
Translation Verification of the pattern matching

compiler

Francesco Mecca

1 Introduction

This dissertation presents an algorithm for the translation validation of the
OCaml pattern matching compiler. Given a source program and its compiled
version the algorithm checks whether the two are equivalent or produce a
counter example in case of a mismatch. For the prototype of this algorithm
we have chosen a subset of the OCaml language and implemented a prototype
equivalence checker along with a formal statement of correctness and its
proof. The prototype is to be included in the OCaml compiler infrastructure
and will aid the development.

Our equivalence algorithm works with decision trees. Source patterns
are converted into a decision tree using a matrix decomposition algorithm.
Target programs, described in the Lambda intermediate representation lan-
guage of the OCaml compiler, are turned into decision trees by applying
symbolic execution.

A pattern matching compiler turns a series of pattern matching clauses
into simple control flow structures such as if, switch, for example:

match scrutinee with

| [] -> (0, None)

| x::[] -> (1, Some x)

| _::y::_ -> (2, Some y)

Given as input to the pattern matching compiler, this snippet of code gets
translated into the Lambda intermediate representation of the OCaml com-

1

piler. The Lambda representation of a program is shown by calling the
ocamlc compiler with -drawlambda flag. In this example we renamed the
variables assigned in order to ease the understanding of the tests that are
performed when the code is translated into the Lambda form. code phase.

(function scrutinee

(if scrutinee ;;; true when scrutinee (list) not empty

(let (tail =a (field 1 scrutinee/81)) ;;; assignment

(if tail

(let

y =a (field 0 tail))

;;; y is the first element of the tail

(makeblock 0 2 (makeblock 0 y)))

;;; allocate memory for tuple (2, Some y)

(let (x =a (field 0 scrutinee))

;;; x is the head of the scrutinee

(makeblock 0 1 (makeblock 0 x)))))

;;; allocate memory for tuple (1, Some x)

[0: 0 0a]))) ;;; low level representatio of (0, None)

The OCaml pattern matching compiler is a critical part of the OCaml
compiler in terms of correctness because bugs typically would result in wrong
code production rather than triggering compilation failures. Such bugs also
are hard to catch by testing because they arise in corner cases of complex
patterns which are typically not in the compiler test suite or most user
programs.

The OCaml core developers group considered evolving the pattern match-
ing compiler, either by using a new algorithm or by incremental refactoring of
its code base. For this reason we want to verify that new implementations of
the compiler avoid the introduction of new bugs and that such modifications
don’t result in a different behavior than the current one.

One possible approach is to formally verify the pattern matching com-
piler implementation using a machine checked proof. Another possibility,

2

albeit with a weaker result, is to verify that each source program and tar-
get program pair are semantically correct. We chose the latter technique,
translation validation because is easier to adopt in the case of a production
compiler and to integrate with an existing code base. The compiler is treated
as a black-box and proof only depends on our equivalence algorithm.

1.1 Our approach

Our algorithm translates both source and target programs into a common
representation, decision trees. Decision trees where chosen because they
model the space of possible values at a given branch of execution. Here are
the decision trees for the source and target example program.

Switch(Root)
/ \

(= []) (= ::)
/ \

Leaf Switch(Root.1)
(0, None) / \

(= []) (= ::)
/ \

Leaf Leaf
[x = Root.0] [y = Root.1.0]
(1, Some x) (2, Some y)

Switch(Root)
/ \

(= int 0) (!= int 0)
/ \

Leaf Switch(Root.1)
(mkblock 0 / \

0 0a) / \
(= int 0) (!= int 0)
/ \

Leaf Leaf
[x = Root.0] [y = Root.1.0]
(mkblock 0 (mkblock 0

1 (mkblock 0 x)) 2 (mkblock 0 y))
(Root.0) is called an accessor, that represents the access path to a value

that can be reached by deconstructing the scrutinee. In this example Root.0
is the first subvalue of the scrutinee.

Target decision trees have a similar shape but the tests on the branches
are related to the low level representation of values in Lambda code. For
example, cons cells x::xs or tuples (x,y) are blocks with tag 0.

To check the equivalence of a source and a target decision tree, we proceed
by case analysis. If we have two terminals, such as leaves in the previous
example, we check that the two right-hand-sides are equivalent. If we have a
node N and another tree T we check equivalence for each child of N , which
is a pair of a branch condition πi and a subtree Ci. For every child (πi, Ci)

we reduce T by killing all the branches that are incompatible with πi and

3

check that the reduced tree is equivalent to Ci.

1.2 From source programs to decision trees

Our source language supports integers, lists, tuples and all algebraic datatypes.
Patterns support wildcards, constructors and literals, Or-patterns such as
(p1|p2) and pattern variables. In particular Or-patterns provide a more com-
pact way to group patterns that point to the same expression.

match w with

| p1 -> expr

| p2 -> expr

| p3 -> expr

match w with

| p1|p2|p3 -> expr

We also support when guards, which are interesting as they introduce the
evaluation of expressions during matching. This is the type definition of
decision tree as they are used in the prototype implementation:

type decision_tree =

| Unreachable

| Failure

| Leaf of source_expr

| Guard of source_expr * decision_tree * decision_tree

| Switch of accessor * (constructor * decision_tree) list * decision_tree

In the Switch node we have one subtree for every head constructor that
appears in the pattern matching clauses and a fallback case for other values.
The branch condition πi expresses that the value at the switch accessor starts
with the given constructor. Failure nodes express match failures for values
that are not matched by the source clauses. Unreachable is used when we
statically know that no value can flow to that subtree.

We write JtSKS to denote the translation of the source program (the set
of pattern matching clauses) into a decision tree, computed by a matrix
decomposition algorithm (each column decomposition step gives a Switch

node). It satisfies the following correctness statement:

∀ts, ∀vs, ts(vs) = JtsKs(vs)

4

The correctness statement intuitively states that for every source program,
for every source value that is well-formed input to a source program, running
the program tS against the input value vS is the same as running the com-
piled source program JtSK (that is a decision tree) against the same input
value vS".

1.3 From target programs to decision trees

The target programs include the following Lambda constructs: let, if,

switch, Match_failure, catch, exit, field and various comparison op-
erations, guards. The symbolic execution engine traverses the target program
and builds an environment that maps variables to accessors. It branches at
every control flow statement and emits a Switch node. The branch condition
πi is expressed as an interval set of possible values at that point. In compar-
ison with the source decision trees, Unreachable nodes are never emitted.
Guards result in branching. In comparison with the source decision trees,
Unreachable nodes are never emitted.

