-
cesses run simultaneously, communicating and synchronizing together. Examples
of such systems include hardware, software, communication protocols, and bio-
logical models. The Model Checking Contest has been actively growing since its
first edition in 2011, attracting key people sharing a formal methods background,
but with diverse knowledge.

The community gathered around the MCC is actively involved in key activ-
ities that contribute to its growth year after year: contributing models to the
benchmark, submitting tools to the competition, improving the automated gen-
eration of temporal logic formulas, maintaining the repository of models, con-
tributing the infrastructure for running and evaluating the competing tools,
improving the performance measurement and assessment tools, and publishing
the results.

So far, all editions of the MCC have been using Petri nets to describe the
analyzed systems. However, the contest is also open to tools not primarily based
on Petri nets. Indeed, we have observed, over several editions, participating tools
interfacing a native generic engine with the input format of the MCC.

The present paper reports about the seventh edition, which was organized in
Zaragoza as a satellite event of the 38th International Conference on Application
and Theory of Petri Nets and Concurrency and the 17th International Confer-
ence on Application of Concurrency to System Design. The goals of the MCC
were first depicted in [31]; for this first edition of the MCC, experiments were
conducted on a small number of models, and tools were merely asked to build the
reachability graph, perform deadlock detection, and evaluate simple reachability
formulas. Over the years, new models and new classes of problems have been
added, and enhancements of the evaluation procedure have been introduced,
which have been described in [32], which reports about the fifth edition of the
MCC held in 2015. Compared to this latter presentation, the present paper:

– highlights the new benchmarks used for the recent editions of the contest,
highlighting the variety of the contributed models;

– reports about improvements in the formulas generation workflow and updates
in restructuring and simplifying the categories of verification tasks in the
competition;

– discusses the impact of the growing number of runs (as a result of the growing
number of models and submitted tools) on the evolution of the execution
infrastructure and in-house assessment tool BenchK it;

6 https://sv-comp.sosy-lab.org/.

https://sv-comp.sosy-lab.org/
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– provides an in-depth analysis and discussion of the results and involved tech-
niques used in the competing tools, with a comparison between symbolic
approaches (i.e., those based on decision diagrams) and explicit ones (i.e.,
those based on the enumeration of explicit states); and

– presents all the tools that won a gold or silver medal during the 2017 edition
of the MCC; for each winning tool, the underlying algorithmic techniques are
explained, and the lessons learned from the contest are discussed.

The remainder of this paper is organized as follows. Section 2 presents the
models submitted to the 2017 edition of the MCC, highlighting an interesting col-
lection of models (originating from novel distributed algorithms) that have been
contributed to the MCC, and describes the way temporal-logic formulas have
been produced by the MCC team. Then, the monitoring environment and the
experimental conditions are sketched in Sect. 3. Section 4 focuses on the results
of the 2017 edition and the presentation of the tools that won a gold or silver
medal in at least one examination. Finally, Sect. 5 reflects on the overall expe-
rience gained in organizing the MCC over the first seven editions, and discusses
future work.

2 Models and Formulas

All the tools participating in a given edition of the MCC are evaluated on the
same benchmark suite, which is incrementally updated every year. The yearly
edition of the MCC starts with a call for models inviting the scientific community
at large (i.e., beyond the developers of the participating tools) to propose novel
benchmarks that will be used for the MCC. These benchmarks consist of models
and formulas.

2.1 Models

Each model corresponds to a particular academic or industrial problem, e.g.,
a distributed algorithm, a hardware protocol in a circuit, a biological process,
etc. A model may be parameterized by one or more parameters representing
quantities, such as the number of agents in a concurrent system, the number of
messages exchanged and the like. To each parameterized model are associated
as many instances (typically, between 2 and 25) as there are different combina-
tions of parameter values; each non-parameterized model has a single associated
instance.

Each instance is a Petri net encoded in the PNML [26] file format.
Each model, its instances, and their structural and behavioural properties are
described in a synthetic PDF document called model form – see [32, Sect. 2]
for details about model forms and their preparation. There are two kinds of
instances: colored Petri nets and place-transition nets (noted P/T nets). Among
the latter, one identifies the particular class of NUPNs (Nested-Unit Petri Nets)
[17] [32, Sect. 2], a structured form of Petri nets that preserve locality and hierar-
chy information by recursively expressing a net in terms of parallel and sequential
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Table 1. Accumulation of models and instances over the years

Year 2011 2012 2013 2014 2015 2016 2017

New models 7 12 9 15 13 11 10

All models 7 19 28 43 56 67 77

New instances, among which: 95 101 70 138 121 139 153

– new colored nets 43 37 24 33 27 9 16

– new P/T nets 52 64 46 105 94 130 137

– new NUPNs (among P/T nets) 0 0 1 5 15 62 64

All instances 95 196 266 404 525 664 817

compositions. It is worth mentioning that, beyond the Model Checking Contest,
the NUPN model has also been adopted for the parallel problems of the RERS
(Rigorous Examination of Reactive Systems) competition7.

In 2017, following the MCC call for models, ten new models (totalling
153 instances) have been proposed, namely: BART (a sample speed controller,
by Fabrice Kordon), ClientsAndServers (an architecture with clients, servers,
managers, and resources, by Claude Girault), CloudReconfiguration (a dynamic
reconfiguration protocol for cloud applications, by Rim Abid, Gwen Salaün, and
Noël de Palma), DLCround (various distributed implementations of the musi-
cal chairs game, by Hugues Evrard), FlexibleBarrier (a novel barrier algorithm
for multitasking on GPUs, by H. Evrard), HexagonalGrid (a packet-switching
network whose ports are situated on the sides of an hexagon, by Tatiana Shmel-
eva), JoinFreeModules (a model of a schedulability problem, by Thomas Hujsa),
NeighborGrid (a canvas of cellular automata, by Dmitry Zaitsev), Referendum (a
simple referendum system, by F. Kordon), and RobotManipulation (concurrent
processes that handle robots, by F. Kordon).

The new models submitted each year are called surprise models because they
are not known in advance by the tool developers participating in the MCC, con-
trary to the models submitted during the former years, which are thus called
known models. The surprise models are merged with the known ones to form
a growing collection8 (continuously expanded since 2011), which gathers sys-
tems from diverse academic and industrial fields: software, hardware, network-
ing, biology, etc. Table 1 gives an account of this collection, which currently has
77 models and 817 instances; colored Petri nets, P/T nets, and NUPNs represent
respectively 23%, 77%, and 18% of this collection.

2.2 Featured Model Contribution

The collection of MCC benchmarks is a perennial result, which will remain avail-
able to the scientific community after the MCC contests have stopped. The useful-
ness of this collection is already witnessed by nearly fifty scientific publications9.

7 See http://www.rers-challenge.org.
8 The collection of benchmarks is available from http://mcc.lip6.fr/models.php.
9 The current list of publications is available from http://mcc.lip6.fr/bibliography.php.

http://www.rers-challenge.org
http://mcc.lip6.fr/models.php
http://mcc.lip6.fr/bibliography.php
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The contributors who submit new models play an essential role in every MCC
edition. However, these contributors receive much less visibility than the tool
developers participating in the MCC, as the latter can be rewarded by podiums
and medals. To address this bias, it was decided to put a special focus on the
contributor who submitted the most models since the first MCC edition. So
far, the most active contributors are Fabrice Kordon (15 models), Lom Messan
Hillah (6 models), Hugues Evrard (5 models), Monika Heiner (5 models), and
Niels Lohmann (5 models). Given that many of these contributors are already
authors of the present article, either as MCC organizers or tool developers, we
chose to put the focus on Hugues Evrard by inviting him to present the five
models he contributed to the MCC.

