
1

VERIFICA DI PROCESSI CONCORRENTI
VPC 19-20

Timed models

Prof.ssa Susanna Donatelli

Universita’ di Torino

www.di.unito.it

susi@di.unito.it

2

Reference material books:

Prof. Jost-Pieter Katoen

(University of Aachen, D)

3

Acknowledgements

Transparencies adapted from the course notes and
trasparencies of

�Prof. Jost-Pieter Katoen, University of Aachen (Germany)

�….

4

Dealing with time

Why is time introduced in formalisms for system
verification?

� Correctness may depend also on time (think of the
operations of a pipelined CPU)

� Usefulness may depend on time (when I call the lift,
when the lift will come , or I want to compute how long
does a production line takes)

To check a timed property the time should be explicitely
represented in the model

We can check also untimed property on a timed model
(example: reachability of a marking in a timed Petri
net)

5

Dealing with time

What is a time specification

1. A value � fixed delay for an activity

2. An interval (min-max) � the duration of an activity
is a non deterministic value in the interval

3. A stochastic distribution � the duration of an
activity is a value is extracted from a distribution

4. The possibility of defining clocks as variables that
increase constantly

5. A mix of the above

6

Dealing with time

Continuous or discrete?

Discrete:
� time is a discrete entity
� time elapses in regular ticks
� events/activities can happen only at ticks
� between two ticks the system stays unchanged
� used to represent synchronous system (system with a
global discrete clock)

� can represent an abstraction of a continuous system
� ex1: imagine a discrete time Petri net, in which all firing
have equal duration

� ex2: imagine a discrete time Petri net, in which firings
have different discrete durations

7

PN examples

2
t t' t t'

t"

t

t'

1

2 4

53

d

b c e

f

6

a

p1

p2

t2

t1

p3

p4

t4

t3

8

PN examples

p1

p2

t2

t1

p3

p4

t4

t3

9

PN examples

2
t t' t t'

t"

t

t'

10

PN examples

1

2 4

53

d

b c e

f

6

a

11

PN examples

Property of interest: how often does the lazy chap
cooks, for how long does it cook?

Exists an execution in which he eats only for X unit
time?

12

Dealing with time

What is the state of the system?

� value of the variables plus value of clocks
� marking plus value of clocks
� process algebra terms plus the value of clocks

How many states do we have?

How do we express temporal properties?
� use temporal logic without time (X “accounts” for time)

� use temporal logic in which temporal operators have a

time interval A[ϕU [t1,t2]ψ]

13

Dealing with time
Continuous or discrete?

Continous:
� time is a continuous entity (modelled as a real non-
negative variable)

� time elapses continuously
� events/activities can happen at any instant of time
� time between two events can be arbitrarily small
� used to represent asynchronous system
� ex1: imagine a continuous time Petri net, in which all
activities have equal duration

� ex2: imagine a continuous time Petri net, in which
activities have different durations

� ex2: imagine a continuous time Petri net, in which
activities have different durations, chosen non
deterministically in a given interval

14

PN examples

p1

p2

t2

t1

p3

p4

t4

t3

p1+p3

p2+p3

time

15

PN examples

Property of interest: how often does the lazy chap
cooks, for how long does it cook?

Exists an execution in which he eats only for X unit
time?

16

Dealing with time

What is the state of the system?

� value of the variables plus value of clocks
� marking plus value of clocks
� process algebra terms plus the value of clocks

How many states do we have?

How do we express temporal properties?
� use temporal logic in which temporal operators have a

time interval A[ϕU [t1,t2]ψ]

17

Some timed formalisms and logics

Timed automata

Timed Petri nets

Timed process algebra

Timed CTL (TCTL) example: a leader is elected within 3
seconds

Note: there is no probabilistic reasoning, only non determinism
and “possibility”

Semantics is given in
terms of Timed transition
system, the system of
timed executions}

18

Timed automata part

� Syntax of timed automata

� State of a finite automata, execution paths
and timed transition systems

� Semantics of timed automata (in terms of a
timed transition system)

� TCTL syntax and semantics

� Model checking TCTL

� Timed automata and temporal logic in Uppaal

19

Timed automata

� Finite-state graph with locations and edges

+ clock variables

+ ……

� Time elapses in location, not in edges

� Example: light switch, with clock x

off
on

20

Timed automata

� Finite-state graph with locations and edges

+ clocks variables (run at the same speed)