We write JtT KT to denote the translation of a target program tT into a
decision tree of the target program tT , satisfying the following correctness
statement that is simmetric to the correctness statement for the translation
of source programs:

∀tT , ∀vT , tT (vT) = JtT KT (vT)

1.4 Equivalence checking

The equivalence checking algorithm takes as input a domain of possible val-
ues S and a pair of source and target decision trees and in case the two trees
are not equivalent it returns a counter example. The algorithm respects the
following correctness statement:

equiv(S,CS , CT) = Yes ∧ CT covers S =⇒ ∀vS ≈ vT ∈ S, CS(vS) = CT (vT)

equiv(S,CS , CT) = No(vS , vT) ∧ CT covers S =⇒ vS ≈ vT ∈ S ∧ CS(vS) 6= CT (vT)

5

The algorithm proceeds by case analysis. Inference rules are shown. If S
is empty the results is Yes.

equiv(∅, CS , CT)G

If the two decision trees are both terminal nodes the algorithm checks
for content equality.

equiv(S,Failure,Failure)[]

tS ≈term tT

equiv(S, Leaf(tS), Leaf(tT))[]

If the source decision tree (left hand side) is a terminal while the target
decisiorn tree (right hand side) is not, the algorithm proceeds by explosion
of the right hand side. Explosion means that every child of the right hand
side is tested for equality against the left hand side.

CS ∈ Leaf(t),Failure

∀i, equiv((S ∧ a ∈ Di), CS , Ci)G equiv((S ∧ a /∈ (Di)
i), CS , Cfb)G

equiv(S,CS ,Switch(a, (Di)
iCi, Cfb))G

When the left hand side is not a terminal, the algorithm explodes the
left hand side while trimming every right hand side subtree. Trimming a left
hand side tree on an interval set domS computed from the right hand side
tree constructor means mapping every branch condition domT (interval set
of possible values) on the left to the intersection of domT and domS when the
accessors on both side are equal, and removing the branches that result in
an empty intersection. If the accessors are different, domT is left unchanged.

∀i, equiv((S ∧ a = Ki), Ci, trim(CT , a = Ki))G

equiv((S ∧ a /∈ (Ki)
i), Cfb, trim(CT , a /∈ (Ki)

i))G

equiv(S, Switch(a, (Ki, Ci)
i, Cfb), CT)G

6

The equivalence checking algorithm deals with guards by storing a queue.
A guard blackbox is pushed to the queue whenever the algorithm encounters
a Guard node on the right, while it pops a blackbox from the queue whenever
a Guard node appears on the left hand side. The algorithm stops with failure
if the popped blackbox and the and blackbox on the left hand Guard node
are different, otherwise in continues by exploding to two subtrees, one in
which the guard condition evaluates to true, the other when it evaluates to
false. Termination of the algorithm is successful only when the guards queue
is empty.

equiv(S,C0, CT)G, (tS = 0) equiv(S,C1, CT)G, (tS = 1)

equiv(S,Guard(tS , C0, C1), CT)G

tS ≈term tT equiv(S,CS , Cb)G

equiv(S,CS ,Guard(tT , C0, C1))(tS = b), G

2 Background

2.1 OCaml

Objective Caml (OCaml) is a dialect of the ML (Meta-Language) family
of programming that features with other dialects of ML, such as SML and
Caml Light. The main features of ML languages are the use of the Hindley-
Milner type system that provides many advantages with respect to static
type systems of traditional imperative and object oriented language such as
C, C++ and Java, such as:

• Polymorphism: in certain scenarios a function can accept more than
one type for the input parameters. For example a function that com-
putes the length of a list doesn’t need to inspect the type of the ele-
ments of the list and for this reason a List.length function can accept
lists of integers, lists of strings and in general lists of any type. Such
languages offer polymorphic functions through subtyping at runtime
only, while other languages such as C++ offer polymorphism through

7

compile time templates and function overloading. With the Hindley-
Milner type system each well typed function can have more than one
type but always has a unique best type, called the principal type. For
example the principal type of the List.length function is "For any a,
function from list of a to int" and a is called the type parameter.

• Strong typing: Languages such as C and C++ allow the programmer to
operate on data without considering its type, mainly through pointers.
Other languages such as C# and Go allow type erasure so at runtime
the type of the data can’t be queried. In the case of programming
languages using an Hindley-Milner type system the programmer is not
allowed to operate on data by ignoring or promoting its type.

• Type Inference: the principal type of a well formed term can be inferred
without any annotation or declaration.

• Algebraic data types: types that are modeled by the use of two alge-
braic operations, sum and product. A sum type is a type that can hold
of many different types of objects, but only one at a time. For example
the sum type defined as A + B can hold at any moment a value of
type A or a value of type B. Sum types are also called tagged union
or variants. A product type is a type constructed as a direct product
of multiple types and contains at any moment one instance for every
type of its operands. Product types are also called tuples or records.
Algebraic data types can be recursive in their definition and can be
combined.

Moreover ML languages are functional, meaning that functions are treated as
first class citizens and variables are immutable, although mutable statements
and imperative constructs are permitted. In addition to that features an
object system, that provides inheritance, subtyping and dynamic binding,
and modules, that provide a way to encapsulate definitions. Modules are
checked statically and can be reifycated through functors.

8

2.2 Compiling OCaml code

The OCaml compiler provides compilation of source files in form of a byte-
code executable with an optionally embeddable interpreter or as a native
executable that could be statically linked to provide a single file executable.
Every source file is treated as a separate compilation unit that is advanced
through different states. The first stage of compilation is the parsing of the
input code that is trasformed into an untyped syntax tree. Code with syntax
errors is rejected at this stage. After that the AST is processed by the type
checker that performs three steps at once:

• type inference, using the classical Algorithm W

• perform subtyping and gathers type information from the module sys-
tem

• ensures that the code obeys the rule of the OCaml type system

At this stage, incorrectly typed code is rejected. In case of success, the
untyped AST in trasformed into a Typed Tree. After the typechecker has
proven that the program is type safe, the compiler lower the code to Lambda,
an s-expression based language that assumes that its input has already been
proved safe. After the Lambda pass, the Lambda code is either translated
into bytecode or goes through a series of optimization steps performed by
the Flambda optimizer before being translated into assembly.

This is an overview of the different compiler steps.

9

10

2.3 Memory representation of OCaml values

An usual OCaml source program contains few to none explicit type signa-
tures. This is possible because of type inference that allows to annotate the
AST with type informations. However, since the OCaml typechecker guar-
antes that a program is well typed before being transformed into Lambda
code, values at runtime contains only a minimal subset of type informations
needed to distinguish polymorphic values. For runtime values, OCaml uses
a uniform memory representation in which every variable is stored as a value
in a contiguous block of memory. Every value is a single word that is either
a concrete integer or a pointer to another block of memory, that is called cell
or box. We can abstract the type of OCaml runtime values as the following:

type t = Constant | Cell of int * t

where a one bit tag is used to distinguish between Constant or Cell. In
particular this bit of metadata is stored as the lowest bit of a memory block.