These five models are: MultiwaySync (2014, prepared with Frédéric Lang),
Raft (2015), DLCshifumi (2016, also with F. Lang), DLCround (2017), and Flex-
ibleBarrier (2017). These models share two common points: (i) they all describe
involved aspects of the implementation of synchronisation among concurrent
processes in modern distributed systems, and (ii) these models have not been
expressed directly using Petri nets, but rather generated automatically from for-
mal specifications written in a higher-level concurrent language. Precisely, these
models have been written in LNT [19], a concurrent language designed as a
modern replacement for LOTOS (ISO/IEC international standard 8807). The
LNT specifications are first translated to LOTOS using the LNT2LOTOS trans-
lator, which is part of the CADP toolbox [18], and then to Petri nets (actually,
NUPNs) using the CÆSAR compiler, also available as part of CADP.

MultiwaySync [15] is a distributed synchronisation protocol that implements
multiway rendezvous, the generalization of Hoare’s rendezvous [25] to more than
two concurrent processes. Multiway rendezvous (see [20] for an overview) is used
by most process calculi to perform synchronisation and communication between
an arbitrary number of concurrent processes. It is more complex than ordinary
synchronisation barriers, as each process can be willing to participate in sev-
eral synchronisations at the same time, but can only engage in a single one.
MultiwaySync implements multiway synchronisation on top of the lower-level,
asynchronous message-passing primitives provided by usual networks; the design
of MultiwaySync revealed subtle bugs in former protocols implementing multi-
way synchronisation.

Raft was obtained by formally specifying in LNT the Raft algorithm [37] that
enables concurrent processes to reach consensus, even in the presence of failures;
this is crucial for implementing fault-tolerant services replicated on many servers,
some of which may crash or be unreliable. Raft was designed to replace Paxos, the
standard consensus algorithm [33], which is notoriously complex and difficult to
implement correctly; the rapid adoption of Raft by several companies (Facebook,
Hashicorp, CoreOS) illustrates the need for a “simpler Paxos”.

DLCshifumi and DLCround model distributed implementations of two well-
known games: shifumi (rock-paper-scissors) and musical chairs. These two mod-
els, contrary to the three other ones, have not been written by hand in LNT,
but produced automatically using the DLC tool [14,16]. DLC (Distributed LNT
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Compiler) generates, from an LNT specification, a distributed implementation
running on a set of machines communicating through TCP sockets and syn-
chronizing using the aforementioned MultiwaySync protocol. For verification
purpose, DLC can also generate a formal model of such a distributed imple-
mentation, where the multiway synchronisation protocol used in the runtime
is made explicit. This formal model is itself expressed in LNT, and this is the
way DLCshifumi and DLCround have been produced, before being translated
to NUPNs.

Finally, FlexibleBarrier describes a special barrier used in the context of
cooperative kernels, so as to enable multitasking on GPUs [39]. In this program-
ming model, processes can offer to be killed or forked by the scheduler at precise
points of their execution; hence, the number of alive processes varies dynami-
cally and the flexible barrier must interact with the scheduler to know how many
processes have to be synchronised.

2.3 Formulas

Tools competing in the MCC are evaluated over five categories of verifica-
tion tasks: state-space generation, upper-bounds computation (this category
was introduced in 2016), reachability analysis, CTL analysis, and LTL analy-
sis (see their description in Sect. 4.1). To maximize tool participation, we fur-
ther divided the four latter categories into subcategories containing only for-
mulas with a restricted syntax. Each tool developer may choose in which cate-
gories/subcategories the tool participates.

In 2015, we consolidated the formula language and provided simplified XML
metamodel for each (sub)category, while preserving backward compatibility with
previous MCC editions. Since then, the only change to the general metamodel for
formulas has been a redefinition of one atomic proposition (called place-bound
and used only in the new upper-bounds computation category) because tool
developers had reported it would be more convenient.

In 2016, we reduced the number of categories. Previously, subcases were sim-
pler versions (with restricted grammar) of larger cases—for example we had
LTLFireability and its simpler counterpart LTLFireabilitySimple. Since every
tool participating in the simple subcategories was also participating in its more
general counterpart (with similar results in both categories), they were not inter-
esting any more.

For each model instance and each subcategory, 16 formulas are automati-
cally generated and stored into a single XML file (of which a textual version
is also provided for the convenience of tool developers). Each tool participating
in the corresponding subcategory is requested to evaluate, on the corresponding
instance, all or part of the formulas contained in the XML file.

To obtain formulas of good quality we apply the following process for reach-
ability and CTL formulas (see Fig. 1). Using the grammar of each category, we
generate 320 random formulas of up to a certain depth (7 operators) for each
examination on each model instance. Then, we filter these generated formulas,
in two steps to keep 16 of them:
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formulasFormula generator consolidated 
formulas

Fig. 1. Process to produce formulas in the MCC.

– First, we use SAT solving to filter out formulas that are equivalent to true or
false independently of the model.

– Then, we pass formulas to SMC, an ad-hoc CTL bounded model checker
specifically developed for the competition. If SMC is able to decide the satis-
fiability of a formula by examining only the first 1000 reachable states (using
BFS exploration), then we discard the formula.

If too many formulas are filtered out, we stop filtering and just wait until we
reach 16 formulas by random formulas (they thus may be easy to solve)—this
happens in particular for models with less than 1000 reachable states.

Let us illustrate this process on the CTL and reachability formulas produced
for surprise models in 2017. 175 360 formulas were produced by the formula
generator. Then, only 8 768 consolidated formulas remained after filtering (which
corresponds to 5% of the original formulas). Among these consolidated formulas,
8 548 are considered to be difficult10 (97.5%).

For LTL, the second filter is not active yet and we only discard tautologic
formulas by considering that atomic propositions are not trivial; this is less
efficient than the process we have set-up for other types of formulas. So, our
current focus is on providing a better filtering of LTL formulas (SMC, used to
check for the complexity of the computation is specialized for CTL). We also
aim at generating more realistic formulas (i.e., that would be as close as possible
to human-written formulas).

3 Monitoring Environment and Experimental Conditions

Operating the MCC requires to run a tool many times (once per examination per
model instance). There were 54 293 runs in 2013, 83 308 in 2014, 169 078 in 2015,
128 682 in 2016, and 91 710 in 2017. To control the increasing need for CPU, we
decided to process tools on a subset of the model instances of the models: no
model was discarded from the benchmark but most of the instances that could
be processed by more than 70% of the tools in 2016 were discarded. Each run
can last up to one hour of CPU.

Such a number of executions thus requires a dedicated software environment
that can take benefits from recent multi-core machines and powerful clusters.
Moreover, we need to measure key aspects of computation, such as CPU or peak
memory consumption, in the least intrusive way. To achieve this in an automated
way, we developed BenchK it [30], a software technology (based on QEMU) for

10 Our ad-hoc CTL bounded model checker could not resolve it by exploring 1000
states.
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measuring time and memory during tool execution. First used during the 2013
edition, BenchK it was regularly enhanced with new capabilities: dramatic reduc-
tion of the execution overhead (we need to boot a virtual machine for every run),
the possibility to specify precisely the type of emulated processor (to avoid exe-
cution problems when several families of intel-compatible processors were used),
and the support of multicore virtual machine to allow concurrent executions of
tools.

