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Dealing with time

Why is time introduced in formalisms for system 
verification?

� Correctness may depend also on time (think of the 
operations of a pipelined CPU)

� Usefulness may depend on time (when I call the lift, 
when the lift will come , or I want to compute how long 
does a production line takes)

To check a timed property the time should be explicitely 
represented in the model

We can check also untimed property on a timed model 
(example: reachability of a marking in a timed Petri 
net)
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Dealing with time

What is a time specification

1. A value  � fixed delay for an activity

2. An interval (min-max) � the duration of an activity 
is a non deterministic value in the interval

3. A stochastic distribution � the duration of an 
activity is a value is extracted from a distribution

4. The possibility of defining clocks as variables that 
increase constantly

5. A mix of the above
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Dealing with time

Continuous or discrete?

Discrete: 
� time is a discrete entity
� time elapses in regular ticks
� events/activities can happen only at ticks
� between two ticks the system stays unchanged
� used to represent synchronous system (system with a 
global discrete clock)

� can represent an abstraction of a continuous system
� ex1: imagine a discrete time Petri net, in which all firing 
have equal duration

� ex2: imagine a discrete time Petri net, in which  firings 
have different discrete durations
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PN examples

Property of interest: how often does the lazy chap 
cooks, for how long does it cook?

Exists an execution in which he eats only for X unit 
time?
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Dealing with time

What is the state of the system?

� value of the variables plus value of clocks
� marking plus value of clocks
� process algebra terms plus the value of clocks

How many states do we have?

How do we express temporal properties?
� use temporal logic without time (X “accounts” for time)

� use temporal logic in which temporal operators have a 

time interval A[ϕU [t1,t2]ψ]
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Dealing with time
Continuous or discrete?

Continous: 
� time is a continuous entity (modelled as a real non-
negative variable)

� time elapses continuously
� events/activities can happen at any instant of time
� time between two events can be arbitrarily  small
� used to represent asynchronous system 
� ex1: imagine a continuous  time Petri net, in which all 
activities have equal duration

� ex2: imagine a continuous  time Petri net, in which  
activities have different durations

� ex2: imagine a continuous  time Petri net, in which  
activities have different durations, chosen non 
deterministically in a given interval
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PN examples

Property of interest: how often does the lazy chap 
cooks, for how long does it cook?

Exists an execution in which he eats only for X unit 
time?
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Dealing with time

What is the state of the system?

� value of the variables plus value of clocks
� marking plus value of clocks
� process algebra terms plus the value of clocks

How many states do we have?

How do we express temporal properties?
� use temporal logic in which temporal operators have a 

time interval A[ϕU [t1,t2]ψ]
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Some timed formalisms and logics

Timed automata

Timed Petri nets

Timed process algebra

Timed CTL (TCTL) example: a leader is elected within 3 
seconds

Note: there is no probabilistic reasoning, only non determinism 
and “possibility”

Semantics is given in 
terms of Timed transition 
system, the system of 
timed executions}
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Timed automata part

� Syntax of timed automata

� State of a finite automata, execution paths 
and timed transition systems

� Semantics of timed automata (in terms of a 
timed transition system)

� TCTL syntax and semantics

� Model checking TCTL

� Timed automata and temporal logic in Uppaal
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Timed automata

� Finite-state graph with locations and edges 

+ clock variables

+ ……

� Time elapses in location, not in edges

� Example: light switch, with clock x

off
on



20

Timed automata

� Finite-state graph with locations and edges 

+ clocks variables (run at the same speed)

+ clock constraints that “constrain” the 
behaviour (examples: x≤3, x-y>5)

off

x≥2

x≤3
on

A clock constraint 
can be a guard on 
an edge

A clock constraint can be 
an invariant for a location
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Timed automata

off

x≥2

x≤3
on

{x:=0}

{x:=0}

� Finite-state graph with locations and edges 

+ clocks variables (run at the same speed)

+ clock constraints 

+ clocks reset
Clocks can be reset while 
taking the edge
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Timed automata
guard: limit the possibility 
of taking the edge

clock reset: reset 
time count

location invariant: 
force taking the 
edge
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Timed automata

Clock valuation

x, y clocks

A possible execution
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Timed automata: another example
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Timed automata

Def.: a clock is a variable ranging over R+

Def. Clock constraints. Let C be a set of clocks, with x ∈ C 
and c a natural value, then 

The set of clock constraints over C is indicated with Ψ(C) or 
Cstr(C)
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Timed automata

Note: adding x+y to clock constraints makes the MC 
undecidable (and x-y)?