Given that all the OCaml target architectures guarantee that all pointers
are divisible by four and that means that two lowest bits are always 00 storing
this bit of metadata at the lowest bit allows an optimization. Constant
values in OCaml, such as integers, empty lists, Unit values and constructors
of arity zero (constant constructors) are unboxed at runtime while pointers
are recognized by the lowest bit set to 0.

2.4 Lambda form compilation

A Lambda code target file is produced by the compiler and consists of a
single s-expression. Every s-expression consist of (, a sequence of elements
separated by a whitespace and a closing). Elements of s-expressions are:

• Atoms: sequences of ascii letters, digits or symbols

• Variables

• Strings: enclosed in double quotes and possibly escaped

11

• S-expressions: allowing arbitrary nesting

The Lambda form is a key stage where the compiler discards type infor-
mations and maps the original source code to the runtime memory model
described. In this stage of the compiler pipeline pattern match statements
are analyzed and compiled into an automata.

type t = | Foo | Bar | Baz | Fred

let test = function

| Foo -> "foo"

| Bar -> "bar"

| Baz -> "baz"

| Fred -> "fred"

The Lambda output for this code can be obtained by running the compiler
with the -dlambda flag:

(setglobal Prova!

(let

(test/85 =

(function param/86

(switch* param/86

case int 0: "foo"

case int 1: "bar"

case int 2: "baz"

case int 3: "fred")))

(makeblock 0 test/85)))

As outlined by the example, themakeblock directive is responsible for allocat-
ing low level OCaml values and every constant constructor ot the algebraic
type t is stored in memory as an integer. The setglobal directives declares
a new binding in the global scope: Every concept of modules is lost at this
stage of compilation. The pattern matching compiler uses a jump table to

12

map every pattern matching clauses to its target expression. Values are
addressed by a unique name.

type t = | English of p | French of q

type p = | Foo | Bar

type q = | Tata| Titi

type t = | English of p | French of q

let test = function

| English Foo -> "foo"

| English Bar -> "bar"

| French Tata -> "baz"

| French Titi -> "fred"

In the case of types with a smaller number of variants, the pattern matching
compiler may avoid the overhead of computing a jump table. This example
also highlights the fact that non constant constructor are mapped to cons
cell that are accessed using the tag directive.

(setglobal Prova!

(let

(test/89 =

(function param/90

(switch* param/90

case tag 0: (if (!= (field 0 param/90) 0) "bar" "foo")

case tag 1: (if (!= (field 0 param/90) 0) "fred" "baz"))))

(makeblock 0 test/89)))

In the Lambda language are several numeric types:

• integers: that us either 31 or 63 bit two’s complement arithmetic de-
pending on system word size, and also wrapping on overflow

• 32 bit and 64 bit integers: that use 32-bit and 64-bit two’s complement
arithmetic with wrap on overflow

13

• big integers: offer integers with arbitrary precision

• floats: that use IEEE754 double-precision (64-bit) arithmetic with the
addition of the literals infinity, neg_infinity and nan.

The are various numeric operations defined:

• Arithmetic operations: +, -, *, /, % (modulo), neg (unary negation)

• Bitwise operations: &, |, ˆ, «, » (zero-shifting), a» (sign extending)

• Numeric comparisons: <, >, <=, >=, ==

1. Functions

Functions are defined using the following syntax, and close over all
bindings in scope: (lambda (arg1 arg2 arg3) BODY) and are applied
using the following syntax: (apply FUNC ARG ARG ARG) Evaluation
is eager.

2. Other atoms The atom let introduces a sequence of bindings at a
smaller scope than the global one: (let BINDING BINDING BINDING
. . . BODY)

The Lambda form supports many other directives such as strinswitch
that is constructs aspecialized jump tables for string, integer range
comparisons and so on. These construct are explicitely undocumented
because the Lambda code intermediate language can change across
compiler releases.

2.5 Pattern matching

Pattern matching is a widely adopted mechanism to interact with ADT.
C family languages provide branching on predicates through the use of if
statements and switch statements. Pattern matching on the other hands ex-
press predicates through syntactic templates that also allow to bind on data
structures of arbitrary shapes. One common example of pattern matching

14

is the use of regular expressions on strings. provides pattern matching on
ADT and primitive data types. The result of a pattern matching operation
is always one of:

• this value does not match this pattern”

• this value matches this pattern, resulting the following bindings of
names to values and the jump to the expression pointed at the pattern.

type color = | Red | Blue | Green | Black | White

match color with

| Red -> print "red"

| Blue -> print "red"

| Green -> print "red"

| _ -> print "white or black"

provides tokens to express data destructoring. For example we can ex-
amine the content of a list with pattern matching

begin match list with

| [] -> print "empty list"

| element1 :: [] -> print "one element"

| (element1 :: element2) :: [] -> print "two elements"

| head :: tail-> print "head followed by many elements"

Parenthesized patterns, such as the third one in the previous example,
matches the same value as the pattern without parenthesis.

The same could be done with tuples

begin match tuple with

| (Some _, Some _) -> print "Pair of optional types"

| (Some _, None) | (None, Some _) -> print "Pair of optional types, one of which is null"

| (None, None) -> print "Pair of optional types, both null"

15

The pattern pattern1 | pattern2 represents the logical "or" of the two
patterns pattern1 and pattern2. A value matches pattern1 | pattern2 if it
matches pattern1 or pattern2.

Pattern clauses can make the use of guards to test predicates and vari-
ables can captured (binded in scope).

begin match token_list with

| "switch"::var::"{"::rest -> ...

| "case"::":"::var::rest when is_int var -> ...

| "case"::":"::var::rest when is_string var -> ...

| "}"::[] -> ...

| "}"::rest -> error "syntax error: " rest

Moreover, the pattern matching compiler emits a warning when a pattern
is not exhaustive or some patterns are shadowed by precedent ones.

2.6 Symbolic execution

Symbolic execution is a widely used techniques in the field of computer
security. It allows to analyze different execution paths of a program simul-
tanously while tracking which inputs trigger the execution of different parts
of the program. Inputs are modelled symbolically rather than taking "con-
crete" values. A symbolic execution engine keeps track of expressions and
variables in terms of these symbolic symbols and attaches logical constraints
to every branch that is being followed. Symbolic execution engines are used
to track bugs by modelling the domain of all possible inputs of a program,
detecting infeasible paths, dead code and proving that two code segments
are equivalent.

Let’s take as example this signedness bug that was found in the FreeBSD
kernel and allowed, when calling the getpeername function, to read portions
of kernel memory.