In 2016 and 2017, the number of runs was reduced. In 2016, most tools
only submitted one variant and, in 2017, only a subset of the benchmark was
selected. On the one hand, this reduction only allowed CPU needs to stay stable
despite the growth of the benchmark: 1549 days in 2015, 1481 in 2016 and 1547
in 2017. The main reason is that formulas are getting smarter (especially in the
reachability and CTL examinations, extra work being required for LTL), and
tools gradually support more examinations. To cope with this need for CPU, we
used more machines kindly lent by their owners, namely:

– bluewhale03 and bluewhale07 (respectively 40 cores @ 2.8 GHz and 512 GB of
memory and 32 cores @3.2 GHz and 1024 GB of memory) from the University
of Geneva, Switzerland,

– Caserta (96 cores @ 2.2 GHz and 1024 GB of memory) from the University of
Twente, The Netherlands,

– Ebro (64 cores @ 2.7 GHz and 1024 GB of memory) from the University of
Rostock, Germany,

– quadhexa-2 (24 cores @ 2.66 GHz and 128 GB of memory) from the University
of Paris Nanterre, France,

– small, 12 nodes (24 cores @ 2.4 GHz and 64 GB of memory each) out of the
23 of a cluster of machines at Sorbonne University, France.

Of course, to preserve a sound comparison between tools, runs were divided
into several consistent subsets. All runs concerning a given model (i.e., all its
instances) and for all the examinations were processed on the same computer.

Post-analysis scripts aggregate data, generate summary HTML pages as well
as associated charts (there are 53 118), and compute scores for the contest. They
are implemented using 15 kLOC of Ada and a bit of bash. BenchK it itself
consists of approximately 1 kLOC of bash.

4 Participating Tools and Experimental Results

Nine tools participated in the 2017 edition of the Model Checking Contest:
GreatSPN-meddly (Univ. Torino, Italy), ITS-Tools (Sorbonne Univ., Paris,
France), LoLA (Univ. Rostock, Germany), LTSmin (Univ. Twente, The Nether-
lands), Marcie (Univ. Cottbus, Germany), smart (Iowa State Univ., USA), Spot
(Epita, Le Kremlin Bicêtre, France), TAPAAL (Univ. Aalborg, Denmark) and
Tina (LAAS/CNRS and Univ. Toulouse, France). Tina submitted two variants
of the tool (in that case, the rules state that only the best variant is considered
for a podium).
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In this section, we first summarize the global results of the contest, together
with our feedback (from Sects. 4.1–4.3). Then, each tool getting a gold or silver
medal is briefly presented (Sect. 4.4 onwards).

4.1 Examinations in the Contest

Tools are confronted to several examinations: StateSpace, UpperBounds, Reach-
ability, CTL and LTL. StateSpace requires the tool to compute the full state
space of a specification and then provide information about it. Mandatory infor-
mation concerns the number of states but tools may also provide additional
information like the number of transitions, the maximum number of tokens per
marking in the net and the maximum number of tokens that can be found in a
place.

UpperBounds requires the tool to compute as a integer value, the exact upper
bound of a list of places designated in a formula (there are 16 formulas per model
instance).

Reachability, CTL, and LTL require the tool to evaluate whether formulas
are satisfied or not. For each formula, we consider either state-based atomic
propositions or transition-based atomic propositions (16 formulas of each type
are provided per model instance). In the Reachability examination some formulas
check for the existence of deadlocks.

4.2 Results – Podiums and Confidence Rate

Figure 2 shows the ranking of the three top tools in the various examinations
proposed by the contest11. 100% represents the tool having scored the maximum
points in the contest and followers’ scores are expressed as percentages of this
score. In the StateSpace examination, Tina.tedd was ranked second but the other
variant was ranked 7th out of 8 participating tools. We can also note that, for
the UpperBound and CTL examinations, the distance between the third tool
and its followers was rather small. In the case of CTL, these tools rely on similar
symbolic CTL technology. For UpperBounds, different technologies are used but
clearly provide similar performances in the case of our benchmark.
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Fig. 2. Tools in the podium for each examination.

11 Full results can be found at http://mcc.lip6.fr/2017/results.php.

http://mcc.lip6.fr/2017/results.php
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One interesting issue of the contest is to evaluate the confidence improvement
over the years. To do so, we introduced in 2015 the notion of confidence rate.
This value is computed for each tool on the subset of results that are considered
to be sound (a majority of at least three tools providing the same value). Then,
among these values, the confidence rate is the ratio between the number of
correct values and the number of computed values; this ratio is then converted
into a percentage.

Table 2 shows the confidence rate of the participating tools for 2017. This
year, we computed this rate both separately for each examination and globally
for all the examinations together. The absence of value means the tool did not
participate in the examination.

Table 2. Confidence rate of the participating tools in 2017.

Exam. Global StateSpace UpperBounds Reachability CTL LTL

GreatSPN-meddly 99.13% 100% 98.89% 99.18% 99.07% –

ITS-Tools 96.91% 100% 100% 94.68% 100% 96.33%

LoLA 99.92% – 100% 100% 99.62% 99.97%

LTSmin 100% 100% 100% 100% 100% 100%

Marcie 100% 100% 100% 100% 100% –

smart 79.59% 79.59% – – – –

Spot 100% – – – – 100%

TAPAAL 100% 100% 100% 100% 100% –

Tina.sift 97.84% 97.84% – – – –

Tina.tedd 100% 100% – – – –

Detailed results are provided at https://mcc.lip6.fr/2017. Let us highlight
two interesting aspects: First, most errors were reported to be either in the model
importation or formula importation (thus not in the verification algorithms).
Some are also due to a divergence in the interpretation of some semantical points
(it was the case in 2016 for some tools but no such evidence was detected in 2017).
Second, over the years, tools are dramatically improving: from 89.65% in 2015,
the average global confidence rate of participating tools moved to 94.20% in 2016
and then 97.34% in 2017. This can be considered as one of the major benefits of
the contest for the community.

We note that importation errors are reducing year after year. This year, there
was apparently a very few wrong values issued from erroneous implementation
of the algorithmic heart of the tools. The lower confidence rate of smart this
year is apparently due to some major changes in the architecture handled by
master’s students.

4.3 Involved Techniques

Tools developers were asked to report the techniques used by their tool. The
result of this feedback is summarized in Table 3 for the three best tools in each

https://mcc.lip6.fr/2017
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category. Columns refer to techniques, except for the last three ones which show
the type of execution: sequential, parallel in a portfolio mode (e.g., several tech-
niques applied in parallel) or parallel (e.g., dedicated parallel algorithms).

Let us note that, while the winners for StateSpace and UpperBounds exam-
inations are based on symbolic techniques, this is not true for the other exam-
inations where explicit approaches (enriched with optimizations like state com-
pressions, structural reductions or partial orders) are ranked before symbolic
tools. This shows that explicit approaches, together with appropriate optimiza-
tions, still compete with symbolic tools (we will show more evidences later in
this section).

Table 3. Techniques activated by winning tools in 2017.
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We also note that winning tools often combine several techniques, especially
in portfolio mode. This shows a complementarity between the techniques and
methods. So, depending on the models and/or the formulas, the best technique
varies.