+ clock constraints that “constrain” the
behaviour (examples: x≤3, x-y>5)

off

x≥2

x≤3
on

A clock constraint
can be a guard on
an edge

A clock constraint can be
an invariant for a location

21

Timed automata

off

x≥2

x≤3
on

{x:=0}

{x:=0}

� Finite-state graph with locations and edges

+ clocks variables (run at the same speed)

+ clock constraints

+ clocks reset
Clocks can be reset while
taking the edge

22

Timed automata
guard: limit the possibility
of taking the edge

clock reset: reset
time count

location invariant:
force taking the
edge

23

Timed automata

Clock valuation

x, y clocks

A possible execution

24

Timed automata: another example

25

Timed automata

Def.: a clock is a variable ranging over R+

Def. Clock constraints. Let C be a set of clocks, with x ∈ C
and c a natural value, then

The set of clock constraints over C is indicated with Ψ(C) or
Cstr(C)

26

Timed automata

Note: adding x+y to clock constraints makes the MC
undecidable (and x-y)?

Note: taking c over the real makes the MC
undecidable (and for rational?)

27

Definition of timed automata

Def.: A timed automata A is a tuple (L, l0, E, Label, C,
clocks, guard, inv) with

�L a non empty and finite set of locations with initial location
l0
�E⊆ LxL, a set of edges

�Label: L--> 2AP a function that assigns to each location a
set Label(l) of atomic propositions

�C, a finite set of clocks

�clocks: E --> 2C, a function that assign to each edge e ∈ E
a set of clocks clocks(e) --clocks to be reset

�guard: E --> Cstr(C), a function that assign to each edge e
∈ E a clock constraint guard(e)

�inv: L --> Cstr(C), a function that assign to each location l
∈ L a clock constraint inv(l)

28

Timed automata

Guards or invariants

29

Timed automata

Time diagram

30

Timed automata

Time diagram

31

Timed automata

Time diagram

32

Timed automata

Time diagram

33

Timed automata

Def.: clock valuation v for a set of clocks C is a function

v: C-->R+, assigning to each clock x in C its current value v(x)

Def.: Let V(C) denote the set of all clock valuations over C. A state of a timed
automata A is a pair

(l,v)

with l a location of A and v a valuation over C, the clocks of A

For positive real d, v+d is the valuation where each clock is incremented by
d. The valuation v with clock x reset is

34

Timed automata

Def.: evaluation of clock constraints. For x ∈ C, v ∈ V(C),
natural c and α and β∈Cstr(C), we have

35

Timed Transition System (TTS)

Def.: Timed transition system underlying a timed automata A,
M(A), is defined as (S,s0,-->) where

36

Def.: a path is an infinite sequence

where, for all i, is a transition in the TTS

An execution of a timed automata A is a path through its timed
transition system M(A).

The elapsed time on a path is defined as follow:

Path of a TTS

37

Path of a TTS

38

Def.: a path is called time-divergent if

Non timed-divergent paths in previous automata?

Ex. of non time-div path:

The set of time-divergent paths from a state s is

Def: A timed automata A is called non-Zeno if from any state
some time-divergent path can start

Path of a TTS

39

L'esempio della lampadina a due livelli

Example of a Timed automata

40

L'esempio della lampadina a due livelli

Example of a Timed automata

41

Examples of Timed automata

42

Syntax: CTL + formula clocks that can be reset in formula

Semantics defined over TTS

Example of properties that can be expressed in TCTL

Timed Computational Tree Logic (TCTL)

43

Def: For p∈AP, z∈D, D the set of formula clocks, and

α∈Cstr(C ∪D), the set of TCTL formulae is given by:

Clock z in “z in Φ” is called a freeze identifier, and it means: “z
in Φ” is valid in state s if Φ holds in s where clock z starts from 0

For example: “z in (z=0)” is valid (true in any state) while “z in
(z>1)” is not

Clocks have to be bounded to the formula

Timed Computational Tree Logic

44

Not a very convenient way to express timed properties, and a
number of derived operators have been defined:

Timed Computational Tree Logic

45

L'esempio della lampadina a due livelli

Example of a Timed automata

46

Semantics: need to define (i,d), position over a path and an
order relationship on position

This definition is wrong in Katoen’s notes (as was in the original
paper of Alur and Dill of 1989/90)

Timed Computational Tree Logic

47

Timed Computational Tree Logic

Def.: A RT-trajectory σ is an infinite sequence of states si =(li,vi)

and delays δι:

σ = s0 −δ0−> s1 −δ1−> s2 −δ2−> s3 −δ3−>…………

Def.: A position in σ is the pair (i,δ): i∈N and δ≤δι

Def.: location in the position (i,δ) is loc(i,δ) = li

Def.: valuation in the position (i,δ) is val(i,δ) = vi +δ

Def.: state in position (i,δ) is

σ(i,δ) = (loc(i,δ), val(i,δ))