16

int compat;

{

struct file *fp;

register struct socket *so;

struct sockaddr *sa;

int len, error;

...

len = MIN(len, sa->sa_len); /* [1] */

error = copyout(sa, (caddr_t)uap->asa, (u_int)len);

if (error)

goto bad;

...

bad:

if (sa)

FREE(sa, M_SONAME);

fdrop(fp, p);

return (error);

}

The tree of the execution when the function is evaluated considering int
len our symbolic variable α, sa->sa_len as symbolic variable β and π as the
set of constraints on a symbolic variable:

17

We can see that at step 3 the set of possible values of the scrutinee α is bigger
than the set of possible values of the input σ to the cast directive, that is:
πα * πσ. For this reason the cast may fail when α is len negative number,
outside the domain πσ. In C this would trigger undefined behaviour (signed
overflow) that made the exploitation possible.

Every step of evaluation can be modelled as the following transition:

(πσ, (πi)
i)→ (π′σ, (π

′
i)
i)

if we express the π constraints as logical formulas we can model the execution
of the program in terms of Hoare Logic. State of the computation is a Hoare
triple {P}C{Q} where P and Q are respectively the precondition and the
postcondition that constitute the assertions of the program. C is the directive
being executed. The language of the assertions P is:

P ::= true | false | a < b | P1 ∧ P2 | P1 ∨ P2 | ¬ P

where a and b are numbers. In the Hoare rules assertions could also take
the form of

P ::= ∀ i. P | ∃ i. P | P1 ⇒ P2

where i is a logical variable, but assertions of these kinds increases the com-
plexity of the symbolic engine. Execution follows the rules of Hoare logic:

18

• Empty statement :

{P}skip{P}

• Assignment statement : The truthness of P[a/x] is equivalent to the
truth of {P} after the assignment.

{P [a/x]}x := a{P}

• Composition : c1 and c2 are directives that are executed in order; {Q}
is called the midcondition.

{P}c1{R}, {R}c2{Q}

{P}c1; c2{Q}

• Conditional :

{P ∧ b}c1{Q}, {P∧ 6 b}c2{Q}

{P}if b then c1 else c2{Q}

• Loop : {P} is the loop invariant. After the loop is finished P holds
and ¬egb caused the loop to end.

{P ∧ b}c{P}

{P}while b do c{P ∧ ¬b}

Even if the semantics of symbolic execution engines are well defined, the
user may run into different complications when applying such analysis to
non trivial codebases. For example, depending on the domain, loop termina-
tion is not guaranteed. Even when termination is guaranteed, looping causes
exponential branching that may lead to path explosion or state explosion.
Reasoning about all possible executions of a program is not always feasi-
ble and in case of explosion usually symbolic execution engines implement
heuristics to reduce the size of the search space.

19

2.7 Translation validation

Translators, such as translators and code generators, are huge pieces of soft-
ware usually consisting of multiple subsystem and constructing an actual
specification of a translator implementation for formal validation is a very
long task. Moreover, different translators implement different algorithms,
so the correctness proof of a translator cannot be generalized and reused
to prove another translator. Translation validation is an alternative to the
verification of existing translators that consists of taking the source and the
target (compiled) program and proving a posteriori their semantic equiva-
lence.

� Techniques for translation validation

� What does semantically equivalent mean

� What happens when there is no semantic equivalence

� Translation validation through symbolic execution

3 Translation validation of the Pattern Matching

Compiler

3.1 Source program

Our algorithm takes as its input a source program and translates it into an
algebraic data structure which type we call decision_tree.

type decision_tree =

| Unreachable

| Failure

| Leaf of source_expr

| Guard of source_blackbox * decision_tree * decision_tree

| Switch of accessor * (constructor * decision_tree) list * decision_tree

20

Unreachable, Leaf of source_expr and Failure are the terminals of the
three. We distinguish

• Unreachable: statically it is known that no value can go there

• Failure: a value matching this part results in an error

• Leaf: a value matching this part results into the evaluation of a source
black box of code

The algorithm doesn’t support type-declaration-based analysis to know
the list of constructors at a given type. Let’s consider some trivial examples:

function true -> 1

is translated to

Switch ([(true, Leaf 1)], Failure)

while

function

true -> 1

| false -> 2

will be translated to

Switch ([(true, Leaf 1); (false, Leaf 2)])

It is possible to produce Unreachable examples by using refutation clauses
(a "dot" in the right-hand-side)

function

true -> 1

| false -> 2

| _ -> .

21

that gets translated into Switch ([(true, Leaf 1); (false, Leaf 2)], Unreachable)
We trust this annotation, which is reasonable as the type-checker verifies

that it indeed holds.
Guard nodes of the tree are emitted whenever a guard is found. Guards

node contains a blackbox of code that is never evaluated and two branches,
one that is taken in case the guard evaluates to true and the other one that
contains the path taken when the guard evaluates to true.

The source code of a pattern matching function has the following form:

match variable with
| pattern1 → expr1
| pattern2 when guard → expr2
| pattern3 as var → expr3
...
| pn → exprn

Patterns could or could not be exhaustive.
Pattern matching code could also be written using the more compact

form:

function
| pattern1 → expr1
| pattern2 when guard → expr2
| pattern3 as var → expr3
...
| pn → exprn

This BNF grammar describes formally the grammar of the source pro-
gram:

22

start ::= "match" id "with" patterns | "function" patterns
patterns ::= (pattern0|pattern1) pattern1+
;; pattern0 and pattern1 are needed to distinguish the first case in which
;; we can avoid writing the optional vertical line
pattern0 ::= clause
pattern1 ::= "|" clause
clause ::= lexpr "->" rexpr
lexpr ::= rule (ε|condition)
rexpr ::= _code ;; arbitrary code
rule ::= wildcard|variable|constructor_pattern|{}or_pattern ;;
;; rules
wildcard ::= "_"
variable ::= identifier
constructor_pattern ::= constructor (rule|ε) (assignment|ε)
constructor ::= int|float|char|string|bool |unit|record|exn|objects|ref |list|tuple|array|variant|parameterized_variant ;; data types
or_pattern ::= rule ("|" wildcard|variable|constructor_pattern)+
condition ::= "when" bexpr
assignment ::= "as" id
bexpr ::= _code ;; arbitrary code

A source program tS is a collection of pattern clauses pointing to bb
terms. Running a program tS against an input value vS produces as a result
r :

tS ::= (p → bb)i∈I

p ::= | K(pi)i, i ∈ I | (p|q) | n ∈ N
r ::= guard list * (Match bb | NoMatch | Absurd)
tS(vS) → r

TODO: argument on what it means to run a source program
guard and bb expressions are treated as blackboxes of OCaml code. A

sound approach for treating these blackboxes would be to inspect the OCaml
compiler during translation to Lambda code and extract the blackboxes com-
piled in their Lambda representation. This would allow to test for equality

23

with the respective blackbox at the target level. Given that this level of
introspection is currently not possibile, we decided to restrict the structure
of blackboxes to the following (valid) OCaml code:

external guard : ’a -> ’b = "guard"

external observe : ’a -> ’b = "observe"