We also observe that the clustering of places that is provided for some models
in the NUPN format is used by many tools (it is a way to extract information
about the system’s structure, for example to compute a better variable order to
encode the state space with decision diagrams). A deeper analysis would be of
interest to evaluate its impact on tool performances (unfortunately difficult with
the currently collected data).

It is globally true that tools participating for several years regularly improve
by getting fine-grained inputs from the increasing benchmark of the MCC. Nev-
ertheless, Tina.tedd was globally well ranked for a first participation. At this
stage, it is difficult to get more information since most tools so far declare the
technique they use on the basis of the examination they compute, and not on the
result they are processing. The explicit declaration of the techniques activated
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Fig. 3. Pondered analysis of symbolic and explicit tools. The first (large) bar in the
charts shows the ratio between explicit and symbolic and the two (thin) ones the
pondered success rate of each technique when answering examinations. 100% represents
all tools or all the computed formulas.

result per result will be required in the next edition of the contest so that more
accurate information could be gathered for analysis.

The study of the 2017 results can be completed by a pondered comparison
between the use of symbolic techniques compared to the use of explicit model
checking declared by all tools, and those declared by the tools in the podium
(see Fig. 3). Since, depending on the examinations, there are sometimes more
explicit tools than symbolic ones (and vice-versa), we pondered the techniques
declared for correct answers according to the number of symbolic and explicit
tools. In these charts, we consider only correct answers.

Figure 3b shows that, for StateSpace and UpperBound, tools in the podium
are all symbolic. On the contrary, more tools in the podium rely on explicit
techniques (in particular, ITS-Tools uses both, since it is a portfolio approach
concurrently operating several techniques). However, an analysis of the results
for computed formulas is necessary to refine this impression. Table 4 summarizes,
for all examinations and for every categories of formulas, the number of satisfied
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and unsatisfied formulas. It also separates the results for all tools (including
those in the podium) from those of the tools in the podium only.

Table 4. Dispatching of computed formulas in 2017 by all the tools in the left part,
by tools in the podium only on the right part.

For all tools For podium tools

Reach. CTL LTL Reach. CTL LTL

Satisfied formulas 43 599 29 946 15 251 28 921 19 512 13 521

Unsatisfied formulas 44 446 36 445 52 801 28 879 23 355 49 054

Total 88 045 66 391 68 052 57 800 42 867 62 575

Total formulas 222 488 163 242

We can extract several lessons concerning formulas. First, it appears that
73% of the total computed formulas are produced by the tools in the podium.
Second, it appears that most of the computed LTL formulas are unsatisfied
(78%). This second fact is of interest because, it is a situation where explicit
tools may be advantaged. This is probably related to the fact that, so far, the
quality of LTL formulas is poor compared to the one of reachability and CTL
ones. We are expecting progress in tackling this issue in the 2018 edition since
we are working on a smarter LTL formula generator.

A last fact, not visible in the charts and tables, should be mentioned. Sym-
bolic techniques are often associated with some sort of structural analysis (e.g.,
the use of NUPN information) to determine an efficient ordering of variables in
the encoding of states. Similarly, explicit tools also operate compression tech-
niques (e.g., partial orders).

4.4 GreatSPN-meddly

GreatSPN-meddly is a symbolic model checker that is part of the GreatSPN
framework [3]. The main purpose of this tool consists in building the state space
of a Petri net model using Decision Diagrams (DD), in order to verify reachability
and CTL properties. All DD algorithms are implemented in the Meddly library12.

GreatSPN-meddly operates on P/T nets with priorities, inhibitor arcs and
marking dependent multiplicities. It also supports colored Petri nets through pre-
vious unfolding. A key strategy of the tool is the analysis of structural properties.
P-semiflows are built before starting the state space, for the purpose of deriving
place bounds and for some variable order heuristics. Unfortunately, P-semiflows
cannot be built for all models (either because the model does not have any, or
because it has an exponential number of them). Therefore, the availability of P-
semiflows is optional. If place bounds are not known a priori, a heuristic strategy
is used to guess them, with the possibility of restarting the saturation algorithm
12 Meddly library: https://sourceforge.net/projects/meddly.

https://sourceforge.net/projects/meddly
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Fig. 4. GreatSPN-meddly pipeline and WNES meta-heuristic table.

when the guessed bound is wrong. This is necessary because GreatSPN-meddly
uses explicit encoding for transitions (MxD).

The tool includes a small collection of variable ordering heuristics [5], such as
Force [2], Noack [23], bandwidth-reduction methods, and some methods explic-
itly written for GreatSPN-meddly (P-chaining and Gradient-P [4]). A meta-
heuristic is also available, which computes multiple variable orders, scores them
using a metric function, and selects the one with the smallest score. The tool uses
a modified version of NES [5], called Weighted NES (WNES). The WNES value
of each method is obtained from the NES score (sum of transition spans) mul-
tiplied by a method-dependent weight W . Figure 4 shows the meta-heuristics
methods table, with the WNES weight W and if the algorithm requires P-
semiflows. From the results of the MCC’2017 context, it appears that the new
heuristic Gradient-P is very effective. Algorithm weights have been devised
empirically.

The model state space is built using the Meddly library, which implements
Saturation with chaining using events split by levels. Meddly employs fully-
reduced DD for the state space, and identity-reduced DD for the transition
relations. Once the state space is built, the tool may evaluate CTL properties on
it. CTL formulas are read and evaluated one by one, in sequence. CTL evaluation
may optionally produce a tree-like trace for ECTL formulas, in order to present
counter-examples (or witnesses) of the evaluated formulas. In order to ensure
correctness, the tool was run on thousands of formulas and models provided by
the previous MCC editions on a cluster [1]. The availability of a large set of
models from previous MCC editions has been used to fix various bugs in model
handling (degenerate models, different interpretation of the CTL semantics for
dead states, etc.).

Reported Strengths for 2017. The success of GreatSPN-meddly in the
MCC’2017 edition is due to several factors. First, various improvements in the
Meddly library made the Saturation algorithm performance significantly better.
This improved the scalability of the tool on many large models that could not
be computed previously. Secondly, the heuristic variable order strategy is more
solid, allowing to find reasonably good variable orders for many models. In par-
ticular, some algorithms (Sloan [35], Noack and Gradient-P) proved to be very
effective in handling the variety of models of the MCC benchmark [5]. Experience
shows that no single heuristic is good enough to treat all models, and a good
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meta-heuristic is needed. While reasonably good, the current meta-heuristic fails
on about 25% of the models. More research on good variable ordering metrics is
still needed.

Handling the 2017 “Surprise” Models. GreatSPN-meddly does not exploit
precomputed data for models, therefore known and surprise models are treated
alike. The rational is that the current strategy, statistically evaluated on the
known models set, should be “good enough” for arbitrary models. Of course,
this is not always true, and in fact the tool failed, for instance, on the BART
model.

Lessons Learned from the Contest. GreatSPN-meddly was prepared for
the context by running a large benchmark [5] to test the correctness of the
implementation (comparing results with the previous edition values) and the
effectiveness of the various heuristics implemented by the tool. This benchmark
proved to be of significant value, both to understand the actual performance
of many known variable order heuristics, and to test new ones (Gradient-P).
The availability of the model set and the previous editions’ results is therefore
of great value for tool development and testing, and its value goes beyond the
MCC competition.