48

Timed Computational Tree Logic

Def.: time elapsed at position (i,δ) is

τσ(i,δ) = δ + Σ0≤j<i δi

Def. of precedence on positions: we say that (i,δ) precedes

(j,δ’) and we write (i,δ)<<(j,δ’) if:

� i < j or

� i = j and δ≤δ’

49

Def: Semantics of TCTL. Let p∈AP, z∈D, w∈V(D), s∈S (States

of the TTS), α∈Cstr(C ∪D), s=(l,v), v∈V(C), the set of TCTL
formulae is given by:

Timed Computational Tree Logic

50

………cont.: let p∈AP, z∈D, w∈V(D), s∈S, α∈Cstr(C ∪D),

the RT-trajectories starting in s,

Timed Computational Tree Logic

51

Why it is necessary that …

Consider the formula

reset z in E(z<=5 U z>5)

then on paths on which the delays on the paths are almost zero
we approach 5: it is not possible to find “the point” in which z
become >5 for the first time

Timed Computational Tree Logic

52

Promptness requirement: maximal delay between an event and
its reaction

Example of TCTL

Punctuality requirement: exact delay between events

53

Example of TCTL

Periodicity requirement: an event occur within a certain period

Example: a machine that put boxes on a belt every 25 time units

Attention: the correct version of the above formula is

AG (putbox � z in [(not(putbox) or z=0) U (putbox and z =25)])

Same correction for the formulas in the next pages

54

Minimal delay: minimal delay between events

Example: the delay between two trains at a crossing (tac)
should be at least 180

Example of TCTL

Interval delay: an event must occur within a certain interval
from another event

Example: trains should have a maximal distance of 900 time
units (the minimal delay still holds)

55

Even simple automata give rise to infinite TTS, the infinite
number of states is due to the real valuations of clocks

Solution: a finite number of equivalence classes on the clock
valuations. Equivalence should maintain…..

Question: what could be such equivalence on the TA below?

Clock equivalence

56

Solution: a finite number of equivalence classes on the clock
valuations.

Define an equivalence ≈ that should have the following
characteristics:

� correctness: (v,w) ≈ (v’,w’) ==> ∀Φ: (v,w)|=Φ sse (v’,w’)|=Φ
� finiteness: the number of equivalence classes of ≈ is finite

Approach: we present the definition and we explain why each
constraint is needed

Clock equivalence

57

Approach: we present the definition and we explain why each
constraint is needed. Lex cx be the maximal constant that appears
in a constraint on x

Clock equivalence

58

1st observation: may be we can use only the integral part

Clock equivalence

2nd observation: the integral part is not enough, also the relative
order of clocks should be taken into account

When v(x)=0.4 and v(y)=0.3, A can reach l2
when v(x)=0.2 and v(y)=0.3, A cannot reach l2

59

3rd observation: since in the constraint the comparison is with
natural numbers, it can make a difference whether v(x)=n or
v(x)=n.m

Clock equivalence

4th observation: all valuation are of interest only when they do
not pass cx be the maximal constant that appears in a constraint
on x

When v(x)=1.1 and v’(x)=1, the clocks have the same integral
part but only from v’ we can take the transition to l1

60

This lead to the following definition (Alur-Dill 1994):

Clock equivalence

61

Equivalence - example

The first requirement leads to the following eq. classes

Since the biggest constant with which x is compared is 2,

Separating according to the fractional part

Clock ordering irrelevant (only one clock)

62

Def.: the equivalence classes according to the previous definition
can be constructed using a partition refinement algorithm (there
is an example of application on page 220 of the book, that leads
to the following construction)

Equivalence - example

63

The theorem below (Alur-Dill-Courcoubetis) states that regions
can be safely used for TCTL model checking

Equivalence and TCTL

64

Def.: a region is a pair (l,[v]), where l is a location and [v] an
equivalence class over clock valuations

We can build a finite state automata over region, called region
automata.

In region automata there are two types of transitions: let time
elapse or take a transition in the TA

Region automata

region automata
for the single
location automata
used before

65

Def.: a region is a pair (l,[v]), where l is a location and [v] an
equivalence class over clock valuations

We can build a finite state automata over region, called region
automata.

In region automata there are two types of transitions: let time
elapse or take a transition in the TA

Region automata

region automata
for the single
location automata
used before

66

What happens when there are also formula clocks? We have to include also
formula clocks in the computation of the equivalences

Region automata