We assume these two external functions guard and observe with a valid
type that lets the user pass any number of arguments to them. All the guards
are of the form guard <arg> <arg> <arg>, where the <arg> are expressed
using the OCaml pattern matching language. Similarly, all the right-hand-
side expressions are of the form observe <arg> <arg> ... with the same
constraints on arguments.

type t = K1 | K2 of t (* declaration of an algebraic and recursive datatype t *)

let _ = function

| K1 -> observe 0

| K2 K1 -> observe 1

| K2 x when guard x -> observe 2 (* guard inspects the x variable *)

| K2 (K2 x) as y when guard x y -> observe 3

| K2 _ -> observe 4

We note that the right hand side of observe is just an arbitrary value and
in this case just enumerates the order in which expressions appear. Even
if this is an oversimplification of the problem for the prototype, it must
be noted that at the compiler level we have the possibility to compile the
pattern clauses in two separate steps so that the guards and right-hand-
side expressions are semantically equal to their counterparts at the target
program level.

let _ = function

| K1 -> lambda0
| K2 K1 -> lambda1
| K2 x when lambda-guard0 -> lambda2

24

| K2 (K2 x) as y when lambda-guard1 -> lambda3
| K2 _ -> lambda4

The source program is parsed using the ocaml-compiler-libs library. The
result of parsing, when successful, results in a list of clauses and a list of
type declarations. Every clause consists of three objects: a left-hand-side
that is the kind of pattern expressed, an option guard and a right-hand-side
expression. Patterns are encoded in the following way:

pattern type

_ Wildcard
p1 as x Assignment
c(p1,p2,. . . ,pn) Constructor
(p1| p2) Orpat

Once parsed, the type declarations and the list of clauses are encoded in
the form of a matrix that is later evaluated using a matrix decomposition
algorithm.

Patterns are of the form

pattern type of pattern

_ wildcard
x variable
c(p1,p2,. . . ,pn) constructor pattern
(p1| p2) or-pattern

The pattern p matches a value v, written as p 4 v, when one of the
following rules apply

_ 4 v ∀v
x 4 v ∀v
(p1 | p2) 4 v iff p1 4 v or p2 4 v
c(p1, p2, . . . , pa) 4 c(v1, v2, . . . , va) iff (p1, p2, . . . , pa) 4 (v1, v2, . . . , va)
(p1, p2, . . . , pa) 4 (v1, v2, . . . , va) iff pi 4 vi ∀i ∈ [1..a]

25

When a value v matches pattern p we say that v is an instance of p.
During compilation by the translators, expressions at the right-hand-side

are compiled into Lambda code and are referred as lambda code actions li.
We define the pattern matrix P as the matrix |m x n| where m bigger or

equal than the number of clauses in the source program and n is equal to
the arity of the constructor with the gratest arity.

P =


p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n
...

...
. . .

...
pm,1 pm,2 · · · pm,n)


every row of P is called a pattern vector ~pi = (p1, p2, . . . , pn); In every
instance of P pattern vectors appear normalized on the length of the longest
pattern vector. Considering the pattern matrix P we say that the value
vector ~v = (v1, v2, . . . , vi) matches the pattern vector pi in P if and only if
the following two conditions are satisfied:

• pi,1, pi,2, · · · , pi,n 4 (v1, v2, . . . , vi)

• ∀j < i pj,1, pj,2, · · · , pj,n � (v1, v2, . . . , vi)

We can define the following three relations with respect to patterns:

• Pattern p is less precise than pattern q, written p 4 q, when all in-
stances of q are instances of p

• Pattern p and q are equivalent, written p ≡ q, when their instances
are the same

• Patterns p and q are compatible when they share a common instance

26

3.1.1 Matrix decomposition of pattern clauses

We define a new object, the clause matrix P → L of size |m x n+1| that
associates pattern vectors ~pi to lambda code action li.

P → L =


p1,1 p1,2 · · · p1,n → l1

p2,1 p2,2 · · · p2,n → l2
...

...
. . .

...→
...

pm,1 pm,2 · · · pm,n → lm


The initial input of the decomposition algorithm C consists of a vector of
variables ~x = (x1, x2, . . . , xn) of size n where n is the arity of the type of x
and the clause matrix P → L. That is:

C((~x = (x1, x2, ..., xn),


p1,1 p1,2 · · · p1,n → l1

p2,1 p2,2 · · · p2,n → l2
...

...
. . .

...→
...

pm,1 pm,2 · · · pm,n → lm

)

The base case C0 of the algorithm is the case in which the ~x is an empty
sequence and the result of the compilation C0 is l1

C0((),


→ l1

→ l2

→
...

→ lm

) = l1

When ~x 6= () then the compilation advances using one of the following
four rules:

1. Variable rule: if all patterns of the first column of P are wildcard
patterns or bind the value to a variable, then

C(~x, P → L) = C((x2, x3, ..., xn), P
′ → L′)

27

where 
p1,2 · · · p1,n → (let y1 x1) l1

p2,2 · · · p2,n → (let y2 x1) l2
...

. . .
... →

...
...

...
...

pm,2 · · · pm,n → (let ym x1) lm


That means in every lambda action li there is a binding of x1 to the
variable that appears on the pattern pi,1. Bindings are omitted for
wildcard patterns and the lambda action li remains unchanged.

2. Constructor rule: if all patterns in the first column of P are constructors
patterns of the form k(q1, q2, . . . , qn’) we define a new matrix, the
specialized clause matrix S, by applying the following transformation
on every row p:

for every c ∈ Set of constructors

for i ← 1 .. m

let ki ← constructor_of(pi,1)

if ki = c then

p ← qi,1, qi,2, ..., qi,n′ , pi,2, pi,3, ..., pi,n

Patterns of the form qi,j matches on the values of the constructor and
we define new fresh variables y1, y2, . . . , ya so that the lambda action
li becomes

(let (y1 (field 0 x1))

(y2 (field 1 x1))

...

(ya (field (a−1) x1))
li)

and the result of the compilation for the set of constructors {c1, c2,
. . . , ck} is:

switch x1 with

case c1: l1
case c2: l2

28

...

case ck: lk
default: exit

3. Orpat rule: there are various strategies for dealing with or-patterns.
The most naive one is to split the or-patterns. For example a row p
containing an or-pattern:

(pi,1|qi,1|ri,1), pi,2, ..., pi,m → li

results in three rows added to the clause matrix

pi,1, pi,2, ..., pi,m → li

qi,1, pi,2, ..., pi,m → li

ri,1, pi,2, ..., pi,m → li

4. Mixture rule: When none of the previous rules apply the clause matrix
P → L is split into two clause matrices, the first P1 → L1 that is the
largest prefix matrix for which one of the three previous rules apply,
and P2 → L2 containing the remaining rows. The algorithm is applied
to both matrices.