4.5 ITS-Tools

ITS-tools [40] is a model-checker supporting both multiple solution engines and
multiple formalisms using an intermediate pivot called the Guarded Action Lan-
guage (GAL). Both colored models and P/T models are translated to GAL.
Properties are translated conjointly with the model to properly trace atomic
propositions to their target expressions in GAL.

For colored models, ITS-tools rely on PNMLFW (http://pnml.lip6.fr/) a
Java reference implementation of the PNML standard to parse the model, then
translates the model to a Parametric GAL model (which is roughly the same
size as the colored model). During this process, a decomposition of the system
is inferred from the color domains, trying to maximize existence of similar sub
components. The parametric GAL model is then instantiated to a plain GAL
model, but this process exploits binding symmetry as well as sequences of alter-
natives that provide compact transition representations. As a result, the GAL
model obtained is often orders of magnitude smaller than an equivalent P/T
(but is semantically equivalent).

For P/T models, ITS-tools embed a simple parser in SAX, then translate to
a plain GAL specifications (roughly the same size as the P/T). If NUPN infor-
mation is available, it also build a corresponding decomposition of the system
into an Instantiable Transition System (ITS, which gives the tool its name).

After this translation step, ITS-tools obtain a GAL model embedding a set
of properties, and possibly a decomposition of the system. At this stage, ITS-
Tools operate a number of basic structural reductions before going to state-space
exploration. This is effective at removing constant marking places, detecting
test arcs, redundant transitions. . . ITS-tools also test and simplify properties

http://pnml.lip6.fr/
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that can be decided immediately, either by looking at the initial state or when
simplification yields a tautology for true or false.

Symbolic Engine. The resulting model is analyzed with our core symbolic
solution engine based on Hierarchical Set Decision Diagrams (SDD) [9]. This
engine exploits all the features of GAL, including hierarchy and the sequential
composition semantics, so that small GAL models (e.g., as produced by our
colored translation path) are often checked very efficiently. The engine benefits
greatly from the model decomposition into ITS (colored or NUPN models). ITS-
tools use a single variable ordering heuristic, based on Force [2]. All examinations
are supported on this symbolic engine, and ITS-Tools did reach 100% confidence
for answers from this solution engine.

For place bounds and reachability queries, one can simply navigate the SDD
representing the full reachable state space, computed using advanced symbolic
algorithms including variants of saturation.

For CTL, ITS-tools operate a translation to a forward CTL formula where
possible, and use variants of constrained saturation to deal with EU and EG
operators. ITS-Tools use a general yet precise symbolic invert to deal with pre-
decessor relationships when translation to forward form is not feasible. Some
early detection of emptiness was implemented, that helps reduce the workload
for simpler formulas (there are yet many in the contest).

For LTL, ITS-tools rely on Spot [13] to translate the properties to Büchi vari-
ants, then use our SLAP hybrid algorithm [12] to perform the emptiness check.
This algorithm leverages both the desirable on-the-fly properties of explicit tech-
niques and the support for very large Kripke structures (state spaces) thanks to
the symbolic SDD back-end. All symbolic operations benefit from state-of-the-
art saturation variants where feasible.

SAT Modulo Theory Engine. ITS-tools implements translations of the
semantic bricks of GAL to SMT predicates enabling the use of solvers such
as Z3 (Microsoft) or Yices2 to answer a variety of questions on the model. The
encoding of GAL semantics assumes that the model is deterministic however,
so the tool needs to determinize the GAL model (an operation that can be
explosive for models coming from colored nets) before using the SMT solver.
ITS-tools encode the constraints that reflect transition steps, as well as a basis
of P-invariants computed using a classic algorithm13. If the net is one-bounded
(presence of NUPN information) that is also encoded.

With these bricks, ITS-tools implements a bounded-model checking (BMC)
decision procedure able to assert that an invariant is contradicted at some depth
of exploration. This task is run in parallel with a K-Induction decision pro-
cedure able to assert that an invariant holds. These decision procedures are
currently rarely competitive with the SDD engine, but they are very good at
detecting structurally unfeasible behavior (i.e., K-Induction at step 1 answers
many queries), and BMC works well when short counter-example traces exist.

13 Adapted from the APT tool https://github.com/CvO-Theory/apt.

https://github.com/CvO-Theory/apt
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These strategies also deal with unbounded nets, though there are very few of
these in the contest.

Explicit and Partial Order Reduction Engine. ITS-tools implement a
translation from GAL to PINS [29], the format used by the LTSmin tool set. This
enables the use of their many verification strategies on GAL models. ITS-tools
uses this translation to participate in the reachability and LTL categories only;
the only engine for CTL in LTSmin is symbolic which seems redundant with
respect to the SDD solution. Mostly the authors wanted to complement their
symbolic methods with an explicit solution, that might deal well with models
where symbolic techniques fail (e.g., due to not finding a good variable order). To
be fair (it is also a competitor), LTSmin is severely limited in its resource usage.
ITS-tools focused this year on enabling partial order reduction in LTSmin (POR)
if possible (reachability and stuttering invariant LTL properties). To this end the
SMT translation bricks were reused to compute event dependency information
using the SMT solver.

Further information on the tool is available from http://ddd.lip6.fr.

Reported Strengths for 2017. ITS-tools are a mature toolset, able to compete
in every single category of the contest including colored nets, and place on the
podium in each of them. When possible, we ran the various solution engines in
portfolio mode, dedicating up one thread and most memory to SDD, two threads
and negligible memory for SMT, and (only) one thread with bounded memory
for LTSmin.

ITS-Tools main strength remains its symbolic solution engine based on SDD,
which historically held the gold in StateSpace for a long time. The SMT solution
does answer some queries very fast in many cases, but these are often relatively
trivial properties in fine. The explicit engine suitably complements the other
solutions, answering many complex queries easily when POR can be activated.

Handling the 2017 “Surprise” Models. ITS-tools treat surprise models
exactly like known models, except for Philosophers and SharedMemory models
that were manually rebuilt to take advantage of ITS characteristics. The surprise
models were handled relatively well by the SDD engine, yielding overall quite
good results on this category this year.

Lessons Learned from the Contest. Unfortunately the integration of
LTSmin within ITS-tools was buggy in certain cases (bad import/export) so
that reliability in both Reachability and LTL was negatively impacted. These
problems have been patched. In the post-analysis of the results, the authors
detected some unexpected performance bottlenecks that could be solved (LTL
translation, time to compute dependency matrices for LTSmin).

The competition drives the development of better and more efficient tools,
certainly the authors were inspired by discussing with the other competitors and
will integrate some of their ideas by next year, starting with GreatSPN’s new
meta-order heuristics [5].

http://ddd.lip6.fr
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4.6 LoLA

LoLA 2.0 is a model checker based on explicit state space exploration and
structural Petri net methods. In the reachability competition, LoLA employs
a portfolio consisting of state space generation (with stubborn set reduction),
the state equation technique [41], a SAT based siphon/trap check [36], and a
random walk procedure. In all other categories, LoLA used standard explicit
model checking algorithms. In 2017, stubborn sets were added to the LTL and
CTL categories. In the deadlock category, LoLA used the symmetry reduction
as well [38].

