GPU Teaching Kit

Accelerated Computing

Module 9.2 — Parallel Computation Patterns (Reduction)
A Basic Reduction Kernel



Objective

— To learn to write a basic reduction kernel
— Thread to data mapping
— Turning off threads
— Control divergence




Parallel Sum Reduction

— Parallel implementation

Recursively halve # of threads, add two values per thread in each step
Takes log(n) steps for n elements, requires n/2 threads

— Assume an in-place reduction using shared memory

The original vector is in device global memory

The shared memory is used to hold a partial sum vector
Each step brings the partial sum vector closer to the sum
The final sum will be in element O of the partial sum vector
Reduces global memory traffic due to partial sum values
Thread block size limits n to be less than or equal to 2,048




A Parallel Sum Reduction Example

THREAD O THREAD 1 THREAD 2 THREAD 3




A Naive Thread to Data Mapping

— Each thread is responsible for an even-index location of the partial sum
vector (location of responsibility)

— After each step, half of the threads are no longer needed
— One of the inputs is always from the location of responsibility
— In each step, one of the inputs comes from an increasing distance away




A Simple Thread Block Design

— Each thread block takes 2*BlockDim.x input elements
— Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadldx.x;

unsigned int start = 2*blockldx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start + blockDim.x+t];




The Reduction Steps

for (unsigned iInt stride = 1;
stride <= blockDim.x; stride *= 2)
{
__syncthreads();
iIT (t % stride == 0)
partialSum[2*t]+= partialSum[2*t+stride];

Why do we need __ syncthreads()?




Barrier Synchronization

— __syncthreads() is needed to ensure that all elements of each
version of partial sums have been generated before we proceed
to the next step




Back to the Global Picture

— At the end of the kernel, Thread 0 in each thread block
writes the sum of the thread block in partialSum][0] into a
vector indexed by the blockldx.x

— There can be a large number of such sums if the original
vector is very large
— The host code may iterate and launch another kernel

— If there are only a small number of sums, the host can
simply transfer the data back and add them together




GPU Teaching Kit

Accelerated Computing

The GPU Teaching Kit is licensed by NVIDIA and the University of lllinois under
the Creative Commons Attribution-NonCommercial 4.0 International License.



http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode
http://creativecommons.org/licenses/by-nc/4.0/legalcode

	Module 9.2 – Parallel Computation Patterns (Reduction)
	Objective
	Parallel Sum Reduction
	A Parallel Sum Reduction Example
	A Naive Thread to Data Mapping
	A Simple Thread Block Design
	The Reduction Steps
	Barrier Synchronization
	Back to the Global Picture
	Slide Number 10

