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Module 9.2 — Parallel Computation Patterns (Reduction)
A Basic Reduction Kernel



Objective

— To learn to write a basic reduction kernel
— Thread to data mapping
— Turning off threads
— Control divergence




Parallel Sum Reduction

— Parallel implementation

Recursively halve # of threads, add two values per thread in each step
Takes log(n) steps for n elements, requires n/2 threads

— Assume an in-place reduction using shared memory

The original vector is in device global memory

The shared memory is used to hold a partial sum vector
Each step brings the partial sum vector closer to the sum
The final sum will be in element O of the partial sum vector
Reduces global memory traffic due to partial sum values
Thread block size limits n to be less than or equal to 2,048




A Parallel Sum Reduction Example

THREAD O THREAD 1 THREAD 2 THREAD 3




A Naive Thread to Data Mapping

— Each thread is responsible for an even-index location of the partial sum
vector (location of responsibility)

— After each step, half of the threads are no longer needed
— One of the inputs is always from the location of responsibility
— In each step, one of the inputs comes from an increasing distance away




A Simple Thread Block Design

— Each thread block takes 2*BlockDim.x input elements
— Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadldx.x;

unsigned int start = 2*blockldx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start + blockDim.x+t];




The Reduction Steps

for (unsigned iInt stride = 1;
stride <= blockDim.x; stride *= 2)
{
__syncthreads();
iIT (t % stride == 0)
partialSum[2*t]+= partialSum[2*t+stride];

Why do we need __ syncthreads()?




Barrier Synchronization

— __syncthreads() is needed to ensure that all elements of each
version of partial sums have been generated before we proceed
to the next step




Back to the Global Picture

— At the end of the kernel, Thread 0 in each thread block
writes the sum of the thread block in partialSum][0] into a
vector indexed by the blockldx.x

— There can be a large number of such sums if the original
vector is very large
— The host code may iterate and launch another kernel

— If there are only a small number of sums, the host can
simply transfer the data back and add them together
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