Reported Strengths for 2017. In 2017, LoLA’s developers enabled all the
procedures to directly cope with FIREABLE predicates (instead of translating
them to place-based predicates). In consequence, LoLA won all fireability sub-
categories in the MCC 2017. In the CTL and reachability competitions (counting
only P/T nets), the advance in the fireability subcategory was large enough to
compensate a backlog in the cardinality subcategory.

Many results for LoLA (especially in the reachability category) were pro-
duced by the non-standard techniques (symmetry, state equation, siphon/trap,
and random walk). This way, LoLA earned many points for solving problems. In
several cases, state space search would have solved the problems, too. However,
the quick answers by the nonstandard procedures gained a lot of bonus points,
and saved time that could be transferred to the remaining problems in an exam-
ination. LoLA used an enhanced time management for scheduling the available
run time to the 16 queries of an examination.

In CTL, LoLA benefitted from its formula preprocessing. Several problems
were found to be equivalent to a reachability query, so LoLA could use the much
more advanced reachability portfolio. Points gained this way were just enough
to stay ahead of TAPAAL.

In LTL, the model checker was completely re-implemented, for the purpose
of removing the semantic discrepancies to other tools. The new model checker
uses the acceptance condition proposed in [21] which permits much earlier ter-
mination in the FALSE case. In fact, about 80% of answers given by LoLA on
LTL queries were FALSE answers.

Moreover, LoLA changed the translation of LTL formulas to Büchi automata.
In particular, large Boolean combinations of atomic propositions are now treated
as single atomic propositions. This way, a lot of translation time is saved.
The resulting Büchi automata (hence, the resulting state space) becomes much
smaller. These changes propelled LoLA from 70% success (in 2016) to more than
90% in 2017.

The state equation is responsible for more than 50% of the UNREACHABLE
answers and quite some REACHABLE answers. Compared to 2016, the transfor-
mation of the reachability problem to a disjunctive normal form (DNF) required
for the state equation was re-implemented. Instead of using the slow term rewrit-
ing system mentioned above, LoLA processes the transformation directly. In this
course, LoLA added a simple static analysis that permits the detection of dupli-
cates in the subformulas. This way, the resulting DNF is much smaller and LoLA
can handle several problem instances that ran out of memory before.
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Handling the 2017 “Surprise” Models. LoLA reads Petri net models in its
own file format. Hence, translating the PNML [24] files of the MCC has always
been an issue. Thanks to a translator provided by Silvano Dal Zilio (Toulouse),
LoLA was able for the first time to process colored Petri nets. Furthermore, LoLA
replaced a Python script for translating PNML to the LoLA format with a parser
based on flex and bison. This way, translation time of some large net input files
could be reduced from more than an hour to a few seconds. Unfortunately, the
script did not anticipate all extensions of PNML, so a translation error caused
the loss of all the scores for one of the surprise nets. Finally, LoLA has a new
preprocessor for formulas. Huge conjunctions and disjunctions are no longer
handled by a (too slow) term rewriting system. Instead, LoLA processed these
subformulas with dedicated routines. In consequence, LoLA had more time in
2017 to work on the actual verification tasks.

Lessons Learned from the Contest. To win a category, it is necessary to
have strong verification techniques. Under the conditions of the contest, explicit
techniques appear to be ahead of symbolic methods. Thanks to the on-the-
fly principle, it seems to be easier for explicit model checkers to earn the low
hanging fruits. LoLA ranked only few points ahead of its strongest competitors.
Hence, it becomes more and more important to look into data structures and
algorithms and to remove all the unnecessary computations. The contest is an
excellent motivation for investing time into LoLA. LoLA benefits a lot from the
increased confidence (the large benchmark identified remaining bugs) and the
efforts spent on better performance. At the same time, success in the contest
considerably increases the visibility of LoLA.

4.7 LTSmin

LTSmin14 [29] has competed in the MCC since 2015. Already in the first editions,
LTSmin participated in several subcategories, while since 2017 LTSmin competes
in all subcategories, except for colored Petri nets, and reporting the number of
fireable transitions in the marking graph.

LTSmin has been designed as a language independent model checker. This
allows developers to reuse algorithms that are already implemented for other
languages, such as Promela and mCRL2. For the MCC, the developers only
needed to implement a PNML front-end and translate the MCC formula syntax.
Improvements to the model checking algorithms, like handling integers in atomic
formulas, can now in principle also be used in other languages.

LTSmin’s main interface is called the Partitioned Interface to the Next-State
function (PINS) [29]. Each PINS language front-end needs to implement the
next-state function. It must also provide the initial state, and a dependency
matrix (see below). The multi-core explicit-state and multi-core symbolic model
checking back-ends of LTSmin use this information to compute the state space on
the fly, i.e., new states and atomic predicates are only computed when necessary
for the algorithm.
14 http://ltsmin.utwente.nl.

http://ltsmin.utwente.nl
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Fig. 5. Example model: Petri net (left) and dependency matrix (right)

A key part of LTSmin are its dependency matrices. Dependency matrices
must be precomputed statically by the front-end, and are extensively used dur-
ing reachability analysis and model checking. An example Petri net, with its
dependency matrix, is given in Fig. 5. Here transition t1 does not depend on p3 or
p1 in any way. Also for properties, a dependency matrix (computed by LTSmin)
indicates on which variables each atomic predicate depends. For instance, the
dependency matrix of some invariant is shown in Fig. 6. This invariant demon-
strates LTSmin’s new native property syntax. A finer analysis that distinguishes
read- and write-dependencies [34] pays off, in particular for 1-safe Petri nets.

The MCC’s reachability and CTL categories are tackled with the multi-core
symbolic back-end of LTSmin, which relies on the multi-core Decision Diagram
framework Sylvan [11]. Consequently, in these categories, typically billions of
states in the marking graph can be explored. The LTL category is handled by
the multi-core explicit-state back-end, relying on efficient parallel SCC decom-
position [8].

Reported Strengths for 2017. In the reachability analysis categories, LTSmin
competes using the symbolic back-end pnml2lts-sym, handling enormous state
spaces by employing decision diagrams. However, good variable orders are essen-
tial. LTSmin provides several algorithms to compute good variable orders,
which operate on the transition dependency matrix, for instance Sloan’s algo-
rithm [35] for profile and wavefront reduction. LTSmin computes the marking
graph symbolically and outputs its size. To compete in the UpperBounds cat-
egory, LTSmin maintains the maximum sum of all tokens in all places over
the marking graph. This can be restricted to a given set of places (using, e.g.,
--maxsum = p1 + p2 + p3). For the ReachabilityDeadlock category, the symbolic
tool performs deadlock checking on the fly. Also invariant checking (the app-
roach for ReachabilityFireability, and ReachabilityCardinality) is performed on
the fly. Invariants can be specified through the --invariant option.

LTSmin is unique in the application of multi-core algorithms for symbolic
model checking. In particular, both high-level algorithms (exploring the mark-
ing graph, and traversing the parse tree of the invariant), as well as low-level
algorithms (decision diagram operations) are parallelized. This form of true con-

http://ltsmin.utwente.nl/assets/man/pnml2lts-sym.html
http://ltsmin.utwente.nl/assets/man/ltsmin-pred.html


MCC’2017 – The Seventh Model Checking Contest 201

Fig. 6. Example invariant property and the dependency matrix on its atomic predicates

currency allows LTSmin to benefit from the four CPU cores made available in
the MCC, instead of a portfolio approach.