It is important to note that the application of the decomposition algorithm
converges. This intuition can be verified by defining the size of the clause
matrix P → L as equal to the length of the longest pattern vector ~pi and
the length of a pattern vector as the number of symbols that appear in the
clause. While it is very easy to see that the application of rules 1) and 4)
produces new matrices of length equal or smaller than the original clause
matrix, we can show that:

• with the application of the constructor rule the pattern vector ~pi loses
one symbol after its decomposition:

|(pi,1 (q1, q2, . . . , qn’), pi,2, pi,3, . . . , pi,n)| = n + n’
|(qi,1, qi,2, . . . , qi,n’, pi,2, pi,3, . . . , pi,n)| = n + n’ - 1

29

• with the application of the orpat rule, we add one row to the clause
matrix P → L but the length of a row containing an Or-pattern de-
creases

|P → L| =
∣∣(p1,1|q1,1) p1,2 · · · p1,n → l1

...
...

. . .
...→

...

∣∣ = n+ 1

|P ′ → L′| =
∣∣

p1,1 p1,2 · · · p1,n → l1

q1,1 p1,2 · · · p1,n → l1
...

...
. . .

...→
...

∣∣ = n

In our prototype we make use of accessors to encode stored values.

let value = 1 :: 2 :: 3 :: []

(* that can also be written *)

let value = []

|> List.cons 3

|> List.cons 2

|> List.cons 1

(field 0 x) = 1

(field 0 (field 1 x)) = 2

(field 0 (field 1 (field 1 x)) = 3

(field 0 (field 1 (field 1 (field 1 x)) = []

An accessor a represents the access

path to a value that can be reached by deconstructing the scrutinee.

a ::= Here | n.a

The above example, in encoded form:

Here = 1

1.Here = 2

1.1.Here = 3

1.1.1.Here = []

In our prototype the source matrix mS is defined as follows

SMatrix mS := (aj)j∈J, ((pij)j∈J → bbi)i∈I

30

Source matrices are used to build source decision trees CS . A decision
tree is defined as either a Leaf, a Failure terminal or an intermediate node
with different children sharing the same accessor a and an optional fallback.
Failure is emitted only when the patterns don’t cover the whole set of pos-
sible input values S. The fallback is not needed when the user doesn’t use a
wildcard pattern. %%% Give example of thing

CS ::= Leaf bb | Switch(a, (Ki → Ci)i∈S , C?) | Failure | Unreachable
vS ::= K(vi)i∈I | n ∈ N

We say that a translation of a source program to a decision tree is correct
when for every possible input, the source program and its respective decision
tree produces the same result

∀vS , tS(vS) = JtSKS(vS)

We define the decision tree of source programs JtSK in terms of the deci-
sion tree of pattern matrices JmSK by the following:

J((pi → bbi)i∈IK := J(Here), (pi → bbi)i∈I K

Decision tree computed from pattern matrices respect the following invariant:

∀v (vi)i∈I = v(ai)i∈I → JmK(v) = m(vi)i∈I for m = ((ai)i∈I, (ri)i∈I)
v(Here) = v
K(vi)i(k.a) = vk(a) if k ∈ [0;n[

We proceed to show the correctness of the invariant by a case analysys.
Base cases:

1. [| ∅, (∅ → bbi)i |] ≡ Leaf bbi where i := min(I), that is a decision
tree [|ms|] defined by an empty accessor and empty patterns pointing
to blackboxes bbi. This respects the invariant because a source matrix
in the case of empty rows returns the first expression and (Leaf bb)(v)
:= Match bb

2. [| (aj)j , ∅ |] ≡ Failure

31

Regarding non base cases: Let’s first define some auxiliary functions

• The index family of a constructor

Idx(K) := [0; arity(K)[

• head of an ordered family (we write x for any object here, value, pattern
etc.)

head((xi)i ∈ I) = x_min(I)

• tail of an ordered family

tail((xi)i ∈ I) := (xi)i 6= min(I)

• head constructor of a value or pattern

constr(K(xi)i) = K
constr(_) = ⊥
constr(x) = ⊥

• first non-⊥ element of an ordered family

First((xi)i) := ⊥ if ∀i, xi = ⊥
First((xi)i) := x_min{i | xi 6= ⊥} if ∃i, xi 6= ⊥

• definition of group decomposition:

32

let constrs((pi)i ∈ I) = { K | K = constr(pi), i ∈ I }
let Groups(m) where m = ((ai)i ((pij)i → ej)ij) =
let (Kk)k = constrs(pi0)i in
(Kk →
((a0.l)l + tail(ai)i)
(
if poj is Kk(ql) then
(ql)l + tail(pij)i → ej

if poj is _ then
(_)l + tail(pij)i → ej

else ⊥
)j

), (
tail(ai)i, (tail(pij)i → ej if p0j is _ else ⊥)j

)

Groups(m) is an auxiliary function that decomposes a matrix m into subma-
trices, according to the head constructor of their first pattern. Groups(m)
returns one submatrix m_r for each head constructor K that occurs on the
first row of m, plus one "wildcard submatrix" mwild that matches on all val-
ues that do not start with one of those head constructors. Intuitively, m is
equivalent to its decomposition in the following sense: if the first pattern of
an input vector (v_i)ˆi starts with one of the head constructors Kk, then
running (v_i)ˆi against m is the same as running it against the submatrix
mKk

; otherwise (its head constructor is none of the Kk) it is equivalent to
running it against the wildcard submatrix.

We formalize this intuition as follows

1. Lemma (Groups): Let m be a matrix with

Groups(m) = (k_r → m_r)ˆk, mwild

For any value vector (vi)
l such that v0 = k(v′l)

l for some constructor
k, we have:

33

if k = kk for some k then
m(vi)i = mk((vl’)l + (vi)i∈I\{0})

else
m(vi)i = mwild(vi)i∈I\{0}

2. Proof: Let m be a matrix ((ai)i, ((pij)i → ej)j) with

Groups(m) = (Kk → mk)k, mwild

Below we are going to assume that m is a simplified matrix such that
the first row does not contain an or-pattern or a binding to a variable.

Let (vi)i be an input matrix with v0 = Kv(v’l)l for some constructor
Kv. We have to show that:

• if Kk = Kv for some Kk ∈ constrs(p0j)j , then m(vi)i = mk((v’l)l

+ tail(vi)i)

• otherwise m(vi)i = mwild(tail(vi)i)

Let us call (rkj) the j-th row of the submatrix mk, and rjwild the j-th
row of the wildcard submatrix mwild.