Note: taking c over the real makes the MC 
undecidable (and for rational?)
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Definition of timed automata

Def.: A timed automata A is a tuple (L, l0, E, Label, C, 
clocks, guard, inv) with

�L a non empty and finite set of locations with initial location 
l0
�E⊆ LxL, a set of edges

�Label: L--> 2AP a function that assigns to each location a 
set Label(l) of atomic propositions

�C, a finite set of clocks

�clocks: E --> 2C, a function that assign to each edge e ∈ E 
a set of clocks clocks(e) --clocks to be reset

�guard: E --> Cstr(C),  a function that assign to each edge e 
∈ E a clock constraint guard(e)

�inv: L --> Cstr(C), a function  that assign to each location l 
∈ L a clock constraint inv(l)
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Timed automata

Guards or invariants
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Timed automata

Time diagram
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Timed automata

Time diagram
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Timed automata

Time diagram
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Timed automata

Time diagram
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Timed automata

Def.: clock valuation v for a set of clocks C is a function 

v: C-->R+, assigning to each clock x in C its current value v(x)

Def.: Let V(C) denote the set of all clock valuations over C. A state of a timed  
automata A is a pair

(l,v)

with l a location of A and v a valuation over C, the clocks of A

For positive real d, v+d is the valuation where each clock is incremented by 
d.  The valuation v with clock x reset is
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Timed automata

Def.: evaluation of clock constraints. For x ∈ C, v ∈ V(C), 
natural c and α and β∈Cstr(C), we have 
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Timed Transition System (TTS)

Def.: Timed transition system underlying a timed automata A, 
M(A), is defined as (S,s0,-->) where
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Def.: a  path is an infinite sequence                

where, for all i, is a transition in the TTS

An execution of a timed automata A is a path through its timed 
transition system M(A).

The elapsed time on a path is defined as follow:

Path of a TTS
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Path of a TTS
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Def.: a path is called   time-divergent if 

Non timed-divergent paths in previous automata?

Ex. of non time-div path:

The set of time-divergent paths from a state s is

Def: A timed automata A is called non-Zeno if from any state 
some time-divergent path can start 

Path of a TTS
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L'esempio della lampadina a due livelli

Example of a Timed automata
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L'esempio della lampadina a due livelli

Example of a Timed automata
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Examples of Timed automata
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Syntax: CTL + formula clocks that can be reset in formula

Semantics defined over TTS

Example of properties that can be expressed in TCTL

Timed Computational Tree Logic (TCTL)
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Def: For p∈AP, z∈D, D the set of formula clocks, and      

α∈Cstr(C ∪D), the set of TCTL formulae is given by:

Clock z in “z in Φ” is called a freeze identifier,  and it means: “z 
in Φ” is valid in state s if Φ holds in s where clock z starts from 0

For example: “z in (z=0)” is valid (true in any state) while “z in 
(z>1)” is not

Clocks have to be bounded to  the formula

Timed Computational Tree Logic
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Not a very convenient way to express timed properties, and a 
number of derived operators have been defined:

Timed Computational Tree Logic
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L'esempio della lampadina a due livelli

Example of a Timed automata
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Semantics: need to define (i,d), position over a path and an 
order relationship on position

This definition is wrong in Katoen’s notes (as was in the original 
paper of Alur and Dill of 1989/90)

Timed Computational Tree Logic
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Timed Computational Tree Logic

Def.: A RT-trajectory σ is an infinite sequence of states si =(li,vi) 

and delays δι: 

σ = s0  −δ0−>  s1  −δ1−>  s2  −δ2−>  s3 −δ3−>…………

Def.: A position in σ is the pair (i,δ):  i∈N and δ≤δι

Def.: location in the position (i,δ) is  loc(i,δ) = li

Def.: valuation in the position (i,δ) is val(i,δ) = vi +δ

Def.: state in position (i,δ) is

σ(i,δ) = ( loc(i,δ), val(i,δ) )
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Timed Computational Tree Logic

Def.: time elapsed at  position (i,δ) is 

τσ(i,δ) = δ + Σ0≤j<i δi

Def. of precedence on positions: we say that (i,δ) precedes 

(j,δ’) and we write (i,δ)<<(j,δ’) if:

� i < j                   or

� i = j  and δ≤δ’
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Def: Semantics of TCTL. Let p∈AP, z∈D, w∈V(D), s∈S (States 

of the TTS), α∈Cstr(C ∪D), s=(l,v), v∈V(C), the set of TCTL 
formulae is given by:

Timed Computational Tree Logic
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………cont.: let p∈AP, z∈D, w∈V(D), s∈S, α∈Cstr(C ∪D), 

the RT-trajectories starting in s, 

Timed Computational Tree Logic
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Why it is necessary that …

Consider the formula

reset z in E(z<=5 U z>5) 

then on paths on which the delays  on the paths are almost zero 
we approach 5: it is not possible to find “the point” in which z 
become >5 for the first time

Timed Computational Tree Logic
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Promptness requirement: maximal delay between an event and 
its reaction

Example of TCTL

Punctuality requirement: exact delay between events
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Example of TCTL

Periodicity requirement: an event occur within a certain period

Example: a machine that put boxes on a belt every 25 time units

Attention: the correct version of the above formula is 

AG ( putbox � z in [(not(putbox) or z=0) U (putbox and z =25)])

Same correction for the formulas in the next pages
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Minimal delay: minimal delay between events

Example: the delay between two trains  at a crossing (tac) 
should be at least 180

Example of TCTL

Interval delay: an event must occur within a certain interval 
from another event

Example: trains should have a maximal distance of 900 time 
units (the minimal delay still holds)
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Even simple automata give rise to infinite TTS, the infinite 
number of states is due to the real valuations of clocks

Solution: a finite number of equivalence classes on the clock 
valuations. Equivalence should maintain…..

Question: what could be such equivalence on the TA below? 

Clock equivalence
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Solution: a finite number of equivalence classes on the clock 
valuations. 

Define an equivalence ≈ that should have the following 
characteristics:

� correctness: (v,w) ≈ (v’,w’) ==> ∀Φ: (v,w)|=Φ sse (v’,w’)|=Φ
� finiteness: the number of equivalence classes of ≈ is finite

Approach: we present the definition and we explain why each 
constraint is needed

Clock equivalence
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Approach: we present the definition and we explain why each 
constraint is needed. Lex cx be the maximal constant that appears 
in a constraint on x

Clock equivalence
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1st observation: may be we can use only the integral part 

Clock equivalence

2nd observation: the integral part is not enough, also the relative 
order of clocks should be taken into account 

When v(x)=0.4 and v(y)=0.3, A can reach l2
when v(x)=0.2 and v(y)=0.3, A cannot reach l2
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3rd observation: since in the constraint the comparison is with 
natural numbers, it can make a difference whether v(x)=n  or 
v(x)=n.m

Clock equivalence

4th observation: all valuation are of interest only when they do 
not pass cx be the maximal constant that appears in a constraint 
on x

When v(x)=1.1 and v’(x)=1, the clocks have the same integral 
part but only from v’ we can take the transition to l1
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This lead to the following definition (Alur-Dill 1994):

Clock equivalence
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Equivalence - example

The first requirement leads to the following eq. classes

Since the biggest constant with which x is compared is 2,

Separating according to the fractional part

Clock ordering irrelevant (only one clock)
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Def.: the equivalence classes according to the previous definition 
can be constructed using a partition refinement algorithm (there 
is an example of application on page 220 of the book, that leads 
to the following construction)

Equivalence - example
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The theorem below (Alur-Dill-Courcoubetis) states that regions 
can be safely used for TCTL model checking 

Equivalence  and TCTL
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Def.: a region is a pair (l,[v]), where l is a location and [v] an 
equivalence class over clock valuations

We can build a finite state automata over region, called region 
automata.

In region automata there are two types of transitions: let time 
elapse or take a transition in the TA 

Region automata

region automata 
for the single 
location automata 
used before
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Def.: a region is a pair (l,[v]), where l is a location and [v] an 
equivalence class over clock valuations

We can build a finite state automata over region, called region 
automata.

In region automata there are two types of transitions: let time 
elapse or take a transition in the TA 

Region automata

region automata 
for the single 
location automata 
used before
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What happens when there are also formula clocks? We have to include also 
formula clocks in the computation of the equivalences

Region automata