The approach LTSmin uses to compete in the CTL model checking cate-
gories builds upon symbolic state space generation. After the marking graph is
constructed symbolically, the CTL model checking starts. LTSmin’s symbolic
back-end employs a straightforward µ-calculus model checker with both high-
level and low-level parallelism. Similarly to invariant checking the parse tree
of the µ-calculus formula is traversed in parallel, as well as the low-level deci-
sion diagram operations. LTSmin translates CTL* (a strict superset of CTL)
to µ-calculus using tableaux, and evaluates the translated formula. CTL model
checking in LTSmin is triggered by the --ctl option to pnml2lts-sym. For
LTL model checking, LTSmin uses explicit-state model checking. So here, each
reachable marking of the Petri net is considered individually. However, advanced
search techniques are employed to find counter-examples as quickly as possible.
In particular, the parallel SCC decomposition using a concurrent Union-Find
structure [8]. The multi-core explicit back-end of LTSmin constructs the cross
product of the marking graph and Büchi automaton on the fly. This approach
brought us at the first place in 2016, and second in 2017. LTL model checking
is invoked as pnml2lts-mc with the --ltl option.

Handling the 2017 “Surprise” Models. LTSmin takes no special measures
for handling the 2017 “Surprise” models. In fact, LTSmin handles both “Known”,
and“Stripped” as “Surprise” models. Handling models as if they are never seen
before is in line with the philosophy that LTSmin should be a language indepen-
dent model checker. If (precomputed) structural information of models is to be
exploited, LTSmin should be able to do so for every specification language. So far
structural information in Petri nets is not generalized to cover other languages
too, except for the dependency matrix.

Lessons Learned from the Contest. The CTL back-end can still be improved
by specializing the µ-calculus model checker. The surprise models revealed
that the parallel algorithms of LTSmin are still lacking full saturation. This
is expected to be improved before the 2018 edition of the MCC.

4.8 TAPAAL

TAPAAL [10] is a platform-independent tool suite for modeling, simulation
and verification of Petri nets, and their timed extension called timed-arc Petri
nets. The tool offers a graphical user interface for compositional design of Petri
net models (the different components communicate via shared places or shared

http://ltsmin.utwente.nl/assets/man/ltsmin-ctl.html
http://ltsmin.utwente.nl/assets/man/pnml2lts-mc.html
http://ltsmin.utwente.nl/assets/man/ltsmin-ltl.html
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transitions), a powerful simulation and trace visualization mode, and a graph-
ical query creation dialog that allows to call three different engines distributed
together with TAPAAL: a continuous time engine verifytapn, a discrete time
engine verifydtapn, and the untimed verification engine verifypn that par-
ticipated in the model checking contests in the years 2014–2017. The tool also
offers the option to translate timed-arc Petri net models into networks of timed
automata and automatically call the UPPAAL engine as its back-end. It is pos-
sible to import Petri net models in the PNML format, together with the XML
queries used in the model checking competition, as well as to export created
nets and formulas in these exchangeable formats. TAPAAL can be downloaded
at www.tapaal.net.

The untimed engine verifypn of TAPAAL performs an explicit-state model
checking of weighted P/T nets with inhibitor arcs and it currently supports
deadlock detection, reachability analysis of cardinality and fireability proposi-
tions, and more recently also verification of CTL formulas. TAPAAL moreover
participates in the computation of upper-bounds and state-space exploration,
even though these types of analysis are not in the main focus of the developers.
Colored nets are not supported at the moment.

Reported Strengths for 2017. Compared to the 2016 version of the verifypn
engine of TAPAAL (described in detail in [27]), the 2017 version comes with six
main novelties: (i) a brand new successor-generator, (ii) a new data-structure
for compressing and storing the state-space, (iii) advanced formula preprocess-
ing using linear programming, (iv) siphon-trap technique for detecting deadlock
freedom, (v) improved structural reductions, and (vi) newly implemented partial
order reduction for the reachability analysis.

The novelty (i) can be seen as a pure refactoring, with a focus on creating
a computationally lightweight and cache-friendly way of generating successors
of markings. The faster successor generator also means that larger portions of
the state-space can be explored within the given time limits. Hence it reduces
the higher memory consumption by compressing the encodings of markings and
storing them in a novel tree-like data-structure (ii) called PTrie [28], allowing the
tool to efficiently share prefixes of the encoded markings. Early experiments with
PTrie were done already in 2016 where the tool developers submitted the exper-
imental version TAPAAL-exp that significantly improved the scores of the tool.
Recent improvements of PTrie made the data-structure comparable in perfor-
mance with state-of-the-art hashmaps, while having a significantly lower memory
footprint [28]. In 2017 both the new successor generator as well as PTrie were
used also in the CTL model checking.

In 2017, some of the methods originally introduced in [27] were revisited:
the heuristic search-strategy has been marginally improved but most impor-
tantly, the developers refined and generalized the over-approximation technique
from [27] based on state equations and linear programming. In novelty (iii), the
tool uses these principles to recursively simplify reachability and CTL formulas,
often resulting in significantly smaller or even trivially true/false formulas. The
linear programming approach is also used to encode the (iv) siphon-trap prop-

www.tapaal.net
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erty [36] that allows in some cases to show that a net is deadlock free without
exploring its state-space. Regarding the novelty (v), the developers generalized
and extended the structural reduction rules, taking greater care of weighted arcs
and inhibitor arcs. Finally, for the novelty (vi), there is a new implementation
of the classical partial order reduction technique based on stubborn sets.

Handling the 2017 “Surprise” Models. As in previous years, the developers
took no special measures towards the surprise models. Both known and surprise
models were attempted to be solved using formula preprocessing and different
search-strategies run in parallel. Timeouts for formula preprocessing and for
structural reduction were introduced, limiting their execution time to about one
minute. The queries that were not solved in the first parallel phase where then
sequentially verified one by one until the one hour time limit was reached.

Lessons Learned from the Contest. In 2017 as well as in 2016, TAPAAL
received the second place after LoLA in both the reachability and CTL cat-
egories. Given the improvements listed above, there was a hope to challenge
LoLA’s first place in 2017, however, due to the fact that LoLA started in 2017
to support colored nets that are equally counted in the reachability and CTL
categories as the P/T nets, the margin between TAPAAL and LoLA remained
similar as in 2016.

It was also realized that the improvement by introducing a stubborn set
reduction was not as significant as expected because the input nets in TAPAAL
are already preprocessed by structural reduction techniques. Still there is a rea-
sonable gain in combining both techniques. Currently, TAPAAL applies stubborn
set reduction only for the reachability analysis but not for CTL model checking,
while LoLA introduced in 2017 stubborn sets also for CTL formulas.

Post-contest analysis revealed that a number of small bugs in the newly
introduced features of the tool had a significant impact on the tool performance.
Most notably a wrong ordering of places in the successor generator and too
“loose” over-approximation in the formula preprocessing led to a non-negligible
loss of points. As the discovered errors had no impact on the correctness of
the tool, these bugs were not noticed when preparing TAPAAL for the 2017
competition.

4.9 Tina

Tina (TIme Petri Net Analyzer) [7] is a toolbox for the editing and analysis of
various extensions of Petri nets and Time Petri nets, developed at LAAS-CNRS.
It provides a wide range of tools for state space generation, structural analysis,
model checking, editing or simulation. Except for the graphic editor, all tools
of the toolbox are developed in Standard ML (SML), a high-level and modular
functional programming language.