Our goal contains same-behavior equalities between matrices, for a
fixed input vector (vi)i. It suffices to show same-behavior equalities
between each row of the matrices for this input vector. We show that
for any j,

• if Kk = Kv for some Kk ∈ constrs(p0j)j , then

(pij)i(vi)i = rkj((v’l)l + tail(vi)i

• otherwise

(pij)i(vi)i = rjwild tail(vi)i

In the first case (Kv is Kk for some Kk ∈ constrs(p0j)j), we have to
prove that

34

(pij)i(vi)i = rkj((v’l)l + tail(vi)i

By definition of mk we know that rkj is equal to

if poj is Kk(ql) then
(ql)l + tail(pij)i → ej

if poj is _ then
(_)l + tail(pij)i → ej

else ⊥

By definition of (pi)i(vi)i we know that (pij)i(vi) is equal to

(K(qj)j , tail(pij)i) (K(v’l)l,tail(vi)i) := ((qj)j + tail(pij)i)((v’l)l + tail(vi)i)
(_, tail(pij)i) (vi) := tail(pij)i(tail(vi)i)
(K(qj)j , tail(pij)i) (K’(v’l)l,tail(vj)j) := ⊥ if K 6= K’

We prove this first case by a second case analysis on p0j .

TODO

In the second case (Kv is distinct from Kk for all Kk ∈ constrs(poj)j),
we have to prove that

(pij)i(vi)i = rjwild tail(vi)i

TODO

3.2 Target translation

The target program of the following general form is parsed using a parser
generated by Menhir, a LR(1) parser generator for the OCaml programming
language. Menhir compiles LR(1) a grammar specification, in this case a
subset of the Lambda intermediate language, down to OCaml code. This is
the grammar of the target language (TODO: check menhir grammar)

35

start ::= sexpr
sexpr ::= variable | string | "(" special_form ")"
string ::= "\"" identifier "\"" ;; string between doublequotes
variable ::= identifier
special_form ::= let|catch|if|switch|switch-star|field|apply|isout
let ::= "let" assignment sexpr ;; (assignment sexpr)+ outside of pattern match code
assignment ::= "function" variable variable+ ;; the first variable is the identifier of the function
field ::= "field" digit variable
apply ::= ocaml_lambda_code ;; arbitrary code
catch ::= "catch" sexpr with sexpr
with ::= "with" "(" label ")"
exit ::= "exit" label
switch-star ::= "switch*" variable case*
switch::= "switch" variable case* "default:" sexpr
case ::= "case" casevar ":" sexpr
casevar ::= ("tag"|"int") integer
if ::= "if" bexpr sexpr sexpr
bexpr ::= "(" ("!="|"="\vert{}">"|"<="|">"|"<") sexpr digit | field ")"
label ::= integer

The prototype doesn’t support strings.
The AST built by the parser is traversed and evaluated by the symbolic

execution engine. Given that the target language supports jumps in the
form of "catch - exit" blocks the engine tries to evaluate the instructions
inside the blocks and stores the result of the partial evaluation into a record.
When a jump is encountered, the information at the point allows to finalize
the evaluation of the jump block. In the environment the engine also stores
bindings to values and functions. Integer additions and subtractions are
simplified in a second pass. The result of the symbolic evaluation is a target
decision tree CT

CT ::= Leaf bb | Switch(a, (πi → Ci)i∈S , C?) | Failure
vT ::= Cell(tag ∈ N, (vi)i∈I) | n ∈ N

36

Every branch of the decision tree is "constrained" by a domain

Domain π = { n|n∈N x n|n∈Tag⊆N }

Intuitively, the π condition at every branch tells us the set of possible values
that can "flow" through that path. π conditions are refined by the engine
during the evaluation; at the root of the decision tree the domain corresponds
to the set of possible values that the type of the function can hold. C? is
the fallback node of the tree that is taken whenever the value at that point
of the execution can’t flow to any other subbranch. Intuitively, the πfallback

condition of the C? fallback node is

πfallback = ¬
⋃
i∈I
πi

The fallback node can be omitted in the case where the domain of the children
nodes correspond to set of possible values pointed by the accessor at that
point of the execution

domain(vS(a)) =
⋃
i∈I
πi

We say that a translation of a target program to a decision tree is correct
when for every possible input, the target program and its respective decision
tree produces the same result

∀vT , tT (vT) = JtT KT (vT)

3.3 Equivalence checking

The equivalence checking algorithm takes as input a domain of possible val-
ues S and a pair of source and target decision trees and in case the two trees
are not equivalent it returns a counter example. The algorithm respects the
following correctness statement:

equiv(S,CS , CT)[] = Yes ∧ CT covers S =⇒ ∀vS ≈ vT ∈ S, CS(vS) = CT (vT)

equiv(S,CS , CT)[] = No(vS , vT) ∧ CT covers S =⇒ vS ≈ vT ∈ S ∧ CS(vS) 6= CT (vT)

37

Our equivalence-checking algorithm equiv(S,CS , CT)G is a exactly decision
procedure for the provability of the judgment (equiv(S,CS , CT)G), defined
below.

constraint trees
C ::= Leaf(t)

| Failure
| Switch(a, (πi, Ci)i, Cfb)

| Guard(t, C0, C1)

boolean result
b ∈ {0, 1}

guard queues
G ::= (t1 = b1), . . . , (tn = bn)

input space
S ⊆ {(vS , vT) | vS ≈val vT }

equiv(∅, CS , CT)G equiv(S,Failure,Failure)[]

tS ≈term tT

equiv(S, Leaf(tS), Leaf(tT))[]

∀i, equiv((S ∧ a = Ki), Ci, trim(CT , a = Ki))G

equiv((S ∧ a /∈ (Ki)
i), Cfb, trim(CT , a /∈ (Ki)

i))G

equiv(S, Switch(a, (Ki, Ci)
i, Cfb), CT)G

CS ∈ Leaf(t),Failure

∀i, equiv((S ∧ a ∈ Di), CS , Ci)G equiv((S ∧ a /∈ (Di)
i), CS , Cfb)G

equiv(S,CS ,Switch(a, (Di)
iCi, Cfb))G

equiv(S,C0, CT)G, (tS = 0) equiv(S,C1, CT)G, (tS = 1)

equiv(S,Guard(tS , C0, C1), CT)G

tS ≈term tT equiv(S,CS , Cb)G

equiv(S,CS ,Guard(tT , C0, C1))(tS = b), G

Running a program tS or its translation JtSK against an input vS produces
as a result r in the following way:

38

(JtSKS(vS) ≡ CS(vS)) → r
tS(vS) → r

Likewise

(JtT KT (vT) ≡ CT (vT)) → r
tT (vT) → r
result r ::= guard list * (Match blackbox | NoMatch | Absurd)
guard ::= blackbox.

Having defined equivalence between two inputs of which one is expressed in
the source language and the other in the target language, vS ' vT , we can
define the equivalence between a couple of programs or a couple of decision
trees

tS ' tT := ∀vS'vT , tS(vS) = tT (vT)
CS ' CT := ∀vS'vT , CS(vS) = CT (vT)

The result of the proposed equivalence algorithm is Yes or No(vS, vT). In
particular, in the negative case, vS and vT are a couple of possible counter
examples for which the decision trees produce a different result.