For Tina’s first participation to the MCC, two tools were proposed, sift
and tedd, both to compete in the State Space category. The sift tool has
been part of Tina for several years; it implements state-of-the-art enumerative
techniques for state space analysis of Petri nets and Time Petri nets. tedd is a
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new symbolic (logic-based) analysis tool for Petri nets, soon to be enriched to
handle Time Petri nets and included in Tina.

Reported Strengths for 2017. tedd results from the integration of four
different components: a library handling Hierarchical Set Decision Diagrams
(SDD) [9], a module providing a large choice of variable order heuristics, a pre-
processor (shared with sift) providing structural reductions, and a tool unfold-
ing high-level colored nets into equivalent P/T nets.

Although still in development, the SDD component has shown competitive
performances, on par with most of the symbolic tools present in the contest.
The variable order module provides a rich choice of variable orders based on net
traversals, semi-flows, flows or names. The Force [2] heuristics can be used to
improve any basic order. Hierarchical orders are available but have been seldom
used so far.

The single component having most contributed to Tina’s results is certainly
the structural reduction preprocessor. The preprocessor applies a set of rules
(in the style of [6]) aimed at reducing the number of places and transitions
of the net while preserving its marking count. The transformations performed
consist of removing redundant places, duplicated or statically dead transitions,
or transforming start places. Simultaneously, a trace information is recorded
so that the number of transitions and token counts of the original net can be
reconstructed from those of the reduced net. Though a number of them cannot
be reduced at all, many models of the contest can be significantly simplified
this way, some drastically with up to 90% of the places removed. This benefits
computation of the state space by the SDD module since it has less variables to
handle.

The unfolding tool for high-level nets proved convenient in most cases, but
unfolding some models yielded a tremendous number of transitions that makes
the approach inapplicable. Those high-level models clearly require native enu-
meration methods.

Handling the 2017 “Surprise” Models. After preprocessing,“Known” mod-
els are analyzed using a variable order determined experimentally; no single
variable order fits all models. For other types of models, a small number of vari-
able orders likely to work are chosen from the experiments on “known” models.
Analysis proceeds by trying to compute the state space using each of these orders
for some amount of time, one after the other. These attempts could have been
performed in parallel, with statically partitioned storage, but it was feared that
some runs could be short of storage; instead a sequential strategy was chosen.
The rationale is that if a variable order is adequate, then computation of the
state space is fast and should complete in the amount of time allocated provided
sufficient storage is available.

After computation of markings, it is proceeded with computation of the num-
ber of transitions. Since SDD do not require to precompute the transition rela-
tion, this does not simply amount here to compute the number of paths of some
single decision diagram. Instead, an iterative algorithm is used, handling one
transition at a time, with some weighting to take duplicated transitions into
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account. The method proved effective but, on some models, counting transitions
has been measured orders of magnitude slower than building their state space.
Another ad hoc algorithm has been devised to compute token counts in pres-
ence of reductions. The tokens found in redundant places are reconstructed from
those found in the remaining places using the trace information of reductions.
This could be done efficiently.

Lessons Learned from the Contest. Tina first participation to the contest
was found costly in time. Notably, the tools had to be enriched to handle queries
specific to the contest like token counts, and we had to develop from scratch
a tool for handling high-level colored nets. Yet, thanks to the large number of
considered models and their variety, the contest is a unique occasion to test
thoroughly and strengthen Tina.

It is nice to notice that Tina, developed in a mostly functional language
(which is atypical for model-checking tools), reached a competitive performance
level. From the results, development of an efficient structural reduction tool
revealed a wise choice. Reductions proved quite useful associated with both
tedd, a symbolic tool, and sift, an enumerative one.

Tina developers conclude with some observations about execution on the vir-
tual machine (VM) in which all tools of the contest are run. The VM does not
seem to alter significantly processing times when compared with native execu-
tions. However Tina appear to be doubly penalized on storage consumption. The
code compiled for Tina embeds a runtime providing automatic memory alloca-
tion with garbage collection. A first penalty is that, from the way it operates,
the runtime system always requests more memory than needed by the applica-
tions. A second is that garbage collection heavily stresses the virtual memory
management of the underlying machine, and that virtual memory management
by the VM seems to be significantly slower than on the native machine. It was
observed on some models a time overhead of over 100%, mostly due to memory
management.

Authors. The main architect of the Tina toolbox is Bernard Berthomieu, with
numerous insights and contributions by past and present members of the VER-
TICS team at LAAS, including Silvano Dal Zilio, Didier Le Botlan, François
Vernadat, Alexandre Hamez and Pierre-Alain Bourdil. The SDD component of
tedd has been written by Alexandre Hamez, also the author of pnmc [22]. tedd
and pnmc do not share any code but rely on the same SDD technology.

5 Conclusion

This paper presented the outcomes of the 2017 edition of the Model Checking
Contest, the detailed results of which can be found at http://mcc.lip6.fr/2017.
The positive impact of the Model Checking Contest on the scientific community
is demonstrated in at least two ways: the collection of models accumulated during
the MCC is being used and cited in a growing number of publications15, and the
15 See http://mcc.lip6.fr/bibliography.php.

http://mcc.lip6.fr/2017
http://mcc.lip6.fr/bibliography.php
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confidence level of the participating tools has been constantly increasing since
2015.

For the next editions of the Model Checking Contest, we plan to clarify or
evolve certain rules of the contest. Such changes will be mostly based on the
feedback received from tool developers. To this aim, a poll has been organized,
which gathered answers from 80% of the developers of the tools that participated
in the 2017 edition of the MCC. Among the most debated changes, one can
mention: (i) a clarification of the meaning of transition counts in the StateSpace
examination; (ii) the possibility to add new, larger instances for those models
all the instances of which are simple enough to be solved by all the tools; (iii)
the introduction, in the PNML files, of structural information about the models
(e.g., structurally 1-bounded, simple free choice, strongly connected, etc.), so
that tools can rely on such properties to increase efficiency by using dedicated
algorithms; (iv) the removal of the notion of “stripped” (or “scrambled”) models
that was used in former editions of the MCC; (v) the status of colored nets with
respect to P/T nets, and the way temporal-logic formulas are generated for P/T
nets that are unfolded from a colored net; (vi) the decision whether to disclose
in advance or not, to the tool developers, the temporal-logic formulas generated
every year for the known models; (vii) the preventive measures that could be
taken to avoid any bias in performance assessment that might arise from the
use of virtual machines; and (viii) the requirement that tools should generate,
in a common format to be agreed upon, counterexamples (e.g., execution traces)
when a temporal formula evaluates to false—such counterexamples may be useful
in the rare but definite situations where tools provide diverging answers for a
given model-checking problem.

Other points of the discussion more specifically deal with the MCC scoring
rules themselves. One can mention: (ix) provisions to ensure that parameterized
models with many instances do not take excessive weight in the competition;
(x) determination of the respective weights of known vs surprise models for the
next MCC editions; (xi) assessment of the bonus points granted so far to the
participating tools that compute fast or use less memory; and (xii) proposals that
would provide incentives for “newcomers”, i.e., participating tools that would
enter the MCC competition for the first time. We expect that these various
measures will noticeably improve the next editions of the MCC and will, perhaps,
lead to significant changes in the future podiums.
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