In the presence of guards we can say that two results are equivalent
modulo the guards queue, written r1 'gs r2, when:

(gs1, r1) 'gs (gs2, r2) ⇔ (gs1, r1) = (gs2 ++ gs, r2)

We say that CT covers the input space S, written covers(CT , S) when every
value vS∈S is a valid input to the decision tree CT . (TODO: rephrase) Given
an input space S and a couple of decision trees, where the target decision
tree CT covers the input space S, we say that the two decision trees are
equivalent when:

equiv(S, CS , CT , gs) = Yes ∧ covers(CT , S) → ∀vS'vT ∈ S, CS(vS) 'gs CT (vT)

Similarly we say that a couple of decision trees in the presence of an input
space S are not equivalent when:

39

equiv(S, CS , CT , gs) = No(vS ,vT) ∧ covers(CT , S) → vS'vT ∈ S ∧ CS(vS) 6=gs CT (vT)

Corollary: For a full input space S, that is the universe of the target program:

equiv(S, JtSKS , JtT KT , ∅) = Yes ⇔ tS ' tT

3.3.1 The trimming lemma

The trimming lemma allows to reduce the size of a decision tree given an
accessor a → π relation (TODO: expand)

∀vT ∈ (a→π), CT (vT) = Ct/a→π(vT)

We prove this by induction on CT :

• CT = Leafbb: when the decision tree is a leaf terminal, the result of
trimming on a Leaf is the Leaf itself

Leafbb/a→π(v) = Leafbb(v)

• The same applies to Failure terminal

Failure/a→π(v) = Failure(v)

• When CT = Switch(b, (π→Ci)i)/a→π then we look at the accessor a
of the subtree Ci and we define πi’ = πi if a 6=b else πi∩π Trimming a
switch node yields the following result:

Switch(b, (π→Ci)i∈I)/a→π := Switch(b, (π’i→Ci/a→π)i∈I)

For the trimming lemma we have to prove that running the value vT against
the decision tree CT is the same as running vT against the tree Ctrim that is
the result of the trimming operation on CT

CT (vT) = Ctrim(vT) = Switch(b, (πi’→Ci/a→π)i∈I)(vT)

40

We can reason by first noting that when vT /∈(b→πi)i the node must be a
Failure node. In the case where ∃k | vT∈(b→πk) then we can prove that

Ck/a→π(vT) = Switch(b, (πi’→Ci/a→π)i∈I)(vT)

because when a 6= b then πk’= πk and this means that vT∈πk’ while when
a = b then πk’=(πk∩π) and vT∈πk’ because:

• by the hypothesis, vT∈π

• we are in the case where vT∈πk

So vT ∈ πk’ and by induction

Ck(vT) = Ck/a→π(vT)

We also know that ∀vT∈(b→πk) → CT (vT) = Ck(vT) By putting together
the last two steps, we have proven the trimming lemma.

3.3.2 Equivalence checking

The equivalence checking algorithm takes as parameters an input space S, a
source decision tree CS and a target decision tree CT :

equiv(S, CS , CT) → Yes | No(vS , vT)

When the algorithm returns Yes and the input space is covered by CS
we can say that the couple of decision trees are the same for every couple of
source value vS and target value vT that are equivalent.

equiv(S, CS , CT) = Yes and cover(CT , S) → ∀ vS ' vT∈S ∧ CS(vS) = CT (vT)

In the case where the algorithm returns No we have at least a couple of
counter example values vS and vT for which the two decision trees outputs
a different result.

equiv(S, CS , CT) = No(vS ,vT) and cover(CT , S) → ∀ vS ' vT∈S ∧ CS(vS) 6= CT (vT)

41

We define the following

Forall(Yes) = Yes
Forall(Yes::l) = Forall(l)
Forall(No(vS ,vT)::_) = No(vS ,vT)

There exists and are injective:

int(k) ∈ N (arity(k) = 0)
tag(k) ∈ N (arity(k) > 0)
π(k) = {n| int(k) = n} x {n| tag(k) = n}

where k is a constructor.
We proceed by case analysis:

1. in case of unreachable:

CS(vS) = Absurd(Unreachable) 6= CT (vT) ∀vS ,vT

1. In the case of an empty input space

equiv(∅, CS , CT) := Yes

and that is trivial to prove because there is no pair of values (vS , vT)
that could be tested against the decision trees. In the other subcases
S is always non-empty.

2. When there are Failure nodes at both sides the result is Yes:

equiv(S, Failure, Failure) := Yes

Given that ∀v, Failure(v) = Failure, the statement holds.

3. When we have a Leaf or a Failure at the left side:

equiv(S, Failure as CS , Switch(a, (πi → CT i)i∈I)) := Forall(equiv(S∩a→π(ki)), CS , CT i)i∈I)
equiv(S, Leaf bbS as CS , Switch(a, (πi → CT i)i∈I)) := Forall(equiv(S∩a→π(ki)), CS , CT i)i∈I)

42

The algorithm either returns Yes for every sub-input space Si := S∩(a→π(ki))
and subtree CT i

equiv(Si, CS , CT i) = Yes ∀i

or we have a counter example vS , vT for which

vS'vT∈Sk ∧ cS(vS) 6= CT k(vT)

then because

vT∈(a→πk) → CT (vT) = CT k(vT) ,
vS'vT∈S ∧ CS(vS)6=CT (vT)

we can say that

equiv(Si, CS , CT i) = No(vS , vT) for some minimal k∈I

4. When we have a Switch on the right we define πfallback as the domain
of values not covered but the union of the constructors ki

πfallback = ¬
⋃
i∈I
π(ki)

The algorithm proceeds by trimming

equiv(S, Switch(a, (ki → CSi)i∈I, Csf), CT) :=
Forall(equiv(S∩(a→π(ki)i∈I), CSi, Ct/a→π(ki))

i∈I + equiv(S∩(a→πn), CS , Ca→πfallback))

The statement still holds and we show this by first analyzing the Yes
case:

Forall(equiv(S∩(a→π(ki)i∈I), CSi, Ct/a→π(ki))
i∈I = Yes

The constructor k is either included in the set of constructors ki:

k | k∈(ki)i ∧ CS(vS) = CSi(vS)

43

We also know that

(1) CSi(vS) = Ct/a→πi
(vT)

(2) CT/a→πi
(vT) = CT (vT)

(1) is true by induction and (2) is a consequence of the trimming
lemma. Putting everything together:

CS(vS) = CSi(vS) = CT/a→πi
(vT) = CT (vT)

When the k/∈(ki)i [TODO]

The auxiliary Forall function returns No(vS, vT) when, for a minimum
k,

equiv(Sk, CSk, CT/a→πk
= No(vS , vT)

Then we can say that

CSk(vS) 6= Ct/a→πk
(vT)

that is enough for proving that

CSk(vS) 6= (Ct/a→πk
(vT) = CT (vT))

44

